MyArxiv
Computation and Language 78
☆ BLINK: Multimodal Large Language Models Can See but Not Perceive
We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.
comment: Multimodal Benchmark, Project Url: https://zeyofu.github.io/blink/
☆ Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models
We introduce Reka Core, Flash, and Edge, a series of powerful multimodal language models trained from scratch by Reka. Reka models are able to process and reason with text, images, video, and audio inputs. This technical report discusses details of training some of these models and provides comprehensive evaluation results. We show that Reka Edge and Reka Flash are not only state-of-the-art but also outperform many much larger models, delivering outsized values for their respective compute class. Meanwhile, our most capable and largest model, Reka Core, approaches the best frontier models on both automatic evaluations and blind human evaluations. On image question answering benchmarks (e.g. MMMU, VQAv2), Core performs competitively to GPT4-V. Meanwhile, on multimodal chat, Core ranks as the second most preferred model under a blind third-party human evaluation setup, outperforming other models such as Claude 3 Opus. On text benchmarks, Core not only performs competitively to other frontier models on a set of well-established benchmarks (e.g. MMLU, GSM8K) but also outperforms GPT4-0613 on human evaluation. On video question answering (Perception-Test), Core outperforms Gemini Ultra. Models are shipped in production at http://chat.reka.ai . A showcase of non cherry picked qualitative examples can also be found at http://showcase.reka.ai .
☆ When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes NAACL
We present FastFit, a method, and a Python package design to provide fast and accurate few-shot classification, especially for scenarios with many semantically similar classes. FastFit utilizes a novel approach integrating batch contrastive learning and token-level similarity score. Compared to existing few-shot learning packages, such as SetFit, Transformers, or few-shot prompting of large language models via API calls, FastFit significantly improves multiclass classification performance in speed and accuracy across FewMany, our newly curated English benchmark, and Multilingual datasets. FastFit demonstrates a 3-20x improvement in training speed, completing training in just a few seconds. The FastFit package is now available on GitHub and PyPi, presenting a user-friendly solution for NLP practitioners.
comment: Accepted to NAACL
☆ Large Language Models in Targeted Sentiment Analysis
In this paper we investigate the use of decoder-based generative transformers for extracting sentiment towards the named entities in Russian news articles. We study sentiment analysis capabilities of instruction-tuned large language models (LLMs). We consider the dataset of RuSentNE-2023 in our study. The first group of experiments was aimed at the evaluation of zero-shot capabilities of LLMs with closed and open transparencies. The second covers the fine-tuning of Flan-T5 using the "chain-of-thought" (CoT) three-hop reasoning framework (THoR). We found that the results of the zero-shot approaches are similar to the results achieved by baseline fine-tuned encoder-based transformers (BERT-base). Reasoning capabilities of the fine-tuned Flan-T5 models with THoR achieve at least 5% increment with the base-size model compared to the results of the zero-shot experiment. The best results of sentiment analysis on RuSentNE-2023 were achieved by fine-tuned Flan-T5-xl, which surpassed the results of previous state-of-the-art transformer-based classifiers. Our CoT application framework is publicly available: https://github.com/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework
comment: Fine-tuned Flan-T5-xl outperforms the top #1 results of transformer-based classifier in RuSentNE-2023 competition, to appear in Lobachevskii Journal of Mathematics No.8/2024 proceedings
☆ Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment
Aligning language models (LMs) based on human-annotated preference data is a crucial step in obtaining practical and performant LM-based systems. However, multilingual human preference data are difficult to obtain at scale, making it challenging to extend this framework to diverse languages. In this work, we evaluate a simple approach for zero-shot cross-lingual alignment, where a reward model is trained on preference data in one source language and directly applied to other target languages. On summarization and open-ended dialog generation, we show that this method is consistently successful under comprehensive evaluation settings, including human evaluation: cross-lingually aligned models are preferred by humans over unaligned models on up to >70% of evaluation instances. We moreover find that a different-language reward model sometimes yields better aligned models than a same-language reward model. We also identify best practices when there is no language-specific data for even supervised finetuning, another component in alignment.
☆ Simultaneous Interpretation Corpus Construction by Large Language Models in Distant Language Pair
In Simultaneous Machine Translation (SiMT) systems, training with a simultaneous interpretation (SI) corpus is an effective method for achieving high-quality yet low-latency systems. However, it is very challenging to curate such a corpus due to limitations in the abilities of annotators, and hence, existing SI corpora are limited. Therefore, we propose a method to convert existing speech translation corpora into interpretation-style data, maintaining the original word order and preserving the entire source content using Large Language Models (LLM-SI-Corpus). We demonstrate that fine-tuning SiMT models in text-to-text and speech-to-text settings with the LLM-SI-Corpus reduces latencies while maintaining the same level of quality as the models trained with offline datasets. The LLM-SI-Corpus is available at \url{https://github.com/yusuke1997/LLM-SI-Corpus}.
comment: 23 pages, 9 figures
☆ Augmenting emotion features in irony detection with Large language modeling
This study introduces a novel method for irony detection, applying Large Language Models (LLMs) with prompt-based learning to facilitate emotion-centric text augmentation. Traditional irony detection techniques typically fall short due to their reliance on static linguistic features and predefined knowledge bases, often overlooking the nuanced emotional dimensions integral to irony. In contrast, our methodology augments the detection process by integrating subtle emotional cues, augmented through LLMs, into three benchmark pre-trained NLP models - BERT, T5, and GPT-2 - which are widely recognized as foundational in irony detection. We assessed our method using the SemEval-2018 Task 3 dataset and observed substantial enhancements in irony detection capabilities.
comment: 11 pages, 3 tables, 2 figures. Submitted to the 25th Chinese Lexical Semantics Workshop
☆ Resilience through Scene Context in Visual Referring Expression Generation
Scene context is well known to facilitate humans' perception of visible objects. In this paper, we investigate the role of context in Referring Expression Generation (REG) for objects in images, where existing research has often focused on distractor contexts that exert pressure on the generator. We take a new perspective on scene context in REG and hypothesize that contextual information can be conceived of as a resource that makes REG models more resilient and facilitates the generation of object descriptions, and object types in particular. We train and test Transformer-based REG models with target representations that have been artificially obscured with noise to varying degrees. We evaluate how properties of the models' visual context affect their processing and performance. Our results show that even simple scene contexts make models surprisingly resilient to perturbations, to the extent that they can identify referent types even when visual information about the target is completely missing.
☆ Enhancing Embedding Performance through Large Language Model-based Text Enrichment and Rewriting
Embedding models are crucial for various natural language processing tasks but can be limited by factors such as limited vocabulary, lack of context, and grammatical errors. This paper proposes a novel approach to improve embedding performance by leveraging large language models (LLMs) to enrich and rewrite input text before the embedding process. By utilizing ChatGPT 3.5 to provide additional context, correct inaccuracies, and incorporate metadata, the proposed method aims to enhance the utility and accuracy of embedding models. The effectiveness of this approach is evaluated on three datasets: Banking77Classification, TwitterSemEval 2015, and Amazon Counter-factual Classification. Results demonstrate significant improvements over the baseline model on the TwitterSemEval 2015 dataset, with the best-performing prompt achieving a score of 85.34 compared to the previous best of 81.52 on the Massive Text Embedding Benchmark (MTEB) Leaderboard. However, performance on the other two datasets was less impressive, highlighting the importance of considering domain-specific characteristics. The findings suggest that LLM-based text enrichment has shown promising results to improve embedding performance, particularly in certain domains. Hence, numerous limitations in the process of embedding can be avoided.
☆ Advancing the Robustness of Large Language Models through Self-Denoised Smoothing NAACL 2024
Although large language models (LLMs) have achieved significant success, their vulnerability to adversarial perturbations, including recent jailbreak attacks, has raised considerable concerns. However, the increasing size of these models and their limited access make improving their robustness a challenging task. Among various defense strategies, randomized smoothing has shown great potential for LLMs, as it does not require full access to the model's parameters or fine-tuning via adversarial training. However, randomized smoothing involves adding noise to the input before model prediction, and the final model's robustness largely depends on the model's performance on these noise corrupted data. Its effectiveness is often limited by the model's sub-optimal performance on noisy data. To address this issue, we propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions. We call this procedure self-denoised smoothing. Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility. Our experimental results indicate that our method surpasses existing methods in both empirical and certified robustness in defending against adversarial attacks for both downstream tasks and human alignments (i.e., jailbreak attacks). Our code is publicly available at https://github.com/UCSB-NLP-Chang/SelfDenoise
comment: Accepted by NAACL 2024. Jiabao, Bairu, Zhen, Guanhua contributed equally. This is an updated version of the paper: arXiv:2307.07171
☆ FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom
Federated Learning (FL) has emerged as a promising solution for collaborative training of large language models (LLMs). However, the integration of LLMs into FL introduces new challenges, particularly concerning the evaluation of LLMs. Traditional evaluation methods that rely on labeled test sets and similarity-based metrics cover only a subset of the acceptable answers, thereby failing to accurately reflect the performance of LLMs on generative tasks. Meanwhile, although automatic evaluation methods that leverage advanced LLMs present potential, they face critical risks of data leakage due to the need to transmit data to external servers and suboptimal performance on downstream tasks due to the lack of domain knowledge. To address these issues, we propose a Federated Evaluation framework of Large Language Models, named FedEval-LLM, that provides reliable performance measurements of LLMs on downstream tasks without the reliance on labeled test sets and external tools, thus ensuring strong privacy-preserving capability. FedEval-LLM leverages a consortium of personalized LLMs from participants as referees to provide domain knowledge and collective evaluation capability, thus aligning to the respective downstream tasks and mitigating uncertainties and biases associated with a single referee. Experimental results demonstrate a significant improvement in the evaluation capability of personalized evaluation models on downstream tasks. When applied to FL, these evaluation models exhibit strong agreement with human preference and RougeL-score on meticulously curated test sets. FedEval-LLM effectively overcomes the limitations of traditional metrics and the reliance on external services, making it a promising framework for the evaluation of LLMs within collaborative training scenarios.
comment: In Progress
☆ Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing
Despite the impressive capabilities of Large Language Models (LLMs) on various tasks, they still struggle with scenarios that involves complex reasoning and planning. Recent work proposed advanced prompting techniques and the necessity of fine-tuning with high-quality data to augment LLMs' reasoning abilities. However, these approaches are inherently constrained by data availability and quality. In light of this, self-correction and self-learning emerge as viable solutions, employing strategies that allow LLMs to refine their outputs and learn from self-assessed rewards. Yet, the efficacy of LLMs in self-refining its response, particularly in complex reasoning and planning task, remains dubious. In this paper, we introduce AlphaLLM for the self-improvements of LLMs, which integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop, thereby enhancing the capabilities of LLMs without additional annotations. Drawing inspiration from the success of AlphaGo, AlphaLLM addresses the unique challenges of combining MCTS with LLM for self-improvement, including data scarcity, the vastness search spaces of language tasks, and the subjective nature of feedback in language tasks. AlphaLLM is comprised of prompt synthesis component, an efficient MCTS approach tailored for language tasks, and a trio of critic models for precise feedback. Our experimental results in mathematical reasoning tasks demonstrate that AlphaLLM significantly enhances the performance of LLMs without additional annotations, showing the potential for self-improvement in LLMs.
☆ CMNEE: A Large-Scale Document-Level Event Extraction Dataset based on Open-Source Chinese Military News LREC
Extracting structured event knowledge, including event triggers and corresponding arguments, from military texts is fundamental to many applications, such as intelligence analysis and decision assistance. However, event extraction in the military field faces the data scarcity problem, which impedes the research of event extraction models in this domain. To alleviate this problem, we propose CMNEE, a large-scale, document-level open-source Chinese Military News Event Extraction dataset. It contains 17,000 documents and 29,223 events, which are all manually annotated based on a pre-defined schema for the military domain including 8 event types and 11 argument role types. We designed a two-stage, multi-turns annotation strategy to ensure the quality of CMNEE and reproduced several state-of-the-art event extraction models with a systematic evaluation. The experimental results on CMNEE fall shorter than those on other domain datasets obviously, which demonstrates that event extraction for military domain poses unique challenges and requires further research efforts. Our code and data can be obtained from https://github.com/Mzzzhu/CMNEE.
comment: 13 pages, 7 figures, accepted to LREC-COLING 2024
☆ Introducing v0.5 of the AI Safety Benchmark from MLCommons
This paper introduces v0.5 of the AI Safety Benchmark, which has been created by the MLCommons AI Safety Working Group. The AI Safety Benchmark has been designed to assess the safety risks of AI systems that use chat-tuned language models. We introduce a principled approach to specifying and constructing the benchmark, which for v0.5 covers only a single use case (an adult chatting to a general-purpose assistant in English), and a limited set of personas (i.e., typical users, malicious users, and vulnerable users). We created a new taxonomy of 13 hazard categories, of which 7 have tests in the v0.5 benchmark. We plan to release version 1.0 of the AI Safety Benchmark by the end of 2024. The v1.0 benchmark will provide meaningful insights into the safety of AI systems. However, the v0.5 benchmark should not be used to assess the safety of AI systems. We have sought to fully document the limitations, flaws, and challenges of v0.5. This release of v0.5 of the AI Safety Benchmark includes (1) a principled approach to specifying and constructing the benchmark, which comprises use cases, types of systems under test (SUTs), language and context, personas, tests, and test items; (2) a taxonomy of 13 hazard categories with definitions and subcategories; (3) tests for seven of the hazard categories, each comprising a unique set of test items, i.e., prompts. There are 43,090 test items in total, which we created with templates; (4) a grading system for AI systems against the benchmark; (5) an openly available platform, and downloadable tool, called ModelBench that can be used to evaluate the safety of AI systems on the benchmark; (6) an example evaluation report which benchmarks the performance of over a dozen openly available chat-tuned language models; (7) a test specification for the benchmark.
☆ Length Generalization of Causal Transformers without Position Encoding
Generalizing to longer sentences is important for recent Transformer-based language models. Besides algorithms manipulating explicit position features, the success of Transformers without position encodings (NoPE) provides a new way to overcome the challenge. In this paper, we study the length generalization property of NoPE. We find that although NoPE can extend to longer sequences than the commonly used explicit position encodings, it still has a limited context length. We identify a connection between the failure of NoPE's generalization and the distraction of attention distributions. We propose a parameter-efficient tuning for searching attention heads' best temperature hyper-parameters, which substantially expands NoPE's context size. Experiments on long sequence language modeling, the synthetic passkey retrieval task and real-world long context tasks show that NoPE can achieve competitive performances with state-of-the-art length generalization algorithms. The source code is publicly accessible
☆ OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.
comment: 25 pages, 27 Figures, 8 Tables
☆ EuSQuAD: Automatically Translated and Aligned SQuAD2.0 for Basque
The widespread availability of Question Answering (QA) datasets in English has greatly facilitated the advancement of the Natural Language Processing (NLP) field. However, the scarcity of such resources for minority languages, such as Basque, poses a substantial challenge for these communities. In this context, the translation and alignment of existing QA datasets plays a crucial role in narrowing this technological gap. This work presents EuSQuAD, the first initiative dedicated to automatically translating and aligning SQuAD2.0 into Basque, resulting in more than 142k QA examples. We demonstrate EuSQuAD's value through extensive qualitative analysis and QA experiments supported with EuSQuAD as training data. These experiments are evaluated with a new human-annotated dataset.
comment: Under review in the journal of Procesamiento de Lenguaje Natural
☆ Claim Check-Worthiness Detection: How Well do LLMs Grasp Annotation Guidelines?
The increasing threat of disinformation calls for automating parts of the fact-checking pipeline. Identifying text segments requiring fact-checking is known as claim detection (CD) and claim check-worthiness detection (CW), the latter incorporating complex domain-specific criteria of worthiness and often framed as a ranking task. Zero- and few-shot LLM prompting is an attractive option for both tasks, as it bypasses the need for labeled datasets and allows verbalized claim and worthiness criteria to be directly used for prompting. We evaluate the LLMs' predictive and calibration accuracy on five CD/CW datasets from diverse domains, each utilizing a different worthiness criterion. We investigate two key aspects: (1) how best to distill factuality and worthiness criteria into a prompt and (2) what amount of context to provide for each claim. To this end, we experiment with varying the level of prompt verbosity and the amount of contextual information provided to the model. Our results show that optimal prompt verbosity is domain-dependent, adding context does not improve performance, and confidence scores can be directly used to produce reliable check-worthiness rankings.
☆ Stance Detection on Social Media with Fine-Tuned Large Language Models
Stance detection, a key task in natural language processing, determines an author's viewpoint based on textual analysis. This study evaluates the evolution of stance detection methods, transitioning from early machine learning approaches to the groundbreaking BERT model, and eventually to modern Large Language Models (LLMs) such as ChatGPT, LLaMa-2, and Mistral-7B. While ChatGPT's closed-source nature and associated costs present challenges, the open-source models like LLaMa-2 and Mistral-7B offers an encouraging alternative. Initially, our research focused on fine-tuning ChatGPT, LLaMa-2, and Mistral-7B using several publicly available datasets. Subsequently, to provide a comprehensive comparison, we assess the performance of these models in zero-shot and few-shot learning scenarios. The results underscore the exceptional ability of LLMs in accurately detecting stance, with all tested models surpassing existing benchmarks. Notably, LLaMa-2 and Mistral-7B demonstrate remarkable efficiency and potential for stance detection, despite their smaller sizes compared to ChatGPT. This study emphasizes the potential of LLMs in stance detection and calls for more extensive research in this field.
☆ FecTek: Enhancing Term Weight in Lexicon-Based Retrieval with Feature Context and Term-level Knowledge
Lexicon-based retrieval has gained siginificant popularity in text retrieval due to its efficient and robust performance. To further enhance performance of lexicon-based retrieval, researchers have been diligently incorporating state-of-the-art methodologies like Neural retrieval and text-level contrastive learning approaches. Nonetheless, despite the promising outcomes, current lexicon-based retrieval methods have received limited attention in exploring the potential benefits of feature context representations and term-level knowledge guidance. In this paper, we introduce an innovative method by introducing FEature Context and TErm-level Knowledge modules(FecTek). To effectively enrich the feature context representations of term weight, the Feature Context Module (FCM) is introduced, which leverages the power of BERT's representation to determine dynamic weights for each element in the embedding. Additionally, we develop a term-level knowledge guidance module (TKGM) for effectively utilizing term-level knowledge to intelligently guide the modeling process of term weight. Evaluation of the proposed method on MS Marco benchmark demonstrates its superiority over the previous state-of-the-art approaches.
☆ Aligning language models with human preferences
Language models (LMs) trained on vast quantities of text data can acquire sophisticated skills such as generating summaries, answering questions or generating code. However, they also manifest behaviors that violate human preferences, e.g., they can generate offensive content, falsehoods or perpetuate social biases. In this thesis, I explore several approaches to aligning LMs with human preferences. First, I argue that aligning LMs can be seen as Bayesian inference: conditioning a prior (base, pretrained LM) on evidence about human preferences (Chapter 2). Conditioning on human preferences can be implemented in numerous ways. In Chapter 3, I investigate the relation between two approaches to finetuning pretrained LMs using feedback given by a scoring function: reinforcement learning from human feedback (RLHF) and distribution matching. I show that RLHF can be seen as a special case of distribution matching but distributional matching is strictly more general. In chapter 4, I show how to extend the distribution matching to conditional language models. Finally, in chapter 5 I explore a different root: conditioning an LM on human preferences already during pretraining. I show that involving human feedback from the very start tends to be more effective than using it only during supervised finetuning. Overall, these results highlight the room for alignment techniques different from and complementary to RLHF.
comment: PhD thesis
☆ From Form(s) to Meaning: Probing the Semantic Depths of Language Models Using Multisense Consistency
The staggering pace with which the capabilities of large language models (LLMs) are increasing, as measured by a range of commonly used natural language understanding (NLU) benchmarks, raises many questions regarding what "understanding" means for a language model and how it compares to human understanding. This is especially true since many LLMs are exclusively trained on text, casting doubt on whether their stellar benchmark performances are reflective of a true understanding of the problems represented by these benchmarks, or whether LLMs simply excel at uttering textual forms that correlate with what someone who understands the problem would say. In this philosophically inspired work, we aim to create some separation between form and meaning, with a series of tests that leverage the idea that world understanding should be consistent across presentational modes - inspired by Fregean senses - of the same meaning. Specifically, we focus on consistency across languages as well as paraphrases. Taking GPT-3.5 as our object of study, we evaluate multisense consistency across five different languages and various tasks. We start the evaluation in a controlled setting, asking the model for simple facts, and then proceed with an evaluation on four popular NLU benchmarks. We find that the model's multisense consistency is lacking and run several follow-up analyses to verify that this lack of consistency is due to a sense-dependent task understanding. We conclude that, in this aspect, the understanding of LLMs is still quite far from being consistent and human-like, and deliberate on how this impacts their utility in the context of learning about human language and understanding.
☆ Enhancing Suicide Risk Assessment: A Speech-Based Automated Approach in Emergency Medicine
The delayed access to specialized psychiatric assessments and care for patients at risk of suicidal tendencies in emergency departments creates a notable gap in timely intervention, hindering the provision of adequate mental health support during critical situations. To address this, we present a non-invasive, speech-based approach for automatic suicide risk assessment. For our study, we have collected a novel dataset of speech recordings from $20$ patients from which we extract three sets of features, including wav2vec, interpretable speech and acoustic features, and deep learning-based spectral representations. We proceed by conducting a binary classification to assess suicide risk in a leave-one-subject-out fashion. Our most effective speech model achieves a balanced accuracy of $66.2\,\%$. Moreover, we show that integrating our speech model with a series of patients' metadata, such as the history of suicide attempts or access to firearms, improves the overall result. The metadata integration yields a balanced accuracy of $94.4\,\%$, marking an absolute improvement of $28.2\,\%$, demonstrating the efficacy of our proposed approaches for automatic suicide risk assessment in emergency medicine.
☆ Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at https://github.com/yuzhu-cai/Ethical-Lens.
comment: 42 pages, 17 figures, 29 tables
☆ LongEmbed: Extending Embedding Models for Long Context Retrieval
Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark.
☆ TIMIT Speaker Profiling: A Comparison of Multi-task learning and Single-task learning Approaches
This study employs deep learning techniques to explore four speaker profiling tasks on the TIMIT dataset, namely gender classification, accent classification, age estimation, and speaker identification, highlighting the potential and challenges of multi-task learning versus single-task models. The motivation for this research is twofold: firstly, to empirically assess the advantages and drawbacks of multi-task learning over single-task models in the context of speaker profiling; secondly, to emphasize the undiminished significance of skillful feature engineering for speaker recognition tasks. The findings reveal challenges in accent classification, and multi-task learning is found advantageous for tasks of similar complexity. Non-sequential features are favored for speaker recognition, but sequential ones can serve as starting points for complex models. The study underscores the necessity of meticulous experimentation and parameter tuning for deep learning models.
☆ RAGAR, Your Falsehood RADAR: RAG-Augmented Reasoning for Political Fact-Checking using Multimodal Large Language Models ACL
The escalating challenge of misinformation, particularly in the context of political discourse, necessitates advanced solutions for fact-checking. We introduce innovative approaches to enhance the reliability and efficiency of multimodal fact-checking through the integration of Large Language Models (LLMs) with Retrieval-augmented Generation (RAG)- based advanced reasoning techniques. This work proposes two novel methodologies, Chain of RAG (CoRAG) and Tree of RAG (ToRAG). The approaches are designed to handle multimodal claims by reasoning the next questions that need to be answered based on previous evidence. Our approaches improve the accuracy of veracity predictions and the generation of explanations over the traditional fact-checking approach of sub-question generation with chain of thought veracity prediction. By employing multimodal LLMs adept at analyzing both text and images, this research advances the capability of automated systems in identifying and countering misinformation.
comment: 8 pages, submitted to ACL Rolling Review
☆ Constituents Correspond to Word Sequence Patterns among Sentences with Equivalent Predicate-Argument Structures: Unsupervised Constituency Parsing by Span Matching
Unsupervised constituency parsing is about identifying word sequences that form a syntactic unit (i.e., constituents) in a target sentence. Linguists identify the constituent by evaluating a set of Predicate-Argument Structure (PAS) equivalent sentences where we find the constituent corresponds to frequent word sequences. However, such information is unavailable to previous parsing methods which identify the constituent by observing sentences with diverse PAS. In this study, we empirically verify that \textbf{constituents correspond to word sequence patterns in the PAS-equivalent sentence set}. We propose a frequency-based method \emph{span-overlap}, applying the word sequence pattern to computational unsupervised parsing for the first time. Parsing experiments show that the span-overlap parser outperforms state-of-the-art parsers in eight out of ten languages. Further discrimination analysis confirms that the span-overlap method can non-trivially separate constituents from non-constituents. This result highlights the utility of the word sequence pattern. Additionally, we discover a multilingual phenomenon: \textbf{participant-denoting constituents are more frequent than event-denoting constituents}. The phenomenon indicates a behavioral difference between the two constituent types, laying the foundation for future labeled unsupervised parsing.
☆ emrQA-msquad: A Medical Dataset Structured with the SQuAD V2.0 Framework, Enriched with emrQA Medical Information
Machine Reading Comprehension (MRC) holds a pivotal role in shaping Medical Question Answering Systems (QAS) and transforming the landscape of accessing and applying medical information. However, the inherent challenges in the medical field, such as complex terminology and question ambiguity, necessitate innovative solutions. One key solution involves integrating specialized medical datasets and creating dedicated datasets. This strategic approach enhances the accuracy of QAS, contributing to advancements in clinical decision-making and medical research. To address the intricacies of medical terminology, a specialized dataset was integrated, exemplified by a novel Span extraction dataset derived from emrQA but restructured into 163,695 questions and 4,136 manually obtained answers, this new dataset was called emrQA-msquad dataset. Additionally, for ambiguous questions, a dedicated medical dataset for the Span extraction task was introduced, reinforcing the system's robustness. The fine-tuning of models such as BERT, RoBERTa, and Tiny RoBERTa for medical contexts significantly improved response accuracy within the F1-score range of 0.75 to 1.00 from 10.1% to 37.4%, 18.7% to 44.7% and 16.0% to 46.8%, respectively. Finally, emrQA-msquad dataset is publicy available at https://huggingface.co/datasets/Eladio/emrqa-msquad.
comment: The dataset is available in https://huggingface.co/datasets/Eladio/emrqa-msquad
☆ Exploring Boundaries and Intensities in Offensive and Hate Speech: Unveiling the Complex Spectrum of Social Media Discourse
The prevalence of digital media and evolving sociopolitical dynamics have significantly amplified the dissemination of hateful content. Existing studies mainly focus on classifying texts into binary categories, often overlooking the continuous spectrum of offensiveness and hatefulness inherent in the text. In this research, we present an extensive benchmark dataset for Amharic, comprising 8,258 tweets annotated for three distinct tasks: category classification, identification of hate targets, and rating offensiveness and hatefulness intensities. Our study highlights that a considerable majority of tweets belong to the less offensive and less hate intensity levels, underscoring the need for early interventions by stakeholders. The prevalence of ethnic and political hatred targets, with significant overlaps in our dataset, emphasizes the complex relationships within Ethiopia's sociopolitical landscape. We build classification and regression models and investigate the efficacy of models in handling these tasks. Our results reveal that hate and offensive speech can not be addressed by a simplistic binary classification, instead manifesting as variables across a continuous range of values. The Afro-XLMR-large model exhibits the best performances achieving F1-scores of 75.30%, 70.59%, and 29.42% for the category, target, and regression tasks, respectively. The 80.22% correlation coefficient of the Afro-XLMR-large model indicates strong alignments.
☆ Can We Catch the Elephant? The Evolvement of Hallucination Evaluation on Natural Language Generation: A Survey
Hallucination in Natural Language Generation (NLG) is like the elephant in the room, obvious but often overlooked until recent achievements significantly improved the fluency and grammatical accuracy of generated text. For Large Language Models (LLMs), hallucinations can happen in various downstream tasks and casual conversations, which need accurate assessment to enhance reliability and safety. However, current studies on hallucination evaluation vary greatly, and people still find it difficult to sort out and select the most appropriate evaluation methods. Moreover, as NLP research gradually shifts to the domain of LLMs, it brings new challenges to this direction. This paper provides a comprehensive survey on the evolvement of hallucination evaluation methods, aiming to address three key aspects: 1) Diverse definitions and granularity of facts; 2) The categories of automatic evaluators and their applicability; 3) Unresolved issues and future directions.
comment: 19 pages in total, with 9 pages as main body. Under review as a conference paper at CoLM 2024
☆ Uncovering Safety Risks in Open-source LLMs through Concept Activation Vector
Current open-source large language models (LLMs) are often undergone careful safety alignment before public release. Some attack methods have also been proposed that help check for safety vulnerabilities in LLMs to ensure alignment robustness. However, many of these methods have moderate attack success rates. Even when successful, the harmfulness of their outputs cannot be guaranteed, leading to suspicions that these methods have not accurately identified the safety vulnerabilities of LLMs. In this paper, we introduce a LLM attack method utilizing concept-based model explanation, where we extract safety concept activation vectors (SCAVs) from LLMs' activation space, enabling efficient attacks on well-aligned LLMs like LLaMA-2, achieving near 100% attack success rate as if LLMs are completely unaligned. This suggests that LLMs, even after thorough safety alignment, could still pose potential risks to society upon public release. To evaluate the harmfulness of outputs resulting with various attack methods, we propose a comprehensive evaluation method that reduces the potential inaccuracies of existing evaluations, and further validate that our method causes more harmful content. Additionally, we discover that the SCAVs show some transferability across different open-source LLMs.
☆ Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration
Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely \textit{hidden transfer}, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the \textit{pseudo} hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
☆ Enhance Robustness of Language Models Against Variation Attack through Graph Integration COLING 2024
The widespread use of pre-trained language models (PLMs) in natural language processing (NLP) has greatly improved performance outcomes. However, these models' vulnerability to adversarial attacks (e.g., camouflaged hints from drug dealers), particularly in the Chinese language with its rich character diversity/variation and complex structures, hatches vital apprehension. In this study, we propose a novel method, CHinese vAriatioN Graph Enhancement (CHANGE), to increase the robustness of PLMs against character variation attacks in Chinese content. CHANGE presents a novel approach for incorporating a Chinese character variation graph into the PLMs. Through designing different supplementary tasks utilizing the graph structure, CHANGE essentially enhances PLMs' interpretation of adversarially manipulated text. Experiments conducted in a multitude of NLP tasks show that CHANGE outperforms current language models in combating against adversarial attacks and serves as a valuable contribution to robust language model research. These findings contribute to the groundwork on robust language models and highlight the substantial potential of graph-guided pre-training strategies for real-world applications.
comment: 12 pages, 4 figures, accepted by COLING 2024
☆ Sequential Compositional Generalization in Multimodal Models NAACL
The rise of large-scale multimodal models has paved the pathway for groundbreaking advances in generative modeling and reasoning, unlocking transformative applications in a variety of complex tasks. However, a pressing question that remains is their genuine capability for stronger forms of generalization, which has been largely underexplored in the multimodal setting. Our study aims to address this by examining sequential compositional generalization using \textsc{CompAct} (\underline{Comp}ositional \underline{Act}ivities)\footnote{Project Page: \url{http://cyberiada.github.io/CompAct}}, a carefully constructed, perceptually grounded dataset set within a rich backdrop of egocentric kitchen activity videos. Each instance in our dataset is represented with a combination of raw video footage, naturally occurring sound, and crowd-sourced step-by-step descriptions. More importantly, our setup ensures that the individual concepts are consistently distributed across training and evaluation sets, while their compositions are novel in the evaluation set. We conduct a comprehensive assessment of several unimodal and multimodal models. Our findings reveal that bi-modal and tri-modal models exhibit a clear edge over their text-only counterparts. This highlights the importance of multimodality while charting a trajectory for future research in this domain.
comment: Accepted to the main conference of NAACL (2024) as a long paper
☆ ParaFusion: A Large-Scale LLM-Driven English Paraphrase Dataset Infused with High-Quality Lexical and Syntactic Diversity
Paraphrase generation is a pivotal task in natural language processing (NLP). Existing datasets in the domain lack syntactic and lexical diversity, resulting in paraphrases that closely resemble the source sentences. Moreover, these datasets often contain hate speech and noise, and may unintentionally include non-English language sentences. This research introduces ParaFusion, a large-scale, high-quality English paraphrase dataset developed using Large Language Models (LLM) to address these challenges. ParaFusion augments existing datasets with high-quality data, significantly enhancing both lexical and syntactic diversity while maintaining close semantic similarity. It also mitigates the presence of hate speech and reduces noise, ensuring a cleaner and more focused English dataset. Results show that ParaFusion offers at least a 25% improvement in both syntactic and lexical diversity, measured across several metrics for each data source. The paper also aims to set a gold standard for paraphrase evaluation as it contains one of the most comprehensive evaluation strategies to date. The results underscore the potential of ParaFusion as a valuable resource for improving NLP applications.
☆ Variational Multi-Modal Hypergraph Attention Network for Multi-Modal Relation Extraction
Multi-modal relation extraction (MMRE) is a challenging task that aims to identify relations between entities in text leveraging image information. Existing methods are limited by their neglect of the multiple entity pairs in one sentence sharing very similar contextual information (ie, the same text and image), resulting in increased difficulty in the MMRE task. To address this limitation, we propose the Variational Multi-Modal Hypergraph Attention Network (VM-HAN) for multi-modal relation extraction. Specifically, we first construct a multi-modal hypergraph for each sentence with the corresponding image, to establish different high-order intra-/inter-modal correlations for different entity pairs in each sentence. We further design the Variational Hypergraph Attention Networks (V-HAN) to obtain representational diversity among different entity pairs using Gaussian distribution and learn a better hypergraph structure via variational attention. VM-HAN achieves state-of-the-art performance on the multi-modal relation extraction task, outperforming existing methods in terms of accuracy and efficiency.
☆ Token-level Direct Preference Optimization
Fine-tuning pre-trained Large Language Models (LLMs) is essential to align them with human values and intentions. This process often utilizes methods like pairwise comparisons and KL divergence against a reference LLM, focusing on the evaluation of full answers generated by the models. However, the generation of these responses occurs in a token level, following a sequential, auto-regressive fashion. In this paper, we introduce Token-level Direct Preference Optimization (TDPO), a novel approach to align LLMs with human preferences by optimizing policy at the token level. Unlike previous methods, which face challenges in divergence efficiency, TDPO incorporates forward KL divergence constraints for each token, improving alignment and diversity. Utilizing the Bradley-Terry model for a token-based reward system, TDPO enhances the regulation of KL divergence, while preserving simplicity without the need for explicit reward modeling. Experimental results across various text tasks demonstrate TDPO's superior performance in balancing alignment with generation diversity. Notably, fine-tuning with TDPO strikes a better balance than DPO in the controlled sentiment generation and single-turn dialogue datasets, and significantly improves the quality of generated responses compared to both DPO and PPO-based RLHF methods. Our code is open-sourced at https://github.com/Vance0124/Token-level-Direct-Preference-Optimization.
☆ EVIT: Event-Oriented Instruction Tuning for Event Reasoning
Events refer to specific occurrences, incidents, or happenings that take place under a particular background. Event reasoning aims to infer events according to certain relations and predict future events. The cutting-edge techniques for event reasoning play a crucial role in various natural language processing applications. Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities. However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks. This discrepancy arises from the absence of explicit modeling of events and the interconnections of them within their instruction data. Consequently, these models face challenges in comprehending event structures and semantics while struggling to bridge the gap between their interpretations and human understanding of events. Additionally, their limitations in grasping event relations lead to constrained event reasoning abilities to effectively deduce and incorporate pertinent event knowledge. In this paper, we propose Event-Oriented Instruction Tuning (EvIT) to train our LLM. Specifically, we first propose a novel structure named event quadruple which contains the structure and semantics of events and is complete in the event representation. We then design event-relation learning based on the structures. We encapsulate the learning into the instruction-tuning formulation to better stimulate the event reasoning capacity of our model. We design a heuristic unsupervised method to mine event quadruple from a large-scale corpus. At last, we finetune a Llama model on our Event-Oriented Instruction Tuning. We conduct extensive experiments on event reasoning tasks on several datasets. Automatic and human evaluations demonstrate EvIT achieves competitive performances on event reasoning.
☆ Aligning Language Models to Explicitly Handle Ambiguity
In spoken languages, utterances are often shaped to be incomplete or vague for efficiency. This can lead to varying interpretations of the same input, based on different assumptions about the context. To ensure reliable user-model interactions in such scenarios, it is crucial for models to adeptly handle the inherent ambiguity in user queries. However, conversational agents built upon even the most recent large language models (LLMs) face challenges in processing ambiguous inputs, primarily due to the following two hurdles: (1) LLMs are not directly trained to handle inputs that are too ambiguous to be properly managed; (2) the degree of ambiguity in an input can vary according to the intrinsic knowledge of the LLMs, which is difficult to investigate. To address these issues, this paper proposes a method to align LLMs to explicitly handle ambiguous inputs. Specifically, we introduce a proxy task that guides LLMs to utilize their intrinsic knowledge to self-disambiguate a given input. We quantify the information gain from the disambiguation procedure as a measure of the extent to which the models perceive their inputs as ambiguous. This measure serves as a cue for selecting samples deemed ambiguous from the models' perspectives, which are then utilized for alignment. Experimental results from several question-answering datasets demonstrate that the LLMs fine-tuned with our approach are capable of handling ambiguous inputs while still performing competitively on clear questions within the task.
☆ P-NAL: an Effective and Interpretable Entity Alignment Method
Entity alignment (EA) aims to find equivalent entities between two Knowledge Graphs. Existing embedding-based EA methods usually encode entities as embeddings, triples as embeddings' constraint and learn to align the embeddings. The structural and side information are usually utilized via embedding propagation, aggregation or interaction. However, the details of the underlying logical inference steps among the alignment process are usually omitted, resulting in inadequate inference process. In this paper, we introduce P-NAL, an entity alignment method that captures two types of logical inference paths with Non-Axiomatic Logic (NAL). Type 1 is the bridge-like inference path between to-be-aligned entity pairs, consisting of two relation/attribute triples and a similarity sentence between the other two entities. Type 2 links the entity pair by their embeddings. P-NAL iteratively aligns entities and relations by integrating the conclusions of the inference paths. Moreover, our method is logically interpretable and extensible due to the expressiveness of NAL. Our proposed method is suitable for various EA settings. Experimental results show that our method outperforms state-of-the-art methods in terms of Hits@1, achieving 0.98+ on all three datasets of DBP15K with both supervised and unsupervised settings. To our knowledge, we present the first in-depth analysis of entity alignment's basic principles from a unified logical perspective.
comment: 13 pages, 2 figures
☆ CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment
Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy.
comment: 11 pages
☆ SKIP: Skill-Localized Prompt Tuning for Inference Speed Boost-Up
Prompt-tuning methods have shown comparable performance as parameter-efficient fine-tuning (PEFT) methods in various natural language understanding tasks. However, existing prompt tuning methods still utilize the entire model architecture; thus, they fail to accelerate inference speed in the application. In this paper, we propose a novel approach called SKIll-localized Prompt tuning (SKIP), which is extremely efficient in inference time. Our method significantly enhances inference efficiency by investigating and utilizing a skill-localized subnetwork in a language model. Surprisingly, our method improves the inference speed up to 160% while pruning 52% of the parameters. Furthermore, we demonstrate that our method is applicable across various transformer-based architectures, thereby confirming its practicality and scalability.
comment: 6 pages
☆ TriForce: Lossless Acceleration of Long Sequence Generation with Hierarchical Speculative Decoding
With large language models (LLMs) widely deployed in long content generation recently, there has emerged an increasing demand for efficient long-sequence inference support. However, key-value (KV) cache, which is stored to avoid re-computation, has emerged as a critical bottleneck by growing linearly in size with the sequence length. Due to the auto-regressive nature of LLMs, the entire KV cache will be loaded for every generated token, resulting in low utilization of computational cores and high latency. While various compression methods for KV cache have been proposed to alleviate this issue, they suffer from degradation in generation quality. We introduce TriForce, a hierarchical speculative decoding system that is scalable to long sequence generation. This approach leverages the original model weights and dynamic sparse KV cache via retrieval as a draft model, which serves as an intermediate layer in the hierarchy and is further speculated by a smaller model to reduce its drafting latency. TriForce not only facilitates impressive speedups for Llama2-7B-128K, achieving up to 2.31$\times$ on an A100 GPU but also showcases scalability in handling even longer contexts. For the offloading setting on two RTX 4090 GPUs, TriForce achieves 0.108s/token$\unicode{x2014}$only half as slow as the auto-regressive baseline on an A100, which attains 7.78$\times$ on our optimized offloading system. Additionally, TriForce performs 4.86$\times$ than DeepSpeed-Zero-Inference on a single RTX 4090 GPU. TriForce's robustness is highlighted by its consistently outstanding performance across various temperatures. The code is available at https://github.com/Infini-AI-Lab/TriForce.
☆ Enhancing Length Extrapolation in Sequential Models with Pointer-Augmented Neural Memory
We propose Pointer-Augmented Neural Memory (PANM) to help neural networks understand and apply symbol processing to new, longer sequences of data. PANM integrates an external neural memory that uses novel physical addresses and pointer manipulation techniques to mimic human and computer symbol processing abilities. PANM facilitates pointer assignment, dereference, and arithmetic by explicitly using physical pointers to access memory content. Remarkably, it can learn to perform these operations through end-to-end training on sequence data, powering various sequential models. Our experiments demonstrate PANM's exceptional length extrapolating capabilities and improved performance in tasks that require symbol processing, such as algorithmic reasoning and Dyck language recognition. PANM helps Transformer achieve up to 100% generalization accuracy in compositional learning tasks and significantly better results in mathematical reasoning, question answering and machine translation tasks.
comment: Preprint
☆ Challenging Negative Gender Stereotypes: A Study on the Effectiveness of Automated Counter-Stereotypes LREC
Gender stereotypes are pervasive beliefs about individuals based on their gender that play a significant role in shaping societal attitudes, behaviours, and even opportunities. Recognizing the negative implications of gender stereotypes, particularly in online communications, this study investigates eleven strategies to automatically counter-act and challenge these views. We present AI-generated gender-based counter-stereotypes to (self-identified) male and female study participants and ask them to assess their offensiveness, plausibility, and potential effectiveness. The strategies of counter-facts and broadening universals (i.e., stating that anyone can have a trait regardless of group membership) emerged as the most robust approaches, while humour, perspective-taking, counter-examples, and empathy for the speaker were perceived as less effective. Also, the differences in ratings were more pronounced for stereotypes about the different targets than between the genders of the raters. Alarmingly, many AI-generated counter-stereotypes were perceived as offensive and/or implausible. Our analysis and the collected dataset offer foundational insight into counter-stereotype generation, guiding future efforts to develop strategies that effectively challenge gender stereotypes in online interactions.
comment: LREC-COLING2024
☆ AdvisorQA: Towards Helpful and Harmless Advice-seeking Question Answering with Collective Intelligence
As the integration of large language models into daily life is on the rise, there is a clear gap in benchmarks for advising on subjective and personal dilemmas. To address this, we introduce AdvisorQA, the first benchmark developed to assess LLMs' capability in offering advice for deeply personalized concerns, utilizing the LifeProTips subreddit forum. This forum features a dynamic interaction where users post advice-seeking questions, receiving an average of 8.9 advice per query, with 164.2 upvotes from hundreds of users, embodying a collective intelligence framework. Therefore, we've completed a benchmark encompassing daily life questions, diverse corresponding responses, and majority vote ranking to train our helpfulness metric. Baseline experiments validate the efficacy of AdvisorQA through our helpfulness metric, GPT-4, and human evaluation, analyzing phenomena beyond the trade-off between helpfulness and harmlessness. AdvisorQA marks a significant leap in enhancing QA systems for providing personalized, empathetic advice, showcasing LLMs' improved understanding of human subjectivity.
comment: 19 pages, 11 figures
☆ Sharing Parameter by Conjugation for Knowledge Graph Embeddings in Complex Space COLING 2022
A Knowledge Graph (KG) is the directed graphical representation of entities and relations in the real world. KG can be applied in diverse Natural Language Processing (NLP) tasks where knowledge is required. The need to scale up and complete KG automatically yields Knowledge Graph Embedding (KGE), a shallow machine learning model that is suffering from memory and training time consumption issues. To mitigate the computational load, we propose a parameter-sharing method, i.e., using conjugate parameters for complex numbers employed in KGE models. Our method improves memory efficiency by 2x in relation embedding while achieving comparable performance to the state-of-the-art non-conjugate models, with faster, or at least comparable, training time. We demonstrated the generalizability of our method on two best-performing KGE models $5^{\bigstar}\mathrm{E}$ and $\mathrm{ComplEx}$ on five benchmark datasets.
comment: 8 pages, 1 figure, 6 tables, accepted at TextGraphs-16 workshop held in conjunction with COLING 2022
♻ ☆ Visually grounded few-shot word learning in low-resource settings
We propose a visually grounded speech model that learns new words and their visual depictions from just a few word-image example pairs. Given a set of test images and a spoken query, we ask the model which image depicts the query word. Previous work has simplified this few-shot learning problem by either using an artificial setting with digit word-image pairs or by using a large number of examples per class. Moreover, all previous studies were performed using English speech-image data. We propose an approach that can work on natural word-image pairs but with less examples, i.e. fewer shots, and then illustrate how this approach can be applied for multimodal few-shot learning in a real low-resource language, Yor\`ub\'a. Our approach involves using the given word-image example pairs to mine new unsupervised word-image training pairs from large collections of unlabelled speech and images. Additionally, we use a word-to-image attention mechanism to determine word-image similarity. With this new model, we achieve better performance with fewer shots than previous approaches on an existing English benchmark. Many of the model's mistakes are due to confusion between visual concepts co-occurring in similar contexts. The experiments on Yor\`ub\'a show the benefit of transferring knowledge from a multimodal model trained on a larger set of English speech-image data.
comment: Accepted to TASLP. arXiv admin note: substantial text overlap with arXiv:2305.15937
♻ ☆ Exploring Automated Distractor Generation for Math Multiple-choice Questions via Large Language Models NAACL 2024
Multiple-choice questions (MCQs) are ubiquitous in almost all levels of education since they are easy to administer, grade, and are a reliable format in assessments and practices. One of the most important aspects of MCQs is the distractors, i.e., incorrect options that are designed to target common errors or misconceptions among real students. To date, the task of crafting high-quality distractors largely remains a labor and time-intensive process for teachers and learning content designers, which has limited scalability. In this work, we study the task of automated distractor generation in the domain of math MCQs and explore a wide variety of large language model (LLM)-based approaches, from in-context learning to fine-tuning. We conduct extensive experiments using a real-world math MCQ dataset and find that although LLMs can generate some mathematically valid distractors, they are less adept at anticipating common errors or misconceptions among real students.
comment: NAACL 2024 findings
♻ ☆ JailBreakV-28K: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks
With the rapid advancements in Multimodal Large Language Models (MLLMs), securing these models against malicious inputs while aligning them with human values has emerged as a critical challenge. In this paper, we investigate an important and unexplored question of whether techniques that successfully jailbreak Large Language Models (LLMs) can be equally effective in jailbreaking MLLMs. To explore this issue, we introduce JailBreakV-28K, a pioneering benchmark designed to assess the transferability of LLM jailbreak techniques to MLLMs, thereby evaluating the robustness of MLLMs against diverse jailbreak attacks. Utilizing a dataset of 2, 000 malicious queries that is also proposed in this paper, we generate 20, 000 text-based jailbreak prompts using advanced jailbreak attacks on LLMs, alongside 8, 000 image-based jailbreak inputs from recent MLLMs jailbreak attacks, our comprehensive dataset includes 28, 000 test cases across a spectrum of adversarial scenarios. Our evaluation of 10 open-source MLLMs reveals a notably high Attack Success Rate (ASR) for attacks transferred from LLMs, highlighting a critical vulnerability in MLLMs that stems from their text-processing capabilities. Our findings underscore the urgent need for future research to address alignment vulnerabilities in MLLMs from both textual and visual inputs.
♻ ☆ Efficient Sentiment Analysis: A Resource-Aware Evaluation of Feature Extraction Techniques, Ensembling, and Deep Learning Models
While reaching for NLP systems that maximize accuracy, other important metrics of system performance are often overlooked. Prior models are easily forgotten despite their possible suitability in settings where large computing resources are unavailable or relatively more costly. In this paper, we perform a broad comparative evaluation of document-level sentiment analysis models with a focus on resource costs that are important for the feasibility of model deployment and general climate consciousness. Our experiments consider different feature extraction techniques, the effect of ensembling, task-specific deep learning modeling, and domain-independent large language models (LLMs). We find that while a fine-tuned LLM achieves the best accuracy, some alternate configurations provide huge (up to 24, 283 *) resource savings for a marginal (<1%) loss in accuracy. Furthermore, we find that for smaller datasets, the differences in accuracy shrink while the difference in resource consumption grows further.
♻ ☆ SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization
Large Language Models (LLMs) such as GPT & Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes >100B parameter GPT variants like GPT-3.5 & GPT-4 to act as synthetic experts to generate high-quality synthetics feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback generated by these synthetic feedback experts without additional human annotations, mirroring and optimizing the practical scenario in which medical professionals refine AI system outputs. Although such 100B+ parameter GPT variants have proven to demonstrate expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on their capacity to act as synthetic feedback experts and deliver expert-level edit feedback for improving the generation quality of weaker (<10B parameter) LLMs like GPT-2 (1.5B) & Llama 2 (7B) in clinical domain. So in this work, we leverage 100B+ GPT variants to act as synthetic feedback experts offering expert-level edit feedback, that is used to reduce hallucinations and align weaker (<10B parameter) LLMs with medical facts using two distinct alignment algorithms (DPO & SALT), endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of LLM-based synthetic edits in enhancing the alignment of clinical factuality.
comment: Equal contribution for the first two authors
♻ ☆ Chimera: A Lossless Decoding Method for Accelerating Large Language Models Inference by Fusing all Tokens
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their widespread application is hindered by the resource-intensive decoding process. To address this challenge, current approaches have incorporated additional decoding heads to enable parallel prediction of multiple subsequent tokens, thereby achieving inference acceleration. Nevertheless, the accuracy of these decoding heads falls short of the auto-regressive decoding approach. In light of these limitations, we propose Chimera, a novel framework specifically designed for speculative sampling. Within this framework, we introduce a lightweight draft model that effectively utilizes previously generated tokens to predict subsequent words. To ensure both accuracy and efficiency, we present two strategies within the lightweight draft model. Firstly, we focus on capturing short-range dependencies at the bottom layer. Secondly, we leverage the readily available representations from the original LLM.Through empirical evaluation on the Vicuna and LlaMA-2 series, Chimera demonstrates impressive results, achieving an average latency speedup ratio of 2.7x compared to the vanilla auto-regressive decoding approach. This highlights the potential of our proposed framework in significantly improving the efficiency of large language models during the decoding process.
♻ ☆ InstructIE: A Bilingual Instruction-based Information Extraction Dataset
Large language models can perform well on general natural language tasks, but their effectiveness is still not optimal for information extraction. Recent works indicate that the main reason lies in the lack of extensive data on information extraction instructions. Note that the existing datasets on information extraction instructions not only have limited coverage but also involve high construction costs. To address this issue, we introduce InstructIE, a bilingual instruction-based information extraction dataset, which covers 12 diverse domains. Specifically, we propose KG2Instruction, a framework specifically for the automatic generation of such datasets. Experimental results demonstrate that large language models trained with InstructIE can not only obtain better information extraction capabilities but also enhance zero-shot performance compared with baselines.
comment: Work in progress; project homepage: https://www.zjukg.org/project/InstructIE/ dataset: https://huggingface.co/datasets/zjunlp/InstructIE
♻ ☆ Can We Edit Multimodal Large Language Models? EMNLP 2023
In this paper, we focus on editing Multimodal Large Language Models (MLLMs). Compared to editing single-modal LLMs, multimodal model editing is more challenging, which demands a higher level of scrutiny and careful consideration in the editing process. To facilitate research in this area, we construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite of innovative metrics for evaluation. We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components for multimodal LLMs. Empirically, we notice that previous baselines can implement editing multimodal LLMs to some extent, but the effect is still barely satisfactory, indicating the potential difficulty of this task. We hope that our work can provide the NLP community with insights. Code and dataset are available in https://github.com/zjunlp/EasyEdit.
comment: EMNLP 2023. Add the Exact Match/Accuracy results of Reliability and T-Generality
♻ ☆ Hint-enhanced In-Context Learning wakes Large Language Models up for knowledge-intensive tasks ICASSP 2024
In-context learning (ICL) ability has emerged with the increasing scale of large language models (LLMs), enabling them to learn input-label mappings from demonstrations and perform well on downstream tasks. However, under the standard ICL setting, LLMs may sometimes neglect query-related information in demonstrations, leading to incorrect predictions. To address this limitation, we propose a new paradigm called Hint-enhanced In-Context Learning (HICL) to explore the power of ICL in open-domain question answering, an important form in knowledge-intensive tasks. HICL leverages LLMs' reasoning ability to extract query-related knowledge from demonstrations, then concatenates the knowledge to prompt LLMs in a more explicit way. Furthermore, we track the source of this knowledge to identify specific examples, and introduce a Hint-related Example Retriever (HER) to select informative examples for enhanced demonstrations. We evaluate HICL with HER on 3 open-domain QA benchmarks, and observe average performance gains of 2.89 EM score and 2.52 F1 score on gpt-3.5-turbo, 7.62 EM score and 7.27 F1 score on LLaMA-2-Chat-7B compared with standard setting.
comment: Accepted by ICASSP 2024
♻ ☆ Language Imbalance Can Boost Cross-lingual Generalisation
Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
♻ ☆ Vesper: A Compact and Effective Pretrained Model for Speech Emotion Recognition
This paper presents a paradigm that adapts general large-scale pretrained models (PTMs) to speech emotion recognition task. Although PTMs shed new light on artificial general intelligence, they are constructed with general tasks in mind, and thus, their efficacy for specific tasks can be further improved. Additionally, employing PTMs in practical applications can be challenging due to their considerable size. Above limitations spawn another research direction, namely, optimizing large-scale PTMs for specific tasks to generate task-specific PTMs that are both compact and effective. In this paper, we focus on the speech emotion recognition task and propose an improved emotion-specific pretrained encoder called Vesper. Vesper is pretrained on a speech dataset based on WavLM and takes into account emotional characteristics. To enhance sensitivity to emotional information, Vesper employs an emotion-guided masking strategy to identify the regions that need masking. Subsequently, Vesper employs hierarchical and cross-layer self-supervision to improve its ability to capture acoustic and semantic representations, both of which are crucial for emotion recognition. Experimental results on the IEMOCAP, MELD, and CREMA-D datasets demonstrate that Vesper with 4 layers outperforms WavLM Base with 12 layers, and the performance of Vesper with 12 layers surpasses that of WavLM Large with 24 layers.
comment: This paper was accepted by IEEE Transactions on Affective Computing 2024
♻ ☆ Can LLMs perform structured graph reasoning?
Pretrained Large Language Models (LLMs) have demonstrated various reasoning capabilities through language-based prompts alone, particularly in unstructured task settings (tasks purely based on language semantics). However, LLMs often struggle with structured tasks, because of the inherent incompatibility of input representation. Reducing structured tasks to uni-dimensional language semantics often renders the problem trivial. Keeping the trade-off between LLM compatibility and structure complexity in mind, we design various graph reasoning tasks as a proxy to semi-structured tasks in this paper, in order to test the ability to navigate through representations beyond plain text in various LLMs. Particularly, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity, and benchmark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) on the aforementioned tasks. Further, we analyse the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we introduce a new prompting technique specially designed for graph traversal tasks (PathCompare), which demonstrates a notable increase in the performance of LLMs in comparison to standard prompting techniques such as Chain-of-Thought (CoT).
♻ ☆ Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering
Deploying large language models (LLMs) to real scenarios for domain-specific question answering (QA) is a key thrust for LLM applications, which poses numerous challenges, especially in ensuring that responses are both accommodating to user requirements and appropriately leveraging domain-specific knowledge bases. They are the two major difficulties for LLM application as vanilla fine-tuning falls short of addressing. Combining these requirements, we conceive of them as the requirement for the model's preference to be harmoniously aligned with humans'. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference sets to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with different human preferences uniformly, aiming to optimize LLM performance in real-world, domain-specific QA settings. Adequate experiments and comprehensive comparisons with 15 baseline methods illustrate that our KnowPAT is a superior pipeline for real-scenario domain-specific QA with LLMs.
comment: Work in progress. Code is available at https://github.com/zjukg/KnowPAT
♻ ☆ LibriSQA: A Novel Dataset and Framework for Spoken Question Answering with Large Language Models
While Large Language Models (LLMs) have demonstrated commendable performance across a myriad of domains and tasks, existing LLMs still exhibit a palpable deficit in handling multimodal functionalities, especially for the Spoken Question Answering (SQA) task which necessitates precise alignment and deep interaction between speech and text features. To address the SQA challenge on LLMs, we initially curated the free-form and open-ended LibriSQA dataset from Librispeech, comprising Part I with natural conversational formats and Part II encompassing multiple-choice questions followed by answers and analytical segments. Both parts collectively include 107k SQA pairs that cover various topics. Given the evident paucity of existing speech-text LLMs, we propose a lightweight, end-to-end framework to execute the SQA task on the LibriSQA, witnessing significant results. By reforming ASR into the SQA format, we further substantiate our framework's capability in handling ASR tasks. Our empirical findings bolster the LLMs' aptitude for aligning and comprehending multimodal information, paving the way for the development of universal multimodal LLMs. The dataset and demo can be found at https://github.com/ZihanZhaoSJTU/LibriSQA.
♻ ☆ Gaining More Insight into Neural Semantic Parsing with Challenging Benchmarks
The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation. Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the limitations of neural models when confronting such challenges.
♻ ☆ A Family of Pretrained Transformer Language Models for Russian LREC
Transformer language models (LMs) are fundamental to NLP research methodologies and applications in various languages. However, developing such models specifically for the Russian language has received little attention. This paper introduces a collection of 13 Russian Transformer LMs, which spans encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) architectures. We provide a report on the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we aim to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.
comment: to appear in LREC-COLING-2024
♻ ☆ ViLLM-Eval: A Comprehensive Evaluation Suite for Vietnamese Large Language Models
The rapid advancement of large language models (LLMs) necessitates the development of new benchmarks to accurately assess their capabilities. To address this need for Vietnamese, this work aims to introduce ViLLM-Eval, the comprehensive evaluation suite designed to measure the advanced knowledge and reasoning abilities of foundation models within a Vietnamese context. ViLLM-Eval consists of multiple-choice questions and predict next word tasks spanning various difficulty levels and diverse disciplines, ranging from humanities to science and engineering. A thorough evaluation of the most advanced LLMs on ViLLM-Eval revealed that even the best performing models have significant room for improvement in understanding and responding to Vietnamese language tasks. ViLLM-Eval is believed to be instrumental in identifying key strengths and weaknesses of foundation models, ultimately promoting their development and enhancing their performance for Vietnamese users. This paper provides a thorough overview of ViLLM-Eval as part of the Vietnamese Large Language Model shared task, held within the 10th International Workshop on Vietnamese Language and Speech Processing (VLSP 2023).
comment: arXiv admin note: text overlap with arXiv:2305.08322 by other authors
♻ ☆ Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent
A multimodal AI agent is characterized by its ability to process and learn from various types of data, including natural language, visual, and audio inputs, to inform its actions. Despite advancements in large language models that incorporate visual data, such as GPT-4V, effectively translating image-based data into actionable outcomes for AI agents continues to be challenging. In this paper, we introduce a multimodal model that incorporates the concept of functional token specifically designed for AI agent applications. To ensure compatibility with edge devices, our model is optimized to a compact size of less than 1B parameters. Like GPT-4, our model can process both English and Chinese. We demonstrate that this model is capable of operating efficiently on a wide range of edge devices, including as constrained as a Raspberry Pi.
♻ ☆ Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement EMNLP 2023
To enhance the multi-step reasoning capabilities of large language models, researchers have extensively explored prompting methods, notably the Chain-of-Thought (CoT) method which explicitly elicits human-like rationales. However, they have inadvertently overlooked the potential of enhancing model reasoning performance by formulating higher-quality problems. In this work, we start from the problem side and propose Self-Polish (SP), a novel method that facilitates the model's reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable. We also explore several automatic prompting varients and propose the Self-Polish prompt bank for the community. SP is orthogonal to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement. Thorough experiments show that the proposed method attains notable and consistent effectiveness on five reasoning benchmarks across different models. Furthermore, our method also showcases impressive performance on robustness evaluation. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish.
comment: Accepted to EMNLP 2023 Findings. Codes and prompts are available at https://github.com/WooooDyy/Self-Polish
♻ ☆ KTRL+F: Knowledge-Augmented In-Document Search
We introduce a new problem KTRL+F, a knowledge-augmented in-document search task that necessitates real-time identification of all semantic targets within a document with the awareness of external sources through a single natural query. KTRL+F addresses following unique challenges for in-document search: 1)utilizing knowledge outside the document for extended use of additional information about targets, and 2) balancing between real-time applicability with the performance. We analyze various baselines in KTRL+F and find limitations of existing models, such as hallucinations, high latency, or difficulties in leveraging external knowledge. Therefore, we propose a Knowledge-Augmented Phrase Retrieval model that shows a promising balance between speed and performance by simply augmenting external knowledge in phrase embedding. We also conduct a user study to verify whether solving KTRL+F can enhance search experience for users. It demonstrates that even with our simple model, users can reduce the time for searching with less queries and reduced extra visits to other sources for collecting evidence. We encourage the research community to work on KTRL+F to enhance more efficient in-document information access.
♻ ☆ Measuring Social Norms of Large Language Models
We present a new challenge to examine whether large language models understand social norms. In contrast to existing datasets, our dataset requires a fundamental understanding of social norms to solve. Our dataset features the largest set of social norm skills, consisting of 402 skills and 12,383 questions covering a wide set of social norms ranging from opinions and arguments to culture and laws. We design our dataset according to the K-12 curriculum. This enables the direct comparison of the social understanding of large language models to humans, more specifically, elementary students. While prior work generates nearly random accuracy on our benchmark, recent large language models such as GPT3.5-Turbo and LLaMA2-Chat are able to improve the performance significantly, only slightly below human performance. We then propose a multi-agent framework based on large language models to improve the models' ability to understand social norms. This method further improves large language models to be on par with humans. Given the increasing adoption of large language models in real-world applications, our finding is particularly important and presents a unique direction for future improvements. The proposed method and dataset are available in https://huggingface.co/datasets/socialdataset2024/social.
♻ ☆ RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations DASFAA 2024
New Intent Discovery (NID) strives to identify known and reasonably deduce novel intent groups in the open-world scenario. But current methods face issues with inaccurate pseudo-labels and poor representation learning, creating a negative feedback loop that degrades overall model performance, including accuracy and the adjusted rand index. To address the aforementioned challenges, we propose a Robust New Intent Discovery (RoNID) framework optimized by an EM-style method, which focuses on constructing reliable pseudo-labels and obtaining cluster-friendly discriminative representations. RoNID comprises two main modules: reliable pseudo-label generation module and cluster-friendly representation learning module. Specifically, the pseudo-label generation module assigns reliable synthetic labels by solving an optimal transport problem in the E-step, which effectively provides high-quality supervised signals for the input of the cluster-friendly representation learning module. To learn cluster-friendly representation with strong intra-cluster compactness and large inter-cluster separation, the representation learning module combines intra-cluster and inter-cluster contrastive learning in the M-step to feed more discriminative features into the generation module. RoNID can be performed iteratively to ultimately yield a robust model with reliable pseudo-labels and cluster-friendly representations. Experimental results on multiple benchmarks demonstrate our method brings substantial improvements over previous state-of-the-art methods by a large margin of +1~+4 points.
comment: DASFAA 2024
♻ ☆ Mobile-Agent: Autonomous Multi-Modal Mobile Device Agent with Visual Perception ICLR 2024
Mobile device agent based on Multimodal Large Language Models (MLLM) is becoming a popular application. In this paper, we introduce Mobile-Agent, an autonomous multi-modal mobile device agent. Mobile-Agent first leverages visual perception tools to accurately identify and locate both the visual and textual elements within the app's front-end interface. Based on the perceived vision context, it then autonomously plans and decomposes the complex operation task, and navigates the mobile Apps through operations step by step. Different from previous solutions that rely on XML files of Apps or mobile system metadata, Mobile-Agent allows for greater adaptability across diverse mobile operating environments in a vision-centric way, thereby eliminating the necessity for system-specific customizations. To assess the performance of Mobile-Agent, we introduced Mobile-Eval, a benchmark for evaluating mobile device operations. Based on Mobile-Eval, we conducted a comprehensive evaluation of Mobile-Agent. The experimental results indicate that Mobile-Agent achieved remarkable accuracy and completion rates. Even with challenging instructions, such as multi-app operations, Mobile-Agent can still complete the requirements. Code and model will be open-sourced at https://github.com/X-PLUG/MobileAgent.
comment: Accepted by ICLR 2024 Workshop in Large Language Model (LLM) Agents
♻ ☆ Leveraging Domain Knowledge for Efficient Reward Modelling in RLHF: A Case-Study in E-Commerce Opinion Summarization
Reinforcement Learning from Human Feedback (RLHF) has become a dominating strategy in aligning Language Models (LMs) with human values/goals. The key to the strategy is learning a reward model ($\varphi$), which can reflect the latent reward model of humans. While this strategy has proven effective, the training methodology requires a lot of human preference annotation (usually in the order of tens of thousands) to train $\varphi$. Such a large-scale annotation is justifiable when it's a one-time effort, and the reward model is universally applicable. However, human goals are subjective and depend on the task, requiring task-specific preference annotations, which can be impractical to fulfill. To address this challenge, we propose a novel approach to infuse domain knowledge into $\varphi$, which reduces the amount of preference annotation required ($21\times$), omits Alignment Tax, and provides some interpretability. We validate our approach in E-Commerce Opinion Summarization, with a significant reduction in dataset size (to just $940$ samples) while advancing the SOTA ($\sim4$ point ROUGE-L improvement, $68\%$ of times preferred by humans over SOTA). Our contributions include a novel Reward Modeling technique and two new datasets: PromptOpinSumm (supervised data for Opinion Summarization) and OpinPref (a gold-standard human preference dataset). The proposed methodology opens up avenues for efficient RLHF, making it more adaptable to applications with varying human values. We release the artifacts (Code: github.com/efficient-rlhf. PromptOpinSumm: hf.co/prompt-opin-summ. OpinPref: hf.co/opin-pref) for usage under MIT License.
comment: 19 pages, 6 figures, 21 tables
♻ ☆ Monotonic Paraphrasing Improves Generalization of Language Model Prompting
Performance of large language models (LLMs) may vary with different prompts or instructions of even the same task. One commonly recognized factor for this phenomenon is the model's familiarity with the given prompt or instruction, which is typically estimated by its perplexity. However, finding the prompt with the lowest perplexity is challenging, given the enormous space of possible prompting phrases. In this paper, we propose monotonic paraphrasing (MonoPara), an end-to-end decoding strategy that paraphrases given prompts or instructions into their lower perplexity counterparts based on an ensemble of a paraphrase LM for prompt (or instruction) rewriting, and a target LM (i.e. the prompt or instruction executor) that constrains the generation for lower perplexity. The ensemble decoding process can efficiently paraphrase the original prompt without altering its semantic meaning, while monotonically decreasing the perplexity of each generation as calculated by the target LM. We explore in detail both greedy and search-based decoding as two alternative decoding schemes of MonoPara. Notably, MonoPara does not require any training and can monotonically lower the perplexity of the paraphrased prompt or instruction, leading to improved performance of zero-shot LM prompting as evaluated on a wide selection of tasks. In addition, MonoPara is also shown to effectively improve LMs' generalization on perturbed and unseen task instructions.
comment: Under review at ARR 2024 April
♻ ☆ FIZZ: Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document
Through the advent of pre-trained language models, there have been notable advancements in abstractive summarization systems. Simultaneously, a considerable number of novel methods for evaluating factual consistency in abstractive summarization systems has been developed. But these evaluation approaches incorporate substantial limitations, especially on refinement and interpretability. In this work, we propose highly effective and interpretable factual inconsistency detection method metric Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document for abstractive summarization systems that is based on fine-grained atomic facts decomposition. Moreover, we align atomic facts decomposed from the summary with the source document through adaptive granularity expansion. These atomic facts represent a more fine-grained unit of information, facilitating detailed understanding and interpretability of the summary's factual inconsistency. Experimental results demonstrate that our proposed factual consistency checking system significantly outperforms existing systems.
♻ ☆ Explaining latent representations of generative models with large multimodal models ICLR 2024
Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence. With the rise of the large multimodal model, it can align images with text to generate answers. In this work, we propose a framework to comprehensively explain each latent variable in the generative models using a large multimodal model. We further measure the uncertainty of our generated explanations, quantitatively evaluate the performance of explanation generation among multiple large multimodal models, and qualitatively visualize the variations of each latent variable to learn the disentanglement effects of different generative models on explanations. Finally, we discuss the explanatory capabilities and limitations of state-of-the-art large multimodal models.
comment: ICLR 2024 Workshop on Reliable and Responsible Foundation Models
♻ ☆ Llama-VITS: Enhancing TTS Synthesis with Semantic Awareness LREC
Recent advancements in Natural Language Processing (NLP) have seen Large-scale Language Models (LLMs) excel at producing high-quality text for various purposes. Notably, in Text-To-Speech (TTS) systems, the integration of BERT for semantic token generation has underscored the importance of semantic content in producing coherent speech outputs. Despite this, the specific utility of LLMs in enhancing TTS synthesis remains considerably limited. This research introduces an innovative approach, Llama-VITS, which enhances TTS synthesis by enriching the semantic content of text using LLM. Llama-VITS integrates semantic embeddings from Llama2 with the VITS model, a leading end-to-end TTS framework. By leveraging Llama2 for the primary speech synthesis process, our experiments demonstrate that Llama-VITS matches the naturalness of the original VITS (ORI-VITS) and those incorporate BERT (BERT-VITS), on the LJSpeech dataset, a substantial collection of neutral, clear speech. Moreover, our method significantly enhances emotive expressiveness on the EmoV_DB_bea_sem dataset, a curated selection of emotionally consistent speech from the EmoV_DB dataset, highlighting its potential to generate emotive speech.
comment: 9 pages, 2 figures, 4 tables; accepted at LREC-COLING 2024
♻ ☆ A Survey on Open Information Extraction from Rule-based Model to Large Language Model
Open Information Extraction (OpenIE) represents a crucial NLP task aimed at deriving structured information from unstructured text, unrestricted by relation type or domain. This survey paper provides an overview of OpenIE technologies spanning from 2007 to 2024, emphasizing a chronological perspective absent in prior surveys. It examines the evolution of task settings in OpenIE to align with the advances in recent technologies. The paper categorizes OpenIE approaches into rule-based, neural, and pre-trained large language models, discussing each within a chronological framework. Additionally, it highlights prevalent datasets and evaluation metrics currently in use. Building on this extensive review, the paper outlines potential future directions in terms of datasets, information sources, output formats, methodologies, and evaluation metrics.
comment: The first five authors contributed to this work equally. Names are ordered randomly
♻ ☆ SelectLLM: Can LLMs Select Important Instructions to Annotate?
Instruction tuning benefits from large and diverse datasets, however creating such datasets involves a high cost of human labeling. While synthetic datasets generated by large language models (LLMs) have partly solved this issue, they often contain low-quality data. One effective solution is selectively annotating unlabelled instructions, especially given the relative ease of acquiring unlabeled instructions or texts from various sources. However, how to select unlabelled instructions is not well-explored, especially in the context of LLMs. Further, traditional data selection methods, relying on input embedding space density, tend to underestimate instruction sample complexity, whereas those based on model prediction uncertainty often struggle with synthetic label quality. Therefore, we introduce SelectLLM, an alternative framework that leverages the capabilities of LLMs to more effectively select unlabeled instructions. SelectLLM consists of two key steps: Coreset-based clustering of unlabelled instructions for diversity and then prompting a LLM to identify the most beneficial instructions within each cluster. Our experiments demonstrate that SelectLLM matches or outperforms other state-of-the-art methods in instruction tuning benchmarks. It exhibits remarkable consistency across human and synthetic datasets, along with better cross-dataset generalization, as evidenced by a 10% performance improvement on the Cleaned Alpaca test set when trained on Dolly data. All code and data are publicly available (https://github.com/minnesotanlp/select-llm).
comment: First Authors: Ritik Sachin Parkar and Jaehyung Kim | Second Author: Jong Inn Park | PI: Dongyeop Kang
Computer Vision and Pattern Recognition 100
☆ On the Content Bias in Fréchet Video Distance CVPR 2024
Fr\'echet Video Distance (FVD), a prominent metric for evaluating video generation models, is known to conflict with human perception occasionally. In this paper, we aim to explore the extent of FVD's bias toward per-frame quality over temporal realism and identify its sources. We first quantify the FVD's sensitivity to the temporal axis by decoupling the frame and motion quality and find that the FVD increases only slightly with large temporal corruption. We then analyze the generated videos and show that via careful sampling from a large set of generated videos that do not contain motions, one can drastically decrease FVD without improving the temporal quality. Both studies suggest FVD's bias towards the quality of individual frames. We further observe that the bias can be attributed to the features extracted from a supervised video classifier trained on the content-biased dataset. We show that FVD with features extracted from the recent large-scale self-supervised video models is less biased toward image quality. Finally, we revisit a few real-world examples to validate our hypothesis.
comment: CVPR 2024. Project webpage: https://content-debiased-fvd.github.io/
☆ BLINK: Multimodal Large Language Models Can See but Not Perceive
We introduce Blink, a new benchmark for multimodal language models (LLMs) that focuses on core visual perception abilities not found in other evaluations. Most of the Blink tasks can be solved by humans "within a blink" (e.g., relative depth estimation, visual correspondence, forensics detection, and multi-view reasoning). However, we find these perception-demanding tasks cast significant challenges for current multimodal LLMs because they resist mediation through natural language. Blink reformats 14 classic computer vision tasks into 3,807 multiple-choice questions, paired with single or multiple images and visual prompting. While humans get 95.70% accuracy on average, Blink is surprisingly challenging for existing multimodal LLMs: even the best-performing GPT-4V and Gemini achieve accuracies of 51.26% and 45.72%, only 13.17% and 7.63% higher than random guessing, indicating that such perception abilities have not "emerged" yet in recent multimodal LLMs. Our analysis also highlights that specialist CV models could solve these problems much better, suggesting potential pathways for future improvements. We believe Blink will stimulate the community to help multimodal LLMs catch up with human-level visual perception.
comment: Multimodal Benchmark, Project Url: https://zeyofu.github.io/blink/
☆ VideoGigaGAN: Towards Detail-rich Video Super-Resolution
Video super-resolution (VSR) approaches have shown impressive temporal consistency in upsampled videos. However, these approaches tend to generate blurrier results than their image counterparts as they are limited in their generative capability. This raises a fundamental question: can we extend the success of a generative image upsampler to the VSR task while preserving the temporal consistency? We introduce VideoGigaGAN, a new generative VSR model that can produce videos with high-frequency details and temporal consistency. VideoGigaGAN builds upon a large-scale image upsampler -- GigaGAN. Simply inflating GigaGAN to a video model by adding temporal modules produces severe temporal flickering. We identify several key issues and propose techniques that significantly improve the temporal consistency of upsampled videos. Our experiments show that, unlike previous VSR methods, VideoGigaGAN generates temporally consistent videos with more fine-grained appearance details. We validate the effectiveness of VideoGigaGAN by comparing it with state-of-the-art VSR models on public datasets and showcasing video results with $8\times$ super-resolution.
comment: project page: https://videogigagan.github.io/
☆ Moving Object Segmentation: All You Need Is SAM (and Flow)
The objective of this paper is motion segmentation -- discovering and segmenting the moving objects in a video. This is a much studied area with numerous careful,and sometimes complex, approaches and training schemes including: self-supervised learning, learning from synthetic datasets, object-centric representations, amodal representations, and many more. Our interest in this paper is to determine if the Segment Anything model (SAM) can contribute to this task. We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects. In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt. These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks. We also extend these frame-level segmentations to sequence-level segmentations that maintain object identity. Again, this simple model outperforms previous methods on multiple video object segmentation benchmarks.
comment: Project Page: https://www.robots.ox.ac.uk/~vgg/research/flowsam/
☆ Reka Core, Flash, and Edge: A Series of Powerful Multimodal Language Models
We introduce Reka Core, Flash, and Edge, a series of powerful multimodal language models trained from scratch by Reka. Reka models are able to process and reason with text, images, video, and audio inputs. This technical report discusses details of training some of these models and provides comprehensive evaluation results. We show that Reka Edge and Reka Flash are not only state-of-the-art but also outperform many much larger models, delivering outsized values for their respective compute class. Meanwhile, our most capable and largest model, Reka Core, approaches the best frontier models on both automatic evaluations and blind human evaluations. On image question answering benchmarks (e.g. MMMU, VQAv2), Core performs competitively to GPT4-V. Meanwhile, on multimodal chat, Core ranks as the second most preferred model under a blind third-party human evaluation setup, outperforming other models such as Claude 3 Opus. On text benchmarks, Core not only performs competitively to other frontier models on a set of well-established benchmarks (e.g. MMLU, GSM8K) but also outperforms GPT4-0613 on human evaluation. On video question answering (Perception-Test), Core outperforms Gemini Ultra. Models are shipped in production at http://chat.reka.ai . A showcase of non cherry picked qualitative examples can also be found at http://showcase.reka.ai .
☆ SOHES: Self-supervised Open-world Hierarchical Entity Segmentation ICLR 2024
Open-world entity segmentation, as an emerging computer vision task, aims at segmenting entities in images without being restricted by pre-defined classes, offering impressive generalization capabilities on unseen images and concepts. Despite its promise, existing entity segmentation methods like Segment Anything Model (SAM) rely heavily on costly expert annotators. This work presents Self-supervised Open-world Hierarchical Entity Segmentation (SOHES), a novel approach that eliminates the need for human annotations. SOHES operates in three phases: self-exploration, self-instruction, and self-correction. Given a pre-trained self-supervised representation, we produce abundant high-quality pseudo-labels through visual feature clustering. Then, we train a segmentation model on the pseudo-labels, and rectify the noises in pseudo-labels via a teacher-student mutual-learning procedure. Beyond segmenting entities, SOHES also captures their constituent parts, providing a hierarchical understanding of visual entities. Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation, marking a significant milestone towards high-quality open-world entity segmentation in the absence of human-annotated masks. Project page: https://SOHES.github.io.
comment: ICLR 2024
☆ MeshLRM: Large Reconstruction Model for High-Quality Mesh
We propose MeshLRM, a novel LRM-based approach that can reconstruct a high-quality mesh from merely four input images in less than one second. Different from previous large reconstruction models (LRMs) that focus on NeRF-based reconstruction, MeshLRM incorporates differentiable mesh extraction and rendering within the LRM framework. This allows for end-to-end mesh reconstruction by fine-tuning a pre-trained NeRF LRM with mesh rendering. Moreover, we improve the LRM architecture by simplifying several complex designs in previous LRMs. MeshLRM's NeRF initialization is sequentially trained with low- and high-resolution images; this new LRM training strategy enables significantly faster convergence and thereby leads to better quality with less compute. Our approach achieves state-of-the-art mesh reconstruction from sparse-view inputs and also allows for many downstream applications, including text-to-3D and single-image-to-3D generation. Project page: https://sarahweiii.github.io/meshlrm/
☆ G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis CVPR2024
We propose G-HOP, a denoising diffusion based generative prior for hand-object interactions that allows modeling both the 3D object and a human hand, conditioned on the object category. To learn a 3D spatial diffusion model that can capture this joint distribution, we represent the human hand via a skeletal distance field to obtain a representation aligned with the (latent) signed distance field for the object. We show that this hand-object prior can then serve as generic guidance to facilitate other tasks like reconstruction from interaction clip and human grasp synthesis. We believe that our model, trained by aggregating seven diverse real-world interaction datasets spanning across 155 categories, represents a first approach that allows jointly generating both hand and object. Our empirical evaluations demonstrate the benefit of this joint prior in video-based reconstruction and human grasp synthesis, outperforming current task-specific baselines. Project website: https://judyye.github.io/ghop-www
comment: accepted to CVPR2024; project page at https://judyye.github.io/ghop-www
☆ Lazy Diffusion Transformer for Interactive Image Editing
We introduce a novel diffusion transformer, LazyDiffusion, that generates partial image updates efficiently. Our approach targets interactive image editing applications in which, starting from a blank canvas or an image, a user specifies a sequence of localized image modifications using binary masks and text prompts. Our generator operates in two phases. First, a context encoder processes the current canvas and user mask to produce a compact global context tailored to the region to generate. Second, conditioned on this context, a diffusion-based transformer decoder synthesizes the masked pixels in a "lazy" fashion, i.e., it only generates the masked region. This contrasts with previous works that either regenerate the full canvas, wasting time and computation, or confine processing to a tight rectangular crop around the mask, ignoring the global image context altogether. Our decoder's runtime scales with the mask size, which is typically small, while our encoder introduces negligible overhead. We demonstrate that our approach is competitive with state-of-the-art inpainting methods in terms of quality and fidelity while providing a 10x speedup for typical user interactions, where the editing mask represents 10% of the image.
☆ 6Img-to-3D: Few-Image Large-Scale Outdoor Driving Scene Reconstruction
Current 3D reconstruction techniques struggle to infer unbounded scenes from a few images faithfully. Specifically, existing methods have high computational demands, require detailed pose information, and cannot reconstruct occluded regions reliably. We introduce 6Img-to-3D, an efficient, scalable transformer-based encoder-renderer method for single-shot image to 3D reconstruction. Our method outputs a 3D-consistent parameterized triplane from only six outward-facing input images for large-scale, unbounded outdoor driving scenarios. We take a step towards resolving existing shortcomings by combining contracted custom cross- and self-attention mechanisms for triplane parameterization, differentiable volume rendering, scene contraction, and image feature projection. We showcase that six surround-view vehicle images from a single timestamp without global pose information are enough to reconstruct 360$^{\circ}$ scenes during inference time, taking 395 ms. Our method allows, for example, rendering third-person images and birds-eye views. Our code is available at https://github.com/continental/6Img-to-3D, and more examples can be found at our website here https://6Img-to-3D.GitHub.io/.
comment: Joint first authorship. Project page: https://6Img-to-3D.GitHub.io/ Code https://github.com/continental/6Img-to-3D
☆ Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Monocular Videos
Modern 3D engines and graphics pipelines require mesh as a memory-efficient representation, which allows efficient rendering, geometry processing, texture editing, and many other downstream operations. However, it is still highly difficult to obtain high-quality mesh in terms of structure and detail from monocular visual observations. The problem becomes even more challenging for dynamic scenes and objects. To this end, we introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh given a single monocular video. Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from a video. Building on top of this representation, DG-Mesh recovers high-quality meshes from the Gaussian points and can track the mesh vertices over time, which enables applications such as texture editing on dynamic objects. We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians. By applying cycle-consistent deformation between the canonical and the deformed space, we can project the anchored Gaussian back to the canonical space and optimize Gaussians across all time frames. During the evaluation on different datasets, DG-Mesh provides significantly better mesh reconstruction and rendering than baselines.
comment: Project page: https://www.liuisabella.com/DG-Mesh/
☆ MedThink: Explaining Medical Visual Question Answering via Multimodal Decision-Making Rationale
Medical Visual Question Answering (MedVQA), which offers language responses to image-based medical inquiries, represents a challenging task and significant advancement in healthcare. It assists medical experts to swiftly interpret medical images, thereby enabling faster and more accurate diagnoses. However, the model interpretability and transparency of existing MedVQA solutions are often limited, posing challenges in understanding their decision-making processes. To address this issue, we devise a semi-automated annotation process to streamlining data preparation and build new benchmark MedVQA datasets R-RAD and R-SLAKE. The R-RAD and R-SLAKE datasets provide intermediate medical decision-making rationales generated by multimodal large language models and human annotations for question-answering pairs in existing MedVQA datasets, i.e., VQA-RAD and SLAKE. Moreover, we design a novel framework which finetunes lightweight pretrained generative models by incorporating medical decision-making rationales into the training process. The framework includes three distinct strategies to generate decision outcomes and corresponding rationales, thereby clearly showcasing the medical decision-making process during reasoning. Extensive experiments demonstrate that our method can achieve an accuracy of 83.5% on R-RAD and 86.3% on R-SLAKE, significantly outperforming existing state-of-the-art baselines. Dataset and code will be released.
☆ Gradient-Regularized Out-of-Distribution Detection ECCV
One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution. Addressing this issue is known as Out-of-Distribution (OOD) detection. Many state-of-the-art OOD methods employ an auxiliary dataset as a surrogate for OOD data during training to achieve improved performance. However, these methods fail to fully exploit the local information embedded in the auxiliary dataset. In this work, we propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to not only learn a desired OOD score for each sample but also to exhibit similar behavior in a local neighborhood around each sample. We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase. This is especially important when the auxiliary dataset is large. We demonstrate the effectiveness of our method through extensive experiments on several OOD benchmarks, improving the existing state-of-the-art FPR95 by 4% on our ImageNet experiment. We further provide a theoretical analysis through the lens of certified robustness and Lipschitz analysis to showcase the theoretical foundation of our work. We will publicly release our code after the review process.
comment: Under review for the 18th European Conference on Computer Vision (ECCV) 2024
☆ Inverse Neural Rendering for Explainable Multi-Object Tracking
Today, most methods for image understanding tasks rely on feed-forward neural networks. While this approach has allowed for empirical accuracy, efficiency, and task adaptation via fine-tuning, it also comes with fundamental disadvantages. Existing networks often struggle to generalize across different datasets, even on the same task. By design, these networks ultimately reason about high-dimensional scene features, which are challenging to analyze. This is true especially when attempting to predict 3D information based on 2D images. We propose to recast 3D multi-object tracking from RGB cameras as an \emph{Inverse Rendering (IR)} problem, by optimizing via a differentiable rendering pipeline over the latent space of pre-trained 3D object representations and retrieve the latents that best represent object instances in a given input image. To this end, we optimize an image loss over generative latent spaces that inherently disentangle shape and appearance properties. We investigate not only an alternate take on tracking but our method also enables examining the generated objects, reasoning about failure situations, and resolving ambiguous cases. We validate the generalization and scaling capabilities of our method by learning the generative prior exclusively from synthetic data and assessing camera-based 3D tracking on the nuScenes and Waymo datasets. Both these datasets are completely unseen to our method and do not require fine-tuning. Videos and code are available at https://light.princeton.edu/inverse-rendering-tracking/.
☆ V2Xum-LLM: Cross-Modal Video Summarization with Temporal Prompt Instruction Tuning
Video summarization aims to create short, accurate, and cohesive summaries of longer videos. Despite the existence of various video summarization datasets, a notable limitation is their limited amount of source videos, which hampers the effective fine-tuning of advanced large vision-language models (VLMs). Additionally, most existing datasets are created for video-to-video summarization, overlooking the contemporary need for multimodal video content summarization. Recent efforts have been made to expand from unimodal to multimodal video summarization, categorizing the task into three sub-tasks based on the summary's modality: video-to-video (V2V), video-to-text (V2T), and a combination of video and text summarization (V2VT). However, the textual summaries in previous multimodal datasets are inadequate. To address these issues, we introduce Instruct-V2Xum, a cross-modal video summarization dataset featuring 30,000 diverse videos sourced from YouTube, with lengths ranging from 40 to 940 seconds and an average summarization ratio of 16.39\%. Each video summary in Instruct-V2Xum is paired with a textual summary that references specific frame indexes, facilitating the generation of aligned video and textual summaries. In addition, we propose a new video summarization framework named V2Xum-LLM. V2Xum-LLM, specifically V2Xum-LLaMA in this study, is the first framework that unifies different video summarization tasks into one large language model's (LLM) text decoder and achieves task-controllable video summarization with temporal prompts and task instructions. Experiments show that V2Xum-LLaMA outperforms strong baseline models on multiple video summarization tasks. Furthermore, we propose an enhanced evaluation metric for V2V and V2VT summarization tasks.
☆ Point-In-Context: Understanding Point Cloud via In-Context Learning
With the emergence of large-scale models trained on diverse datasets, in-context learning has emerged as a promising paradigm for multitasking, notably in natural language processing and image processing. However, its application in 3D point cloud tasks remains largely unexplored. In this work, we introduce Point-In-Context (PIC), a novel framework for 3D point cloud understanding via in-context learning. We address the technical challenge of effectively extending masked point modeling to 3D point clouds by introducing a Joint Sampling module and proposing a vanilla version of PIC called Point-In-Context-Generalist (PIC-G). PIC-G is designed as a generalist model for various 3D point cloud tasks, with inputs and outputs modeled as coordinates. In this paradigm, the challenging segmentation task is achieved by assigning label points with XYZ coordinates for each category; the final prediction is then chosen based on the label point closest to the predictions. To break the limitation by the fixed label-coordinate assignment, which has poor generalization upon novel classes, we propose two novel training strategies, In-Context Labeling and In-Context Enhancing, forming an extended version of PIC named Point-In-Context-Segmenter (PIC-S), targeting improving dynamic context labeling and model training. By utilizing dynamic in-context labels and extra in-context pairs, PIC-S achieves enhanced performance and generalization capability in and across part segmentation datasets. PIC is a general framework so that other tasks or datasets can be seamlessly introduced into our PIC through a unified data format. We conduct extensive experiments to validate the versatility and adaptability of our proposed methods in handling a wide range of tasks and segmenting multi-datasets. Our PIC-S is capable of generalizing unseen datasets and performing novel part segmentation by customizing prompts.
comment: Project page: https://fanglaosi.github.io/Point-In-Context_Pages. arXiv admin note: text overlap with arXiv:2306.08659
☆ AniClipart: Clipart Animation with Text-to-Video Priors
Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
comment: Project Page: https://aniclipart.github.io/
☆ Measuring Feature Dependency of Neural Networks by Collapsing Feature Dimensions in the Data Manifold
This paper introduces a new technique to measure the feature dependency of neural network models. The motivation is to better understand a model by querying whether it is using information from human-understandable features, e.g., anatomical shape, volume, or image texture. Our method is based on the principle that if a model is dependent on a feature, then removal of that feature should significantly harm its performance. A targeted feature is "removed" by collapsing the dimension in the data distribution that corresponds to that feature. We perform this by moving data points along the feature dimension to a baseline feature value while staying on the data manifold, as estimated by a deep generative model. Then we observe how the model's performance changes on the modified test data set, with the target feature dimension removed. We test our method on deep neural network models trained on synthetic image data with known ground truth, an Alzheimer's disease prediction task using MRI and hippocampus segmentations from the OASIS-3 dataset, and a cell nuclei classification task using the Lizard dataset.
comment: Accepted and will be pulished in International Symposium on Biomedical Imaging (ISBI) 2024
☆ SPOT: Point Cloud Based Stereo Visual Place Recognition for Similar and Opposing Viewpoints ICRA 2024
Recognizing places from an opposing viewpoint during a return trip is a common experience for human drivers. However, the analogous robotics capability, visual place recognition (VPR) with limited field of view cameras under 180 degree rotations, has proven to be challenging to achieve. To address this problem, this paper presents Same Place Opposing Trajectory (SPOT), a technique for opposing viewpoint VPR that relies exclusively on structure estimated through stereo visual odometry (VO). The method extends recent advances in lidar descriptors and utilizes a novel double (similar and opposing) distance matrix sequence matching method. We evaluate SPOT on a publicly available dataset with 6.7-7.6 km routes driven in similar and opposing directions under various lighting conditions. The proposed algorithm demonstrates remarkable improvement over the state-of-the-art, achieving up to 91.7% recall at 100% precision in opposing viewpoint cases, while requiring less storage than all baselines tested and running faster than all but one. Moreover, the proposed method assumes no a priori knowledge of whether the viewpoint is similar or opposing, and also demonstrates competitive performance in similar viewpoint cases.
comment: Accepted to ICRA 2024, project website: https://umautobots.github.io/spot
☆ Customizing Text-to-Image Diffusion with Camera Viewpoint Control
Model customization introduces new concepts to existing text-to-image models, enabling the generation of the new concept in novel contexts. However, such methods lack accurate camera view control w.r.t the object, and users must resort to prompt engineering (e.g., adding "top-view") to achieve coarse view control. In this work, we introduce a new task -- enabling explicit control of camera viewpoint for model customization. This allows us to modify object properties amongst various background scenes via text prompts, all while incorporating the target camera pose as additional control. This new task presents significant challenges in merging a 3D representation from the multi-view images of the new concept with a general, 2D text-to-image model. To bridge this gap, we propose to condition the 2D diffusion process on rendered, view-dependent features of the new object. During training, we jointly adapt the 2D diffusion modules and 3D feature predictions to reconstruct the object's appearance and geometry while reducing overfitting to the input multi-view images. Our method outperforms existing image editing and model personalization baselines in preserving the custom object's identity while following the input text prompt and the object's camera pose.
comment: project page: https://customdiffusion360.github.io
☆ A Perspective on Deep Vision Performance with Standard Image and Video Codecs CVPR 2024
Resource-constrained hardware, such as edge devices or cell phones, often rely on cloud servers to provide the required computational resources for inference in deep vision models. However, transferring image and video data from an edge or mobile device to a cloud server requires coding to deal with network constraints. The use of standardized codecs, such as JPEG or H.264, is prevalent and required to ensure interoperability. This paper aims to examine the implications of employing standardized codecs within deep vision pipelines. We find that using JPEG and H.264 coding significantly deteriorates the accuracy across a broad range of vision tasks and models. For instance, strong compression rates reduce semantic segmentation accuracy by more than 80% in mIoU. In contrast to previous findings, our analysis extends beyond image and action classification to localization and dense prediction tasks, thus providing a more comprehensive perspective.
comment: Accepted at CVPR 2024 Workshop on AI for Streaming (AIS)
☆ Generalizable Face Landmarking Guided by Conditional Face Warping CVPR 2024
As a significant step for human face modeling, editing, and generation, face landmarking aims at extracting facial keypoints from images. A generalizable face landmarker is required in practice because real-world facial images, e.g., the avatars in animations and games, are often stylized in various ways. However, achieving generalizable face landmarking is challenging due to the diversity of facial styles and the scarcity of labeled stylized faces. In this study, we propose a simple but effective paradigm to learn a generalizable face landmarker based on labeled real human faces and unlabeled stylized faces. Our method learns the face landmarker as the key module of a conditional face warper. Given a pair of real and stylized facial images, the conditional face warper predicts a warping field from the real face to the stylized one, in which the face landmarker predicts the ending points of the warping field and provides us with high-quality pseudo landmarks for the corresponding stylized facial images. Applying an alternating optimization strategy, we learn the face landmarker to minimize $i)$ the discrepancy between the stylized faces and the warped real ones and $ii)$ the prediction errors of both real and pseudo landmarks. Experiments on various datasets show that our method outperforms existing state-of-the-art domain adaptation methods in face landmarking tasks, leading to a face landmarker with better generalizability. Code is available at https://plustwo0.github.io/project-face-landmarker}{https://plustwo0.github.io/project-face-landmarker.
comment: Accepted in CVPR 2024
☆ iRAG: An Incremental Retrieval Augmented Generation System for Videos
Retrieval augmented generation (RAG) systems combine the strengths of language generation and information retrieval to power many real-world applications like chatbots. Use of RAG for combined understanding of multimodal data such as text, images and videos is appealing but two critical limitations exist: one-time, upfront capture of all content in large multimodal data as text descriptions entails high processing times, and not all information in the rich multimodal data is typically in the text descriptions. Since the user queries are not known apriori, developing a system for multimodal to text conversion and interactive querying of multimodal data is challenging. To address these limitations, we propose iRAG, which augments RAG with a novel incremental workflow to enable interactive querying of large corpus of multimodal data. Unlike traditional RAG, iRAG quickly indexes large repositories of multimodal data, and in the incremental workflow, it uses the index to opportunistically extract more details from select portions of the multimodal data to retrieve context relevant to an interactive user query. Such an incremental workflow avoids long multimodal to text conversion times, overcomes information loss issues by doing on-demand query-specific extraction of details in multimodal data, and ensures high quality of responses to interactive user queries that are often not known apriori. To the best of our knowledge, iRAG is the first system to augment RAG with an incremental workflow to support efficient interactive querying of large, real-world multimodal data. Experimental results on real-world long videos demonstrate 23x to 25x faster video to text ingestion, while ensuring that quality of responses to interactive user queries is comparable to responses from a traditional RAG where all video data is converted to text upfront before any querying.
☆ When Medical Imaging Met Self-Attention: A Love Story That Didn't Quite Work Out
A substantial body of research has focused on developing systems that assist medical professionals during labor-intensive early screening processes, many based on convolutional deep-learning architectures. Recently, multiple studies explored the application of so-called self-attention mechanisms in the vision domain. These studies often report empirical improvements over fully convolutional approaches on various datasets and tasks. To evaluate this trend for medical imaging, we extend two widely adopted convolutional architectures with different self-attention variants on two different medical datasets. With this, we aim to specifically evaluate the possible advantages of additional self-attention. We compare our models with similarly sized convolutional and attention-based baselines and evaluate performance gains statistically. Additionally, we investigate how including such layers changes the features learned by these models during the training. Following a hyperparameter search, and contrary to our expectations, we observe no significant improvement in balanced accuracy over fully convolutional models. We also find that important features, such as dermoscopic structures in skin lesion images, are still not learned by employing self-attention. Finally, analyzing local explanations, we confirm biased feature usage. We conclude that merely incorporating attention is insufficient to surpass the performance of existing fully convolutional methods.
comment: 10 pages, 2 figures, 5 tables, presented at VISAPP 2024
☆ Reducing Bias in Pre-trained Models by Tuning while Penalizing Change
Deep models trained on large amounts of data often incorporate implicit biases present during training time. If later such a bias is discovered during inference or deployment, it is often necessary to acquire new data and retrain the model. This behavior is especially problematic in critical areas such as autonomous driving or medical decision-making. In these scenarios, new data is often expensive and hard to come by. In this work, we present a method based on change penalization that takes a pre-trained model and adapts the weights to mitigate a previously detected bias. We achieve this by tuning a zero-initialized copy of a frozen pre-trained network. Our method needs very few, in extreme cases only a single, examples that contradict the bias to increase performance. Additionally, we propose an early stopping criterion to modify baselines and reduce overfitting. We evaluate our approach on a well-known bias in skin lesion classification and three other datasets from the domain shift literature. We find that our approach works especially well with very few images. Simple fine-tuning combined with our early stopping also leads to performance benefits for a larger number of tuning samples.
comment: 12 pages, 12 figures, presented at VISAPP 2024
☆ Performance Evaluation of Segment Anything Model with Variational Prompting for Application to Non-Visible Spectrum Imagery
The Segment Anything Model (SAM) is a deep neural network foundational model designed to perform instance segmentation which has gained significant popularity given its zero-shot segmentation ability. SAM operates by generating masks based on various input prompts such as text, bounding boxes, points, or masks, introducing a novel methodology to overcome the constraints posed by dataset-specific scarcity. While SAM is trained on an extensive dataset, comprising ~11M images, it mostly consists of natural photographic images with only very limited images from other modalities. Whilst the rapid progress in visual infrared surveillance and X-ray security screening imaging technologies, driven forward by advances in deep learning, has significantly enhanced the ability to detect, classify and segment objects with high accuracy, it is not evident if the SAM zero-shot capabilities can be transferred to such modalities. This work assesses SAM capabilities in segmenting objects of interest in the X-ray/infrared modalities. Our approach reuses the pre-trained SAM with three different prompts: bounding box, centroid and random points. We present quantitative/qualitative results to showcase the performance on selected datasets. Our results show that SAM can segment objects in the X-ray modality when given a box prompt, but its performance varies for point prompts. Specifically, SAM performs poorly in segmenting slender objects and organic materials, such as plastic bottles. We find that infrared objects are also challenging to segment with point prompts given the low-contrast nature of this modality. This study shows that while SAM demonstrates outstanding zero-shot capabilities with box prompts, its performance ranges from moderate to poor for point prompts, indicating that special consideration on the cross-modal generalisation of SAM is needed when considering use on X-ray/infrared imagery.
☆ Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models
Facial expression recognition is a pivotal component in machine learning, facilitating various applications. However, convolutional neural networks (CNNs) are often plagued by catastrophic forgetting, impeding their adaptability. The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks. Moreover, ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images. This dual approach enables CNNs to retain past knowledge while learning new tasks, enhancing their performance in emotion recognition. The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset while making the CNN retain previously learned knowledge.
comment: 15 pages
☆ DeepLocalization: Using change point detection for Temporal Action Localization
In this study, we introduce DeepLocalization, an innovative framework devised for the real-time localization of actions tailored explicitly for monitoring driver behavior. Utilizing the power of advanced deep learning methodologies, our objective is to tackle the critical issue of distracted driving-a significant factor contributing to road accidents. Our strategy employs a dual approach: leveraging Graph-Based Change-Point Detection for pinpointing actions in time alongside a Video Large Language Model (Video-LLM) for precisely categorizing activities. Through careful prompt engineering, we customize the Video-LLM to adeptly handle driving activities' nuances, ensuring its classification efficacy even with sparse data. Engineered to be lightweight, our framework is optimized for consumer-grade GPUs, making it vastly applicable in practical scenarios. We subjected our method to rigorous testing on the SynDD2 dataset, a complex benchmark for distracted driving behaviors, where it demonstrated commendable performance-achieving 57.5% accuracy in event classification and 51% in event detection. These outcomes underscore the substantial promise of DeepLocalization in accurately identifying diverse driver behaviors and their temporal occurrences, all within the bounds of limited computational resources.
☆ Food Portion Estimation via 3D Object Scaling
Image-based methods to analyze food images have alleviated the user burden and biases associated with traditional methods. However, accurate portion estimation remains a major challenge due to the loss of 3D information in the 2D representation of foods captured by smartphone cameras or wearable devices. In this paper, we propose a new framework to estimate both food volume and energy from 2D images by leveraging the power of 3D food models and physical reference in the eating scene. Our method estimates the pose of the camera and the food object in the input image and recreates the eating occasion by rendering an image of a 3D model of the food with the estimated poses. We also introduce a new dataset, SimpleFood45, which contains 2D images of 45 food items and associated annotations including food volume, weight, and energy. Our method achieves an average error of 31.10 kCal (17.67%) on this dataset, outperforming existing portion estimation methods.
☆ Deep Gaussian mixture model for unsupervised image segmentation
The recent emergence of deep learning has led to a great deal of work on designing supervised deep semantic segmentation algorithms. As in many tasks sufficient pixel-level labels are very difficult to obtain, we propose a method which combines a Gaussian mixture model (GMM) with unsupervised deep learning techniques. In the standard GMM the pixel values with each sub-region are modelled by a Gaussian distribution. In order to identify the different regions, the parameter vector that minimizes the negative log-likelihood (NLL) function regarding the GMM has to be approximated. For this task, usually iterative optimization methods such as the expectation-maximization (EM) algorithm are used. In this paper, we propose to estimate these parameters directly from the image using a convolutional neural network (CNN). We thus change the iterative procedure in the EM algorithm replacing the expectation-step by a gradient-step with regard to the networks parameters. This means that the network is trained to minimize the NLL function of the GMM which comes with at least two advantages. As once trained, the network is able to predict label probabilities very quickly compared with time consuming iterative optimization methods. Secondly, due to the deep image prior our method is able to partially overcome one of the main disadvantages of GMM, which is not taking into account correlation between neighboring pixels, as it assumes independence between them. We demonstrate the advantages of our method in various experiments on the example of myocardial infarct segmentation on multi-sequence MRI images.
☆ Dynamic Modality and View Selection for Multimodal Emotion Recognition with Missing Modalities
The study of human emotions, traditionally a cornerstone in fields like psychology and neuroscience, has been profoundly impacted by the advent of artificial intelligence (AI). Multiple channels, such as speech (voice) and facial expressions (image), are crucial in understanding human emotions. However, AI's journey in multimodal emotion recognition (MER) is marked by substantial technical challenges. One significant hurdle is how AI models manage the absence of a particular modality - a frequent occurrence in real-world situations. This study's central focus is assessing the performance and resilience of two strategies when confronted with the lack of one modality: a novel multimodal dynamic modality and view selection and a cross-attention mechanism. Results on the RECOLA dataset show that dynamic selection-based methods are a promising approach for MER. In the missing modalities scenarios, all dynamic selection-based methods outperformed the baseline. The study concludes by emphasizing the intricate interplay between audio and video modalities in emotion prediction, showcasing the adaptability of dynamic selection methods in handling missing modalities.
comment: 15 pages
☆ Blind Localization and Clustering of Anomalies in Textures
Anomaly detection and localization in images is a growing field in computer vision. In this area, a seemingly understudied problem is anomaly clustering, i.e., identifying and grouping different types of anomalies in a fully unsupervised manner. In this work, we propose a novel method for clustering anomalies in largely stationary images (textures) in a blind setting. That is, the input consists of normal and anomalous images without distinction and without labels. What contributes to the difficulty of the task is that anomalous regions are often small and may present only subtle changes in appearance, which can be easily overshadowed by the genuine variance in the texture. Moreover, each anomaly type may have a complex appearance distribution. We introduce a novel scheme for solving this task using a combination of blind anomaly localization and contrastive learning. By identifying the anomalous regions with high fidelity, we can restrict our focus to those regions of interest; then, contrastive learning is employed to increase the separability of different anomaly types and reduce the intra-class variation. Our experiments show that the proposed solution yields significantly better results compared to prior work, setting a new state of the art. Project page: https://reality.tf.fau.de/pub/ardelean2024blind.html.
☆ Beyond Average: Individualized Visual Scanpath Prediction CVPR2024
Understanding how attention varies across individuals has significant scientific and societal impacts. However, existing visual scanpath models treat attention uniformly, neglecting individual differences. To bridge this gap, this paper focuses on individualized scanpath prediction (ISP), a new attention modeling task that aims to accurately predict how different individuals shift their attention in diverse visual tasks. It proposes an ISP method featuring three novel technical components: (1) an observer encoder to characterize and integrate an observer's unique attention traits, (2) an observer-centric feature integration approach that holistically combines visual features, task guidance, and observer-specific characteristics, and (3) an adaptive fixation prioritization mechanism that refines scanpath predictions by dynamically prioritizing semantic feature maps based on individual observers' attention traits. These novel components allow scanpath models to effectively address the attention variations across different observers. Our method is generally applicable to different datasets, model architectures, and visual tasks, offering a comprehensive tool for transforming general scanpath models into individualized ones. Comprehensive evaluations using value-based and ranking-based metrics verify the method's effectiveness and generalizability.
comment: To appear in CVPR2024
☆ ProTA: Probabilistic Token Aggregation for Text-Video Retrieval
Text-video retrieval aims to find the most relevant cross-modal samples for a given query. Recent methods focus on modeling the whole spatial-temporal relations. However, since video clips contain more diverse content than captions, the model aligning these asymmetric video-text pairs has a high risk of retrieving many false positive results. In this paper, we propose Probabilistic Token Aggregation (\textit{ProTA}) to handle cross-modal interaction with content asymmetry. Specifically, we propose dual partial-related aggregation to disentangle and re-aggregate token representations in both low-dimension and high-dimension spaces. We propose token-based probabilistic alignment to generate token-level probabilistic representation and maintain the feature representation diversity. In addition, an adaptive contrastive loss is proposed to learn compact cross-modal distribution space. Based on extensive experiments, \textit{ProTA} achieves significant improvements on MSR-VTT (50.9%), LSMDC (25.8%), and DiDeMo (47.2%).
☆ Observation, Analysis, and Solution: Exploring Strong Lightweight Vision Transformers via Masked Image Modeling Pre-Training
Masked image modeling (MIM) pre-training for large-scale vision transformers (ViTs) in computer vision has enabled promising downstream performance on top of the learned self-supervised ViT features. In this paper, we question if the extremely simple ViTs' fine-tuning performance with a small-scale architecture can also benefit from this pre-training paradigm, which is considerably less studied yet in contrast to the well-established lightweight architecture design methodology with sophisticated components introduced. By carefully adapting various typical MIM pre-training methods to this lightweight regime and comparing them with the contrastive learning (CL) pre-training on various downstream image classification and dense prediction tasks, we systematically observe different behaviors between MIM and CL with respect to the downstream fine-tuning data scales. Furthermore, we analyze the frozen features under linear probing evaluation and also the layer representation similarities and attention maps across the obtained models, which clearly show the inferior learning of MIM pre-training on higher layers, leading to unsatisfactory fine-tuning performance on data-insufficient downstream tasks. This finding is naturally a guide to choosing appropriate distillation strategies during pre-training to solve the above deterioration problem. Extensive experiments on various vision tasks demonstrate the effectiveness of our observation-analysis-solution flow. In particular, our pre-training with distillation on pure lightweight ViTs with vanilla/hierarchical design (5.7M/6.5M) can achieve 79.4%/78.9% top-1 accuracy on ImageNet-1K. It also enables SOTA performance on the ADE20K semantic segmentation task (42.8% mIoU) and LaSOT visual tracking task (66.1% AUC) in the lightweight regime. The latter even surpasses all the current SOTA lightweight CPU-realtime trackers.
☆ Partial-to-Partial Shape Matching with Geometric Consistency
Finding correspondences between 3D shapes is an important and long-standing problem in computer vision, graphics and beyond. A prominent challenge are partial-to-partial shape matching settings, which occur when the shapes to match are only observed incompletely (e.g. from 3D scanning). Although partial-to-partial matching is a highly relevant setting in practice, it is rarely explored. Our work bridges the gap between existing (rather artificial) 3D full shape matching and partial-to-partial real-world settings by exploiting geometric consistency as a strong constraint. We demonstrate that it is indeed possible to solve this challenging problem in a variety of settings. For the first time, we achieve geometric consistency for partial-to-partial matching, which is realized by a novel integer non-linear program formalism building on triangle product spaces, along with a new pruning algorithm based on linear integer programming. Further, we generate a new inter-class dataset for partial-to-partial shape-matching. We show that our method outperforms current SOTA methods on both an established intra-class dataset and our novel inter-class dataset.
☆ GraFIQs: Face Image Quality Assessment Using Gradient Magnitudes CVPR
Face Image Quality Assessment (FIQA) estimates the utility of face images for automated face recognition (FR) systems. We propose in this work a novel approach to assess the quality of face images based on inspecting the required changes in the pre-trained FR model weights to minimize differences between testing samples and the distribution of the FR training dataset. To achieve that, we propose quantifying the discrepancy in Batch Normalization statistics (BNS), including mean and variance, between those recorded during FR training and those obtained by processing testing samples through the pretrained FR model. We then generate gradient magnitudes of pretrained FR weights by backpropagating the BNS through the pretrained model. The cumulative absolute sum of these gradient magnitudes serves as the FIQ for our approach. Through comprehensive experimentation, we demonstrate the effectiveness of our training-free and quality labeling-free approach, achieving competitive performance to recent state-of-theart FIQA approaches without relying on quality labeling, the need to train regression networks, specialized architectures, or designing and optimizing specific loss functions.
comment: Accepted at CVPR Workshop 2024
☆ Aligning Actions and Walking to LLM-Generated Textual Descriptions
Large Language Models (LLMs) have demonstrated remarkable capabilities in various domains, including data augmentation and synthetic data generation. This work explores the use of LLMs to generate rich textual descriptions for motion sequences, encompassing both actions and walking patterns. We leverage the expressive power of LLMs to align motion representations with high-level linguistic cues, addressing two distinct tasks: action recognition and retrieval of walking sequences based on appearance attributes. For action recognition, we employ LLMs to generate textual descriptions of actions in the BABEL-60 dataset, facilitating the alignment of motion sequences with linguistic representations. In the domain of gait analysis, we investigate the impact of appearance attributes on walking patterns by generating textual descriptions of motion sequences from the DenseGait dataset using LLMs. These descriptions capture subtle variations in walking styles influenced by factors such as clothing choices and footwear. Our approach demonstrates the potential of LLMs in augmenting structured motion attributes and aligning multi-modal representations. The findings contribute to the advancement of comprehensive motion understanding and open up new avenues for leveraging LLMs in multi-modal alignment and data augmentation for motion analysis. We make the code publicly available at https://github.com/Radu1999/WalkAndText
comment: Accepted at 2nd Workshop on Learning with Few or without Annotated Face, Body and Gesture Data
☆ Gait Recognition from Highly Compressed Videos
Surveillance footage represents a valuable resource and opportunities for conducting gait analysis. However, the typical low quality and high noise levels in such footage can severely impact the accuracy of pose estimation algorithms, which are foundational for reliable gait analysis. Existing literature suggests a direct correlation between the efficacy of pose estimation and the subsequent gait analysis results. A common mitigation strategy involves fine-tuning pose estimation models on noisy data to improve robustness. However, this approach may degrade the downstream model's performance on the original high-quality data, leading to a trade-off that is undesirable in practice. We propose a processing pipeline that incorporates a task-targeted artifact correction model specifically designed to pre-process and enhance surveillance footage before pose estimation. Our artifact correction model is optimized to work alongside a state-of-the-art pose estimation network, HRNet, without requiring repeated fine-tuning of the pose estimation model. Furthermore, we propose a simple and robust method for obtaining low quality videos that are annotated with poses in an automatic manner with the purpose of training the artifact correction model. We systematically evaluate the performance of our artifact correction model against a range of noisy surveillance data and demonstrate that our approach not only achieves improved pose estimation on low-quality surveillance footage, but also preserves the integrity of the pose estimation on high resolution footage. Our experiments show a clear enhancement in gait analysis performance, supporting the viability of the proposed method as a superior alternative to direct fine-tuning strategies. Our contributions pave the way for more reliable gait analysis using surveillance data in real-world applications, regardless of data quality.
comment: Accepted at 2nd Workshop on Learning with Few or without Annotated Face, Body and Gesture Data
☆ How to Benchmark Vision Foundation Models for Semantic Segmentation? CVPR 2024
Recent vision foundation models (VFMs) have demonstrated proficiency in various tasks but require supervised fine-tuning to perform the task of semantic segmentation effectively. Benchmarking their performance is essential for selecting current models and guiding future model developments for this task. The lack of a standardized benchmark complicates comparisons. Therefore, the primary objective of this paper is to study how VFMs should be benchmarked for semantic segmentation. To do so, various VFMs are fine-tuned under various settings, and the impact of individual settings on the performance ranking and training time is assessed. Based on the results, the recommendation is to fine-tune the ViT-B variants of VFMs with a 16x16 patch size and a linear decoder, as these settings are representative of using a larger model, more advanced decoder and smaller patch size, while reducing training time by more than 13 times. Using multiple datasets for training and evaluation is also recommended, as the performance ranking across datasets and domain shifts varies. Linear probing, a common practice for some VFMs, is not recommended, as it is not representative of end-to-end fine-tuning. The benchmarking setup recommended in this paper enables a performance analysis of VFMs for semantic segmentation. The findings of such an analysis reveal that pretraining with promptable segmentation is not beneficial, whereas masked image modeling (MIM) with abstract representations is crucial, even more important than the type of supervision used. The code for efficiently fine-tuning VFMs for semantic segmentation can be accessed through the project page at: https://tue-mps.github.io/benchmark-vfm-ss/.
comment: CVPR 2024 Workshop Proceedings for the Second Workshop on Foundation Models
☆ Real-World Efficient Blind Motion Deblurring via Blur Pixel Discretization CVPR2024
As recent advances in mobile camera technology have enabled the capability to capture high-resolution images, such as 4K images, the demand for an efficient deblurring model handling large motion has increased. In this paper, we discover that the image residual errors, i.e., blur-sharp pixel differences, can be grouped into some categories according to their motion blur type and how complex their neighboring pixels are. Inspired by this, we decompose the deblurring (regression) task into blur pixel discretization (pixel-level blur classification) and discrete-to-continuous conversion (regression with blur class map) tasks. Specifically, we generate the discretized image residual errors by identifying the blur pixels and then transform them to a continuous form, which is computationally more efficient than naively solving the original regression problem with continuous values. Here, we found that the discretization result, i.e., blur segmentation map, remarkably exhibits visual similarity with the image residual errors. As a result, our efficient model shows comparable performance to state-of-the-art methods in realistic benchmarks, while our method is up to 10 times computationally more efficient.
comment: CVPR2024 Camera-Ready
☆ StyleBooth: Image Style Editing with Multimodal Instruction
Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
☆ Omniview-Tuning: Boosting Viewpoint Invariance of Vision-Language Pre-training Models
Vision-Language Pre-training (VLP) models like CLIP have achieved remarkable success in computer vision and particularly demonstrated superior robustness to distribution shifts of 2D images. However, their robustness under 3D viewpoint variations is still limited, which can hinder the development for real-world applications. This paper successfully addresses this concern while keeping VLPs' original performance by breaking through two primary obstacles: 1) the scarcity of training data and 2) the suboptimal fine-tuning paradigms. To combat data scarcity, we build the Multi-View Caption (MVCap) dataset -- a comprehensive collection of over four million multi-view image-text pairs across more than 100K objects, providing more potential for VLP models to develop generalizable viewpoint-invariant representations. To address the limitations of existing paradigms in performance trade-offs and training efficiency, we design a novel fine-tuning framework named Omniview-Tuning (OVT). Specifically, OVT introduces a Cross-Viewpoint Alignment objective through a minimax-like optimization strategy, which effectively aligns representations of identical objects from diverse viewpoints without causing overfitting. Additionally, OVT fine-tunes VLP models in a parameter-efficient manner, leading to minimal computational cost. Extensive experiments on various VLP models with different architectures validate that OVT significantly improves the models' resilience to viewpoint shifts and keeps the original performance, establishing a pioneering standard for boosting the viewpoint invariance of VLP models.
comment: 20 pages
☆ One-Shot Sequential Federated Learning for Non-IID Data by Enhancing Local Model Diversity
Traditional federated learning mainly focuses on parallel settings (PFL), which can suffer significant communication and computation costs. In contrast, one-shot and sequential federated learning (SFL) have emerged as innovative paradigms to alleviate these costs. However, the issue of non-IID (Independent and Identically Distributed) data persists as a significant challenge in one-shot and SFL settings, exacerbated by the restricted communication between clients. In this paper, we improve the one-shot sequential federated learning for non-IID data by proposing a local model diversity-enhancing strategy. Specifically, to leverage the potential of local model diversity for improving model performance, we introduce a local model pool for each client that comprises diverse models generated during local training, and propose two distance measurements to further enhance the model diversity and mitigate the effect of non-IID data. Consequently, our proposed framework can improve the global model performance while maintaining low communication costs. Extensive experiments demonstrate that our method exhibits superior performance to existing one-shot PFL methods and achieves better accuracy compared with state-of-the-art one-shot SFL methods on both label-skew and domain-shift tasks (e.g., 6%+ accuracy improvement on the CIFAR-10 dataset).
☆ Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors
This paper presents RADAR-Robust Adversarial Detection via Adversarial Retraining-an approach designed to enhance the robustness of adversarial detectors against adaptive attacks, while maintaining classifier performance. An adaptive attack is one where the attacker is aware of the defenses and adapts their strategy accordingly. Our proposed method leverages adversarial training to reinforce the ability to detect attacks, without compromising clean accuracy. During the training phase, we integrate into the dataset adversarial examples, which were optimized to fool both the classifier and the adversarial detector, enabling the adversarial detector to learn and adapt to potential attack scenarios. Experimental evaluations on the CIFAR-10 and SVHN datasets demonstrate that our proposed algorithm significantly improves a detector's ability to accurately identify adaptive adversarial attacks -- without sacrificing clean accuracy.
☆ Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at https://github.com/yuzhu-cai/Ethical-Lens.
comment: 42 pages, 17 figures, 29 tables
☆ S3R-Net: A Single-Stage Approach to Self-Supervised Shadow Removal CVPR 2024
In this paper we present S3R-Net, the Self-Supervised Shadow Removal Network. The two-branch WGAN model achieves self-supervision relying on the unify-and-adaptphenomenon - it unifies the style of the output data and infers its characteristics from a database of unaligned shadow-free reference images. This approach stands in contrast to the large body of supervised frameworks. S3R-Net also differentiates itself from the few existing self-supervised models operating in a cycle-consistent manner, as it is a non-cyclic, unidirectional solution. The proposed framework achieves comparable numerical scores to recent selfsupervised shadow removal models while exhibiting superior qualitative performance and keeping the computational cost low.
comment: NTIRE workshop @ CVPR 2024. Code & models available at https://github.com/n-kubiak/S3R-Net
☆ Harnessing Joint Rain-/Detail-aware Representations to Eliminate Intricate Rains
Recent advances in image deraining have focused on training powerful models on mixed multiple datasets comprising diverse rain types and backgrounds. However, this approach tends to overlook the inherent differences among rainy images, leading to suboptimal results. To overcome this limitation, we focus on addressing various rainy images by delving into meaningful representations that encapsulate both the rain and background components. Leveraging these representations as instructive guidance, we put forth a Context-based Instance-level Modulation (CoI-M) mechanism adept at efficiently modulating CNN- or Transformer-based models. Furthermore, we devise a rain-/detail-aware contrastive learning strategy to help extract joint rain-/detail-aware representations. By integrating CoI-M with the rain-/detail-aware Contrastive learning, we develop CoIC, an innovative and potent algorithm tailored for training models on mixed datasets. Moreover, CoIC offers insight into modeling relationships of datasets, quantitatively assessing the impact of rain and details on restoration, and unveiling distinct behaviors of models given diverse inputs. Extensive experiments validate the efficacy of CoIC in boosting the deraining ability of CNN and Transformer models. CoIC also enhances the deraining prowess remarkably when real-world dataset is included.
comment: 21 pages, 14 figures
☆ MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking CVPR 2024
Event-based eye tracking has shown great promise with the high temporal resolution and low redundancy provided by the event camera. However, the diversity and abruptness of eye movement patterns, including blinking, fixating, saccades, and smooth pursuit, pose significant challenges for eye localization. To achieve a stable event-based eye-tracking system, this paper proposes a bidirectional long-term sequence modeling and time-varying state selection mechanism to fully utilize contextual temporal information in response to the variability of eye movements. Specifically, the MambaPupil network is proposed, which consists of the multi-layer convolutional encoder to extract features from the event representations, a bidirectional Gated Recurrent Unit (GRU), and a Linear Time-Varying State Space Module (LTV-SSM), to selectively capture contextual correlation from the forward and backward temporal relationship. Furthermore, the Bina-rep is utilized as a compact event representation, and the tailor-made data augmentation, called as Event-Cutout, is proposed to enhance the model's robustness by applying spatial random masking to the event image. The evaluation on the ThreeET-plus benchmark shows the superior performance of the MambaPupil, which secured the 1st place in CVPR'2024 AIS Event-based Eye Tracking challenge.
comment: Accepted by CVPR 2024 Workshop (AIS: Vision, Graphics and AI for Streaming), top solution of challenge Event-based Eye Tracking, see https://www.kaggle.com/competitions/event-based-eye-tracking-ais2024
☆ MaskCD: A Remote Sensing Change Detection Network Based on Mask Classification
Change detection (CD) from remote sensing (RS) images using deep learning has been widely investigated in the literature. It is typically regarded as a pixel-wise labeling task that aims to classify each pixel as changed or unchanged. Although per-pixel classification networks in encoder-decoder structures have shown dominance, they still suffer from imprecise boundaries and incomplete object delineation at various scenes. For high-resolution RS images, partly or totally changed objects are more worthy of attention rather than a single pixel. Therefore, we revisit the CD task from the mask prediction and classification perspective and propose MaskCD to detect changed areas by adaptively generating categorized masks from input image pairs. Specifically, it utilizes a cross-level change representation perceiver (CLCRP) to learn multiscale change-aware representations and capture spatiotemporal relations from encoded features by exploiting deformable multihead self-attention (DeformMHSA). Subsequently, a masked-attention-based detection transformers (MA-DETR) decoder is developed to accurately locate and identify changed objects based on masked attention and self-attention mechanisms. It reconstructs the desired changed objects by decoding the pixel-wise representations into learnable mask proposals and making final predictions from these candidates. Experimental results on five benchmark datasets demonstrate the proposed approach outperforms other state-of-the-art models. Codes and pretrained models are available online (https://github.com/EricYu97/MaskCD).
☆ PureForest: A Large-scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$^2$ across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
comment: 14 pages | 5 figures | Dataset is available at http://huggingface.co/datasets/IGNF/PureForest
☆ MIDGET: Music Conditioned 3D Dance Generation
In this paper, we introduce a MusIc conditioned 3D Dance GEneraTion model, named MIDGET based on Dance motion Vector Quantised Variational AutoEncoder (VQ-VAE) model and Motion Generative Pre-Training (GPT) model to generate vibrant and highquality dances that match the music rhythm. To tackle challenges in the field, we introduce three new components: 1) a pre-trained memory codebook based on the Motion VQ-VAE model to store different human pose codes, 2) employing Motion GPT model to generate pose codes with music and motion Encoders, 3) a simple framework for music feature extraction. We compare with existing state-of-the-art models and perform ablation experiments on AIST++, the largest publicly available music-dance dataset. Experiments demonstrate that our proposed framework achieves state-of-the-art performance on motion quality and its alignment with the music.
comment: 12 pages, 6 figures Published in AI 2023: Advances in Artificial Intelligence
☆ Improving the perception of visual fiducial markers in the field using Adaptive Active Exposure Control
Accurate localization is fundamental for autonomous underwater vehicles (AUVs) to carry out precise tasks, such as manipulation and construction. Vision-based solutions using fiducial marker are promising, but extremely challenging underwater because of harsh lighting condition underwater. This paper introduces a gradient-based active camera exposure control method to tackle sharp lighting variations during image acquisition, which can establish better foundation for subsequent image enhancement procedures. Considering a typical scenario for underwater operations where visual tags are used, we proposed several experiments comparing our method with other state-of-the-art exposure control method including Active Exposure Control (AEC) and Gradient-based Exposure Control (GEC). Results show a significant improvement in the accuracy of robot localization. This method is an important component that can be used in visual-based state estimation pipeline to improve the overall localization accuracy.
comment: Paper accepted by ISER 2023
☆ Data-free Knowledge Distillation for Fine-grained Visual Categorization
Data-free knowledge distillation (DFKD) is a promising approach for addressing issues related to model compression, security privacy, and transmission restrictions. Although the existing methods exploiting DFKD have achieved inspiring achievements in coarse-grained classification, in practical applications involving fine-grained classification tasks that require more detailed distinctions between similar categories, sub-optimal results are obtained. To address this issue, we propose an approach called DFKD-FGVC that extends DFKD to fine-grained visual categorization~(FGVC) tasks. Our approach utilizes an adversarial distillation framework with attention generator, mixed high-order attention distillation, and semantic feature contrast learning. Specifically, we introduce a spatial-wise attention mechanism to the generator to synthesize fine-grained images with more details of discriminative parts. We also utilize the mixed high-order attention mechanism to capture complex interactions among parts and the subtle differences among discriminative features of the fine-grained categories, paying attention to both local features and semantic context relationships. Moreover, we leverage the teacher and student models of the distillation framework to contrast high-level semantic feature maps in the hyperspace, comparing variances of different categories. We evaluate our approach on three widely-used FGVC benchmarks (Aircraft, Cars196, and CUB200) and demonstrate its superior performance.
☆ MLS-Track: Multilevel Semantic Interaction in RMOT
The new trend in multi-object tracking task is to track objects of interest using natural language. However, the scarcity of paired prompt-instance data hinders its progress. To address this challenge, we propose a high-quality yet low-cost data generation method base on Unreal Engine 5 and construct a brand-new benchmark dataset, named Refer-UE-City, which primarily includes scenes from intersection surveillance videos, detailing the appearance and actions of people and vehicles. Specifically, it provides 14 videos with a total of 714 expressions, and is comparable in scale to the Refer-KITTI dataset. Additionally, we propose a multi-level semantic-guided multi-object framework called MLS-Track, where the interaction between the model and text is enhanced layer by layer through the introduction of Semantic Guidance Module (SGM) and Semantic Correlation Branch (SCB). Extensive experiments on Refer-UE-City and Refer-KITTI datasets demonstrate the effectiveness of our proposed framework and it achieves state-of-the-art performance. Code and datatsets will be available.
comment: 17 pages 8 figures
☆ Meta-Auxiliary Learning for Micro-Expression Recognition
Micro-expressions (MEs) are involuntary movements revealing people's hidden feelings, which has attracted numerous interests for its objectivity in emotion detection. However, despite its wide applications in various scenarios, micro-expression recognition (MER) remains a challenging problem in real life due to three reasons, including (i) data-level: lack of data and imbalanced classes, (ii) feature-level: subtle, rapid changing, and complex features of MEs, and (iii) decision-making-level: impact of individual differences. To address these issues, we propose a dual-branch meta-auxiliary learning method, called LightmanNet, for fast and robust micro-expression recognition. Specifically, LightmanNet learns general MER knowledge from limited data through a dual-branch bi-level optimization process: (i) In the first level, it obtains task-specific MER knowledge by learning in two branches, where the first branch is for learning MER features via primary MER tasks, while the other branch is for guiding the model obtain discriminative features via auxiliary tasks, i.e., image alignment between micro-expressions and macro-expressions since their resemblance in both spatial and temporal behavioral patterns. The two branches of learning jointly constrain the model of learning meaningful task-specific MER knowledge while avoiding learning noise or superficial connections between MEs and emotions that may damage its generalization ability. (ii) In the second level, LightmanNet further refines the learned task-specific knowledge, improving model generalization and efficiency. Extensive experiments on various benchmark datasets demonstrate the superior robustness and efficiency of LightmanNet.
comment: 10 pages, 7 figures, 3 tables
☆ Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering
Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs. Nevertheless, prevalent AVQA approaches are prone to overlearning dataset biases, resulting in poor robustness. Furthermore, current datasets may not provide a precise diagnostic for these methods. To tackle these challenges, firstly, we propose a novel dataset, \textit{MUSIC-AVQA-R}, crafted in two steps: rephrasing questions within the test split of a public dataset (\textit{MUSIC-AVQA}) and subsequently introducing distribution shifts to split questions. The former leads to a large, diverse test space, while the latter results in a comprehensive robustness evaluation on rare, frequent, and overall questions. Secondly, we propose a robust architecture that utilizes a multifaceted cycle collaborative debiasing strategy to overcome bias learning. Experimental results show that this architecture achieves state-of-the-art performance on both datasets, especially obtaining a significant improvement of 9.68\% on the proposed dataset. Extensive ablation experiments are conducted on these two datasets to validate the effectiveness of the debiasing strategy. Additionally, we highlight the limited robustness of existing multi-modal QA methods through the evaluation on our dataset.
comment: 16 pages, 9 figures,5 Tables
☆ What does CLIP know about peeling a banana? CVPR2024
Humans show an innate capability to identify tools to support specific actions. The association between objects parts and the actions they facilitate is usually named affordance. Being able to segment objects parts depending on the tasks they afford is crucial to enable intelligent robots to use objects of daily living. Traditional supervised learning methods for affordance segmentation require costly pixel-level annotations, while weakly supervised approaches, though less demanding, still rely on object-interaction examples and support a closed set of actions. These limitations hinder scalability, may introduce biases, and usually restrict models to a limited set of predefined actions. This paper proposes AffordanceCLIP, to overcome these limitations by leveraging the implicit affordance knowledge embedded within large pre-trained Vision-Language models like CLIP. We experimentally demonstrate that CLIP, although not explicitly trained for affordances detection, retains valuable information for the task. Our AffordanceCLIP achieves competitive zero-shot performance compared to methods with specialized training, while offering several advantages: i) it works with any action prompt, not just a predefined set; ii) it requires training only a small number of additional parameters compared to existing solutions and iii) eliminates the need for direct supervision on action-object pairs, opening new perspectives for functionality-based reasoning of models.
comment: Accepted to MAR Workshop at CVPR2024
☆ Curriculum Point Prompting for Weakly-Supervised Referring Image Segmentation CVPR 2024
Referring image segmentation (RIS) aims to precisely segment referents in images through corresponding natural language expressions, yet relying on cost-intensive mask annotations. Weakly supervised RIS thus learns from image-text pairs to pixel-level semantics, which is challenging for segmenting fine-grained masks. A natural approach to enhancing segmentation precision is to empower weakly supervised RIS with the image segmentation foundation model SAM. Nevertheless, we observe that simply integrating SAM yields limited benefits and can even lead to performance regression due to the inevitable noise issues and challenges in excessive focus on object parts. In this paper, we present an innovative framework, Point PrompTing (PPT), incorporated with the proposed multi-source curriculum learning strategy to address these challenges. Specifically, the core of PPT is a point generator that not only harnesses CLIP's text-image alignment capability and SAM's powerful mask generation ability but also generates negative point prompts to address the noisy and excessive focus issues inherently and effectively. In addition, we introduce a curriculum learning strategy with object-centric images to help PPT gradually learn from simpler yet precise semantic alignment to more complex RIS. Experiments demonstrate that our PPT significantly and consistently outperforms prior weakly supervised techniques on mIoU by 11.34%, 14.14%, and 6.97% across RefCOCO, RefCOCO+, and G-Ref, respectively.
comment: Accepted to CVPR 2024
☆ MultiPhys: Multi-Person Physics-aware 3D Motion Estimation
We introduce MultiPhys, a method designed for recovering multi-person motion from monocular videos. Our focus lies in capturing coherent spatial placement between pairs of individuals across varying degrees of engagement. MultiPhys, being physically aware, exhibits robustness to jittering and occlusions, and effectively eliminates penetration issues between the two individuals. We devise a pipeline in which the motion estimated by a kinematic-based method is fed into a physics simulator in an autoregressive manner. We introduce distinct components that enable our model to harness the simulator's properties without compromising the accuracy of the kinematic estimates. This results in final motion estimates that are both kinematically coherent and physically compliant. Extensive evaluations on three challenging datasets characterized by substantial inter-person interaction show that our method significantly reduces errors associated with penetration and foot skating, while performing competitively with the state-of-the-art on motion accuracy and smoothness. Results and code can be found on our project page (http://www.iri.upc.edu/people/nugrinovic/multiphys/).
☆ Tendency-driven Mutual Exclusivity for Weakly Supervised Incremental Semantic Segmentation
Weakly Incremental Learning for Semantic Segmentation (WILSS) leverages a pre-trained segmentation model to segment new classes using cost-effective and readily available image-level labels. A prevailing way to solve WILSS is the generation of seed areas for each new class, serving as a form of pixel-level supervision. However, a scenario usually arises where a pixel is concurrently predicted as an old class by the pre-trained segmentation model and a new class by the seed areas. Such a scenario becomes particularly problematic in WILSS, as the lack of pixel-level annotations on new classes makes it intractable to ascertain whether the pixel pertains to the new class or not. To surmount this issue, we propose an innovative, tendency-driven relationship of mutual exclusivity, meticulously tailored to govern the behavior of the seed areas and the predictions generated by the pre-trained segmentation model. This relationship stipulates that predictions for the new and old classes must not conflict whilst prioritizing the preservation of predictions for the old classes, which not only addresses the conflicting prediction issue but also effectively mitigates the inherent challenge of incremental learning - catastrophic forgetting. Furthermore, under the auspices of this tendency-driven mutual exclusivity relationship, we generate pseudo masks for the new classes, allowing for concurrent execution with model parameter updating via the resolution of a bi-level optimization problem. Extensive experiments substantiate the effectiveness of our framework, resulting in the establishment of new benchmarks and paving the way for further research in this field.
☆ MTGA: Multi-view Temporal Granularity aligned Aggregation for Event-based Lip-reading
Lip-reading is to utilize the visual information of the speaker's lip movements to recognize words and sentences. Existing event-based lip-reading solutions integrate different frame rate branches to learn spatio-temporal features of varying granularities. However, aggregating events into event frames inevitably leads to the loss of fine-grained temporal information within frames. To remedy this drawback, we propose a novel framework termed Multi-view Temporal Granularity aligned Aggregation (MTGA). Specifically, we first present a novel event representation method, namely time-segmented voxel graph list, where the most significant local voxels are temporally connected into a graph list. Then we design a spatio-temporal fusion module based on temporal granularity alignment, where the global spatial features extracted from event frames, together with the local relative spatial and temporal features contained in voxel graph list are effectively aligned and integrated. Finally, we design a temporal aggregation module that incorporates positional encoding, which enables the capture of local absolute spatial and global temporal information. Experiments demonstrate that our method outperforms both the event-based and video-based lip-reading counterparts. Our code will be publicly available.
☆ Device (In)Dependence of Deep Learning-based Image Age Approximation ICPR
The goal of temporal image forensic is to approximate the age of a digital image relative to images from the same device. Usually, this is based on traces left during the image acquisition pipeline. For example, several methods exist that exploit the presence of in-field sensor defects for this purpose. In addition to these 'classical' methods, there is also an approach in which a Convolutional Neural Network (CNN) is trained to approximate the image age. One advantage of a CNN is that it independently learns the age features used. This would make it possible to exploit other (different) age traces in addition to the known ones (i.e., in-field sensor defects). In a previous work, we have shown that the presence of strong in-field sensor defects is irrelevant for a CNN to predict the age class. Based on this observation, the question arises how device (in)dependent the learned features are. In this work, we empirically asses this by training a network on images from a single device and then apply the trained model to images from different devices. This evaluation is performed on 14 different devices, including 10 devices from the publicly available 'Northumbria Temporal Image Forensics' database. These 10 different devices are based on five different device pairs (i.e., with the identical camera model).
comment: This work was accepted and presented in: 2022 ICPR-Workshop on Artificial Intelligence for Multimedia Forensics and Disinformation Detection. Montreal, Quebec, Canada. However, due to a technical issue on the publishing companies' side, the work does not appear in the workshop proceedings
☆ ©Plug-in Authorization for Human Content Copyright Protection in Text-to-Image Model
This paper addresses the contentious issue of copyright infringement in images generated by text-to-image models, sparking debates among AI developers, content creators, and legal entities. State-of-the-art models create high-quality content without crediting original creators, causing concern in the artistic community. To mitigate this, we propose the \copyright Plug-in Authorization framework, introducing three operations: addition, extraction, and combination. Addition involves training a \copyright plug-in for specific copyright, facilitating proper credit attribution. Extraction allows creators to reclaim copyright from infringing models, and combination enables users to merge different \copyright plug-ins. These operations act as permits, incentivizing fair use and providing flexibility in authorization. We present innovative approaches,"Reverse LoRA" for extraction and "EasyMerge" for seamless combination. Experiments in artist-style replication and cartoon IP recreation demonstrate \copyright plug-ins' effectiveness, offering a valuable solution for human copyright protection in the age of generative AIs.
comment: 20 pages, 6 figures
☆ Not All Voxels Are Equal: Hardness-Aware Semantic Scene Completion with Self-Distillation CVPR2024
Semantic scene completion, also known as semantic occupancy prediction, can provide dense geometric and semantic information for autonomous vehicles, which attracts the increasing attention of both academia and industry. Unfortunately, existing methods usually formulate this task as a voxel-wise classification problem and treat each voxel equally in 3D space during training. As the hard voxels have not been paid enough attention, the performance in some challenging regions is limited. The 3D dense space typically contains a large number of empty voxels, which are easy to learn but require amounts of computation due to handling all the voxels uniformly for the existing models. Furthermore, the voxels in the boundary region are more challenging to differentiate than those in the interior. In this paper, we propose HASSC approach to train the semantic scene completion model with hardness-aware design. The global hardness from the network optimization process is defined for dynamical hard voxel selection. Then, the local hardness with geometric anisotropy is adopted for voxel-wise refinement. Besides, self-distillation strategy is introduced to make training process stable and consistent. Extensive experiments show that our HASSC scheme can effectively promote the accuracy of the baseline model without incurring the extra inference cost. Source code is available at: https://github.com/songw-zju/HASSC.
comment: Accepted by CVPR2024
☆ The devil is in the object boundary: towards annotation-free instance segmentation using Foundation Models ICLR2024
Foundation models, pre-trained on a large amount of data have demonstrated impressive zero-shot capabilities in various downstream tasks. However, in object detection and instance segmentation, two fundamental computer vision tasks heavily reliant on extensive human annotations, foundation models such as SAM and DINO struggle to achieve satisfactory performance. In this study, we reveal that the devil is in the object boundary, \textit{i.e.}, these foundation models fail to discern boundaries between individual objects. For the first time, we probe that CLIP, which has never accessed any instance-level annotations, can provide a highly beneficial and strong instance-level boundary prior in the clustering results of its particular intermediate layer. Following this surprising observation, we propose $\textbf{Zip}$ which $\textbf{Z}$ips up CL$\textbf{ip}$ and SAM in a novel classification-first-then-discovery pipeline, enabling annotation-free, complex-scene-capable, open-vocabulary object detection and instance segmentation. Our Zip significantly boosts SAM's mask AP on COCO dataset by 12.5% and establishes state-of-the-art performance in various settings, including training-free, self-training, and label-efficient finetuning. Furthermore, annotation-free Zip even achieves comparable performance to the best-performing open-vocabulary object detecters using base annotations. Code is released at https://github.com/ChengShiest/Zip-Your-CLIP
comment: ICLR2024, Code is released at https://github.com/ChengShiest/Zip-Your-CLIP
♻ ☆ NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields
Neural fields excel in computer vision and robotics due to their ability to understand the 3D visual world such as inferring semantics, geometry, and dynamics. Given the capabilities of neural fields in densely representing a 3D scene from 2D images, we ask the question: Can we scale their self-supervised pretraining, specifically using masked autoencoders, to generate effective 3D representations from posed RGB images. Owing to the astounding success of extending transformers to novel data modalities, we employ standard 3D Vision Transformers to suit the unique formulation of NeRFs. We leverage NeRF's volumetric grid as a dense input to the transformer, contrasting it with other 3D representations such as pointclouds where the information density can be uneven, and the representation is irregular. Due to the difficulty of applying masked autoencoders to an implicit representation, such as NeRF, we opt for extracting an explicit representation that canonicalizes scenes across domains by employing the camera trajectory for sampling. Our goal is made possible by masking random patches from NeRF's radiance and density grid and employing a standard 3D Swin Transformer to reconstruct the masked patches. In doing so, the model can learn the semantic and spatial structure of complete scenes. We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.6 million images. Once pretrained, the encoder is used for effective 3D transfer learning. Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks. Utilizing unlabeled posed 2D data for pretraining, NeRF-MAE significantly outperforms self-supervised 3D pretraining and NeRF scene understanding baselines on Front3D and ScanNet datasets with an absolute performance improvement of over 20% AP50 and 8% AP25 for 3D object detection.
comment: 29 pages, 13 figures. Project Page: https://nerf-mae.github.io/
♻ ☆ Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of \textbf{9.7}$\%$ within the Stanford Cars dataset and \textbf{12$\times$} clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at \url{https://github.com/xjtuYW/PNP.git}.
comment: 9 pages, 7 figures
♻ ☆ Low-rank tensor completion via tensor joint rank with logarithmic composite norm
Low-rank tensor completion (LRTC) aims to recover a complete low-rank tensor from incomplete observed tensor, attracting extensive attention in various practical applications such as image processing and computer vision. However, current methods often perform well only when there is a sufficient of observed information, and they perform poorly or may fail when the observed information is less than 5\%. In order to improve the utilization of observed information, a new method called the tensor joint rank with logarithmic composite norm (TJLC) method is proposed. This method simultaneously exploits two types of tensor low-rank structures, namely tensor Tucker rank and tubal rank, thereby enhancing the inherent correlations between known and missing elements. To address the challenge of applying two tensor ranks with significantly different directly to LRTC, a new tensor Logarithmic composite norm is further proposed. Subsequently, the TJLC model and algorithm for the LRTC problem are proposed. Additionally, theoretical convergence guarantees for the TJLC method are provided. Experiments on various real datasets demonstrate that the proposed method outperforms state-of-the-art methods significantly. Particularly, the proposed method achieves satisfactory recovery even when the observed information is as low as 1\%, and the recovery performance improves significantly as the observed information increases.
♻ ☆ Struggle with Adversarial Defense? Try Diffusion
Adversarial attacks induce misclassification by introducing subtle perturbations. Recently, diffusion models are applied to the image classifiers to improve adversarial robustness through adversarial training or by purifying adversarial noise. However, diffusion-based adversarial training often encounters convergence challenges and high computational expenses. Additionally, diffusion-based purification inevitably causes data shift and is deemed susceptible to stronger adaptive attacks. To tackle these issues, we propose the Truth Maximization Diffusion Classifier (TMDC), a generative Bayesian classifier that builds upon pre-trained diffusion models and the Bayesian theorem. Unlike data-driven classifiers, TMDC, guided by Bayesian principles, utilizes the conditional likelihood from diffusion models to determine the class probabilities of input images, thereby insulating against the influences of data shift and the limitations of adversarial training. Moreover, to enhance TMDC's resilience against more potent adversarial attacks, we propose an optimization strategy for diffusion classifiers. This strategy involves post-training the diffusion model on perturbed datasets with ground-truth labels as conditions, guiding the diffusion model to learn the data distribution and maximizing the likelihood under the ground-truth labels. The proposed method achieves state-of-the-art performance on the CIFAR10 dataset against heavy white-box attacks and strong adaptive attacks. Specifically, TMDC achieves robust accuracies of 82.81% against $l_{\infty}$ norm-bounded perturbations and 86.05% against $l_{2}$ norm-bounded perturbations, respectively, with $\epsilon=0.05$.
♻ ☆ A new dataset for measuring the performance of blood vessel segmentation methods under distribution shifts
Creating a dataset for training supervised machine learning algorithms can be a demanding task. This is especially true for medical image segmentation since one or more specialists are usually required for image annotation, and creating ground truth labels for just a single image can take up to several hours. In addition, it is paramount that the annotated samples represent well the different conditions that might affect the imaged tissues as well as possible changes in the image acquisition process. This can only be achieved by considering samples that are typical in the dataset as well as atypical, or even outlier, samples. We introduce VessMAP, a heterogeneous blood vessel segmentation dataset acquired by carefully sampling relevant images from a larger non-annotated dataset. A methodology was developed to select both prototypical and atypical samples from the base dataset, thus defining an assorted set of images that can be used for measuring the performance of segmentation algorithms on samples that are highly distinct from each other. To demonstrate the potential of the new dataset, we show that the validation performance of a neural network changes significantly depending on the splits used for training the network.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Can We Edit Multimodal Large Language Models? EMNLP 2023
In this paper, we focus on editing Multimodal Large Language Models (MLLMs). Compared to editing single-modal LLMs, multimodal model editing is more challenging, which demands a higher level of scrutiny and careful consideration in the editing process. To facilitate research in this area, we construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite of innovative metrics for evaluation. We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components for multimodal LLMs. Empirically, we notice that previous baselines can implement editing multimodal LLMs to some extent, but the effect is still barely satisfactory, indicating the potential difficulty of this task. We hope that our work can provide the NLP community with insights. Code and dataset are available in https://github.com/zjunlp/EasyEdit.
comment: EMNLP 2023. Add the Exact Match/Accuracy results of Reliability and T-Generality
♻ ☆ Exposing Image Splicing Traces in Scientific Publications via Uncertainty-guided Refinement
Recently, a surge in scientific publications suspected of image manipulation has led to numerous retractions, bringing the issue of image integrity into sharp focus. Although research on forensic detectors for image plagiarism and image synthesis exists, the detection of image splicing traces in scientific publications remains unexplored. Compared to image duplication and synthesis, image splicing detection is more challenging due to the lack of reference images and the typically small tampered areas. Furthermore, disruptive factors in scientific images, such as artifacts from digital compression, abnormal patterns, and noise from physical operations, present misleading features like splicing traces, significantly increasing the difficulty of this task. Moreover, the scarcity of high-quality datasets of spliced scientific images limits potential advancements. In this work, we propose an Uncertainty-guided Refinement Network (URN) to mitigate the impact of these disruptive factors. Our URN can explicitly suppress the propagation of unreliable information flow caused by disruptive factors between regions, thus obtaining robust splicing features. Additionally, the URN is designed to concentrate improvements in uncertain prediction areas during the decoding phase. We also construct a dataset for image splicing detection (SciSp) containing 1,290 spliced images. Compared to existing datasets, SciSp includes the largest number of spliced images and the most diverse sources. Comprehensive experiments conducted on three benchmark datasets demonstrate the superiority of our approach. We also validate the URN's generalisability in resisting cross-dataset domain shifts and its robustness against various post-processing techniques, including advanced deep-learning-based inpainting.
♻ ☆ State Space Models for Event Cameras CVPR 2024
Today, state-of-the-art deep neural networks that process event-camera data first convert a temporal window of events into dense, grid-like input representations. As such, they exhibit poor generalizability when deployed at higher inference frequencies (i.e., smaller temporal windows) than the ones they were trained on. We address this challenge by introducing state-space models (SSMs) with learnable timescale parameters to event-based vision. This design adapts to varying frequencies without the need to retrain the network at different frequencies. Additionally, we investigate two strategies to counteract aliasing effects when deploying the model at higher frequencies. We comprehensively evaluate our approach against existing methods based on RNN and Transformer architectures across various benchmarks, including Gen1 and 1 Mpx event camera datasets. Our results demonstrate that SSM-based models train 33% faster and also exhibit minimal performance degradation when tested at higher frequencies than the training input. Traditional RNN and Transformer models exhibit performance drops of more than 20 mAP, with SSMs having a drop of 3.76 mAP, highlighting the effectiveness of SSMs in event-based vision tasks.
comment: 18 pages, 5 figures, 6 tables, CVPR 2024 Camera Ready paper
♻ ☆ Reciprocal Attention Mixing Transformer for Lightweight Image Restoration CVPR 2024
Although many recent works have made advancements in the image restoration (IR) field, they often suffer from an excessive number of parameters. Another issue is that most Transformer-based IR methods focus only on either local or global features, leading to limited receptive fields or deficient parameter issues. To address these problems, we propose a lightweight IR network, Reciprocal Attention Mixing Transformer (RAMiT). It employs our proposed dimensional reciprocal attention mixing Transformer (D-RAMiT) blocks, which compute bi-dimensional (spatial and channel) self-attentions in parallel with different numbers of multi-heads. The bi-dimensional attentions help each other to complement their counterpart's drawbacks and are then mixed. Additionally, we introduce a hierarchical reciprocal attention mixing (H-RAMi) layer that compensates for pixel-level information losses and utilizes semantic information while maintaining an efficient hierarchical structure. Furthermore, we revisit and modify MobileNet V1 and V2 to attach efficient convolutions to our proposed components. The experimental results demonstrate that RAMiT achieves state-of-the-art performance on multiple lightweight IR tasks, including super-resolution, color denoising, grayscale denoising, low-light enhancement, and deraining. Codes are available at https://github.com/rami0205/RAMiT.
comment: CVPR 2024 Workshop - NTIRE. Codes are available at https://github.com/rami0205/RAMiT
♻ ☆ Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition
We address the computational barrier of deploying advanced deep learning segmentation models in clinical settings by studying the efficacy of network compression through tensor decomposition. We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy. We applied Tucker decomposition to the convolutional kernels of the TotalSegmentator (TS) model, an nnU-Net model trained on a comprehensive dataset for automatic segmentation of 117 anatomical structures. Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TS dataset, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation performance. The application of Tucker decomposition to the TS model substantially reduced the model parameters and FLOPs across various compression rates, with limited loss in segmentation accuracy. We removed up to 88% of the model's parameters with no significant performance changes in the majority of classes after fine-tuning. Practical benefits varied across different graphics processing unit (GPU) architectures, with more distinct speed-ups on less powerful hardware. Post-hoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially sacrificing accuracy. This approach enables the broader adoption of advanced deep learning technologies in clinical practice, offering a way to navigate the constraints of hardware capabilities.
♻ ☆ Efficiently Adversarial Examples Generation for Visual-Language Models under Targeted Transfer Scenarios using Diffusion Models
Targeted transfer-based attacks involving adversarial examples pose a significant threat to large visual-language models (VLMs). However, the state-of-the-art (SOTA) transfer-based attacks incur high costs due to excessive iteration counts. Furthermore, the generated adversarial examples exhibit pronounced adversarial noise and demonstrate limited efficacy in evading defense methods such as DiffPure. To address these issues, inspired by score matching, we introduce AdvDiffVLM, which utilizes diffusion models to generate natural, unrestricted adversarial examples. Specifically, AdvDiffVLM employs Adaptive Ensemble Gradient Estimation to modify the score during the diffusion model's reverse generation process, ensuring the adversarial examples produced contain natural adversarial semantics and thus possess enhanced transferability. Simultaneously, to enhance the quality of adversarial examples further, we employ the GradCAM-guided Mask method to disperse adversarial semantics throughout the image, rather than concentrating them in a specific area. Experimental results demonstrate that our method achieves a speedup ranging from 10X to 30X compared to existing transfer-based attack methods, while maintaining superior quality of adversarial examples. Additionally, the generated adversarial examples possess strong transferability and exhibit increased robustness against adversarial defense methods. Notably, AdvDiffVLM can successfully attack commercial VLMs, including GPT-4V, in a black-box manner.
♻ ☆ Multi-Level Aggregation and Recursive Alignment Architecture for Efficient Parallel Inference Segmentation Network
Real-time semantic segmentation is a crucial research for real-world applications. However, many methods lay particular emphasis on reducing the computational complexity and model size, while largely sacrificing the accuracy. To tackle this problem, we propose a parallel inference network customized for semantic segmentation tasks to achieve a good trade-off between speed and accuracy. We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy. Specifically, we first design a dual-pyramidal path architecture (Multi-level Feature Aggregation Module, MFAM) to aggregate multi-level features from the encoder to each scale, providing hierarchical clues for subsequent spatial alignment and corresponding in-network inference. Then, we build Recursive Alignment Module (RAM) by combining the flow-based alignment module with recursive upsampling architecture for accurate spatial alignment between multi-scale feature maps with half the computational complexity of the straightforward alignment method. Finally, we perform independent parallel inference on the aligned features to obtain multi-scale scores, and adaptively fuse them through an attention-based Adaptive Scores Fusion Module (ASFM) so that the final prediction can favor objects of multiple scales. Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets. We also conducted systematic ablation studies to gain insight into our motivation and architectural design. Code is available at: https://github.com/Yanhua-Zhang/MFARANet.
comment: 15 pages, 9 figures and 12 Tables. Manuscript completed on April 30, 2022
♻ ☆ REF$^2$-NeRF: Reflection and Refraction aware Neural Radiance Field
Recently, significant progress has been made in the study of methods for 3D reconstruction from multiple images using implicit neural representations, exemplified by the neural radiance field (NeRF) method. Such methods, which are based on volume rendering, can model various light phenomena, and various extended methods have been proposed to accommodate different scenes and situations. However, when handling scenes with multiple glass objects, e.g., objects in a glass showcase, modeling the target scene accurately has been challenging due to the presence of multiple reflection and refraction effects. Thus, this paper proposes a NeRF-based modeling method for scenes containing a glass case. In the proposed method, refraction and reflection are modeled using elements that are dependent and independent of the viewer's perspective. This approach allows us to estimate the surfaces where refraction occurs, i.e., glass surfaces, and enables the separation and modeling of both direct and reflected light components. The proposed method requires predetermined camera poses, but accurately estimating these poses in scenes with glass objects is difficult. Therefore, we used a robotic arm with an attached camera to acquire images with known poses. Compared to existing methods, the proposed method enables more accurate modeling of both glass refraction and the overall scene.
comment: 10 pages, 8 figures, 2 tables
♻ ☆ NeuRAD: Neural Rendering for Autonomous Driving
Neural radiance fields (NeRFs) have gained popularity in the autonomous driving (AD) community. Recent methods show NeRFs' potential for closed-loop simulation, enabling testing of AD systems, and as an advanced training data augmentation technique. However, existing methods often require long training times, dense semantic supervision, or lack generalizability. This, in turn, hinders the application of NeRFs for AD at scale. In this paper, we propose NeuRAD, a robust novel view synthesis method tailored to dynamic AD data. Our method features simple network design, extensive sensor modeling for both camera and lidar -- including rolling shutter, beam divergence and ray dropping -- and is applicable to multiple datasets out of the box. We verify its performance on five popular AD datasets, achieving state-of-the-art performance across the board. To encourage further development, we will openly release the NeuRAD source code. See https://github.com/georghess/NeuRAD .
♻ ☆ Back to Basics: Fast Denoising Iterative Algorithm
We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction. Our method is computationally efficient, does not require training or ground truth data, and can be applied in the presence of independent noise, as well as correlated (coherent) noise, where the noise level is unknown. We examine three study cases: natural image denoising in the presence of additive white Gaussian noise, Poisson-distributed image denoising, and speckle suppression in optical coherence tomography (OCT). Experimental results demonstrate that the proposed approach can effectively improve image quality, in challenging noise settings. Theoretical guarantees are provided for convergence stability.
♻ ☆ XIMAGENET-12: An Explainable AI Benchmark Dataset for Model Robustness Evaluation CVPR 2024
Despite the promising performance of existing visual models on public benchmarks, the critical assessment of their robustness for real-world applications remains an ongoing challenge. To bridge this gap, we propose an explainable visual dataset, XIMAGENET-12, to evaluate the robustness of visual models. XIMAGENET-12 consists of over 200K images with 15,410 manual semantic annotations. Specifically, we deliberately selected 12 categories from ImageNet, representing objects commonly encountered in practical life. To simulate real-world situations, we incorporated six diverse scenarios, such as overexposure, blurring, and color changes, etc. We further develop a quantitative criterion for robustness assessment, allowing for a nuanced understanding of how visual models perform under varying conditions, notably in relation to the background. We make the XIMAGENET-12 dataset and its corresponding code openly accessible at \url{https://sites.google.com/view/ximagenet-12/home}. We expect the introduction of the XIMAGENET-12 dataset will empower researchers to thoroughly evaluate the robustness of their visual models under challenging conditions.
comment: Paper accepted by Synthetic Data for Computer Vision Workshop @ IEEE CVPR 2024
♻ ☆ Unified Physical-Digital Attack Detection Challenge
Face Anti-Spoofing (FAS) is crucial to safeguard Face Recognition (FR) Systems. In real-world scenarios, FRs are confronted with both physical and digital attacks. However, existing algorithms often address only one type of attack at a time, which poses significant limitations in real-world scenarios where FR systems face hybrid physical-digital threats. To facilitate the research of Unified Attack Detection (UAD) algorithms, a large-scale UniAttackData dataset has been collected. UniAttackData is the largest public dataset for Unified Attack Detection, with a total of 28,706 videos, where each unique identity encompasses all advanced attack types. Based on this dataset, we organized a Unified Physical-Digital Face Attack Detection Challenge to boost the research in Unified Attack Detections. It attracted 136 teams for the development phase, with 13 qualifying for the final round. The results re-verified by the organizing team were used for the final ranking. This paper comprehensively reviews the challenge, detailing the dataset introduction, protocol definition, evaluation criteria, and a summary of published results. Finally, we focus on the detailed analysis of the highest-performing algorithms and offer potential directions for unified physical-digital attack detection inspired by this competition. Challenge Website: https://sites.google.com/view/face-anti-spoofing-challenge/welcome/challengecvpr2024.
comment: 11 pages, 10 figures
♻ ☆ Bridging Stereo Geometry and BEV Representation with Reliable Mutual Interaction for Semantic Scene Completion IJCAI2024
3D semantic scene completion (SSC) is an ill-posed perception task that requires inferring a dense 3D scene from limited observations. Previous camera-based methods struggle to predict accurate semantic scenes due to inherent geometric ambiguity and incomplete observations. In this paper, we resort to stereo matching technique and bird's-eye-view (BEV) representation learning to address such issues in SSC. Complementary to each other, stereo matching mitigates geometric ambiguity with epipolar constraint while BEV representation enhances the hallucination ability for invisible regions with global semantic context. However, due to the inherent representation gap between stereo geometry and BEV features, it is non-trivial to bridge them for dense prediction task of SSC. Therefore, we further develop a unified occupancy-based framework dubbed BRGScene, which effectively bridges these two representations with dense 3D volumes for reliable semantic scene completion. Specifically, we design a novel Mutual Interactive Ensemble (MIE) block for pixel-level reliable aggregation of stereo geometry and BEV features. Within the MIE block, a Bi-directional Reliable Interaction (BRI) module, enhanced with confidence re-weighting, is employed to encourage fine-grained interaction through mutual guidance. Besides, a Dual Volume Ensemble (DVE) module is introduced to facilitate complementary aggregation through channel-wise recalibration and multi-group voting. Our method outperforms all published camera-based methods on SemanticKITTI for semantic scene completion. Our code is available on \url{https://github.com/Arlo0o/StereoScene}.
comment: IJCAI2024
♻ ☆ Low-resolution Prior Equilibrium Network for CT Reconstruction
The unrolling method has been investigated for learning variational models in X-ray computed tomography. However, it has been observed that directly unrolling the regularization model through gradient descent does not produce satisfactory results. In this paper, we present a novel deep learning-based CT reconstruction model, where the low-resolution image is introduced to obtain an effective regularization term for improving the network`s robustness. Our approach involves constructing the backbone network architecture by algorithm unrolling that is realized using the deep equilibrium architecture. We theoretically discuss the convergence of the proposed low-resolution prior equilibrium model and provide the conditions to guarantee convergence. Experimental results on both sparse-view and limited-angle reconstruction problems are provided, demonstrating that our end-to-end low-resolution prior equilibrium model outperforms other state-of-the-art methods in terms of noise reduction, contrast-to-noise ratio, and preservation of edge details.
♻ ☆ Bootstrapping Autonomous Driving Radars with Self-Supervised Learning
The perception of autonomous vehicles using radars has attracted increased research interest due its ability to operate in fog and bad weather. However, training radar models is hindered by the cost and difficulty of annotating large-scale radar data. To overcome this bottleneck, we propose a self-supervised learning framework to leverage the large amount of unlabeled radar data to pre-train radar-only embeddings for self-driving perception tasks. The proposed method combines radar-to-radar and radar-to-vision contrastive losses to learn a general representation from unlabeled radar heatmaps paired with their corresponding camera images. When used for downstream object detection, we demonstrate that the proposed self-supervision framework can improve the accuracy of state-of-the-art supervised baselines by $5.8\%$ in mAP. Code is available at \url{https://github.com/yiduohao/Radical}.
comment: 12 pages, 5 figures, to be published in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024
♻ ☆ DualFluidNet: an Attention-based Dual-pipeline Network for FLuid Simulation
Fluid motion can be considered as a point cloud transformation when using the SPH method. Compared to traditional numerical analysis methods, using machine learning techniques to learn physics simulations can achieve near-accurate results, while significantly increasing efficiency. In this paper, we propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network, which employs a dual-pipeline architecture, seamlessly integrated with an Attention-based Feature Fusion Module. Unlike previous methods, which often make difficult trade-offs between global fluid control and physical law constraints, we find a way to achieve a better balance between these two crucial aspects with a well-designed dual-pipeline approach. Additionally, we design a Type-aware Input Module to adaptively recognize particles of different types and perform feature fusion afterward, such that fluid-solid coupling issues can be better dealt with. Furthermore, we propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes. The experiments demonstrate that our approach not only attains a quantitative enhancement in various metrics, surpassing the state-of-the-art methods but also signifies a qualitative leap in neural network-based simulation by faithfully adhering to the physical laws. Code and video demonstrations are available at https://github.com/chenyu-xjtu/DualFluidNet.
comment: 14 pages
♻ ☆ AesExpert: Towards Multi-modality Foundation Model for Image Aesthetics Perception
The highly abstract nature of image aesthetics perception (IAP) poses significant challenge for current multimodal large language models (MLLMs). The lack of human-annotated multi-modality aesthetic data further exacerbates this dilemma, resulting in MLLMs falling short of aesthetics perception capabilities. To address the above challenge, we first introduce a comprehensively annotated Aesthetic Multi-Modality Instruction Tuning (AesMMIT) dataset, which serves as the footstone for building multi-modality aesthetics foundation models. Specifically, to align MLLMs with human aesthetics perception, we construct a corpus-rich aesthetic critique database with 21,904 diverse-sourced images and 88K human natural language feedbacks, which are collected via progressive questions, ranging from coarse-grained aesthetic grades to fine-grained aesthetic descriptions. To ensure that MLLMs can handle diverse queries, we further prompt GPT to refine the aesthetic critiques and assemble the large-scale aesthetic instruction tuning dataset, i.e. AesMMIT, which consists of 409K multi-typed instructions to activate stronger aesthetic capabilities. Based on the AesMMIT database, we fine-tune the open-sourced general foundation models, achieving multi-modality Aesthetic Expert models, dubbed AesExpert. Extensive experiments demonstrate that the proposed AesExpert models deliver significantly better aesthetic perception performances than the state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision. Source data will be available at https://github.com/yipoh/AesExpert.
♻ ☆ FaceFilterSense: A Filter-Resistant Face Recognition and Facial Attribute Analysis Framework
With the advent of social media, fun selfie filters have come into tremendous mainstream use affecting the functioning of facial biometric systems as well as image recognition systems. These filters vary from beautification filters and Augmented Reality (AR)-based filters to filters that modify facial landmarks. Hence, there is a need to assess the impact of such filters on the performance of existing face recognition systems. The limitation associated with existing solutions is that these solutions focus more on the beautification filters. However, the current AR-based filters and filters which distort facial key points are in vogue recently and make the faces highly unrecognizable even to the naked eye. Also, the filters considered are mostly obsolete with limited variations. To mitigate these limitations, we aim to perform a holistic impact analysis of the latest filters and propose an user recognition model with the filtered images. We have utilized a benchmark dataset for baseline images, and applied the latest filters over them to generate a beautified/filtered dataset. Next, we have introduced a model FaceFilterNet for beautified user recognition. In this framework, we also utilize our model to comment on various attributes of the person including age, gender, and ethnicity. In addition, we have also presented a filter-wise impact analysis on face recognition, age estimation, gender, and ethnicity prediction. The proposed method affirms the efficacy of our dataset with an accuracy of 87.25% and an optimal accuracy for facial attribute analysis.
♻ ☆ Cross-view and Cross-pose Completion for 3D Human Understanding CVPR 2024
Human perception and understanding is a major domain of computer vision which, like many other vision subdomains recently, stands to gain from the use of large models pre-trained on large datasets. We hypothesize that the most common pre-training strategy of relying on general purpose, object-centric image datasets such as ImageNet, is limited by an important domain shift. On the other hand, collecting domain-specific ground truth such as 2D or 3D labels does not scale well. Therefore, we propose a pre-training approach based on self-supervised learning that works on human-centric data using only images. Our method uses pairs of images of humans: the first is partially masked and the model is trained to reconstruct the masked parts given the visible ones and a second image. It relies on both stereoscopic (cross-view) pairs, and temporal (cross-pose) pairs taken from videos, in order to learn priors about 3D as well as human motion. We pre-train a model for body-centric tasks and one for hand-centric tasks. With a generic transformer architecture, these models outperform existing self-supervised pre-training methods on a wide set of human-centric downstream tasks, and obtain state-of-the-art performance for instance when fine-tuning for model-based and model-free human mesh recovery.
comment: CVPR 2024
♻ ☆ Predicting and Enhancing the Fairness of DNNs with the Curvature of Perceptual Manifolds CVPR 2023
To address the challenges of long-tailed classification, researchers have proposed several approaches to reduce model bias, most of which assume that classes with few samples are weak classes. However, recent studies have shown that tail classes are not always hard to learn, and model bias has been observed on sample-balanced datasets, suggesting the existence of other factors that affect model bias. In this work, we first establish a geometric perspective for analyzing model fairness and then systematically propose a series of geometric measurements for perceptual manifolds in deep neural networks. Subsequently, we comprehensively explore the effect of the geometric characteristics of perceptual manifolds on classification difficulty and how learning shapes the geometric characteristics of perceptual manifolds. An unanticipated finding is that the correlation between the class accuracy and the separation degree of perceptual manifolds gradually decreases during training, while the negative correlation with the curvature gradually increases, implying that curvature imbalance leads to model bias.Building upon these observations, we propose curvature regularization to facilitate the model to learn curvature-balanced and flatter perceptual manifolds. Evaluations on multiple long-tailed and non-long-tailed datasets show the excellent performance and exciting generality of our approach, especially in achieving significant performance improvements based on current state-of-the-art techniques. Our work opens up a geometric analysis perspective on model bias and reminds researchers to pay attention to model bias on non-long-tailed and even sample-balanced datasets.
comment: 17pages, Accepted by CVPR 2023, Submitted to TPAMI
♻ ☆ MARformer: An Efficient Metal Artifact Reduction Transformer for Dental CBCT Images
Cone Beam Computed Tomography (CBCT) plays a key role in dental diagnosis and surgery. However, the metal teeth implants could bring annoying metal artifacts during the CBCT imaging process, interfering diagnosis and downstream processing such as tooth segmentation. In this paper, we develop an efficient Transformer to perform metal artifacts reduction (MAR) from dental CBCT images. The proposed MAR Transformer (MARformer) reduces computation complexity in the multihead self-attention by a new Dimension-Reduced Self-Attention (DRSA) module, based on that the CBCT images have globally similar structure. A Patch-wise Perceptive Feed Forward Network (P2FFN) is also proposed to perceive local image information for fine-grained restoration. Experimental results on CBCT images with synthetic and real-world metal artifacts show that our MARformer is efficient and outperforms previous MAR methods and two restoration Transformers.
comment: under consideration of Computer Vision and Image Understanding journal
♻ ☆ PDE-CNNs: Axiomatic Derivations and Applications
PDE-based Group Convolutional Neural Networks (PDE-G-CNNs) utilize solvers of geometrically meaningful evolution PDEs as substitutes for the conventional components in G-CNNs. PDE-G-CNNs offer several key benefits all at once: fewer parameters, inherent equivariance, better performance, data efficiency, and geometric interpretability. In this article we focus on Euclidean equivariant PDE-G-CNNs where the feature maps are two dimensional throughout. We call this variant of the framework a PDE-CNN. From a machine learning perspective, we list several practically desirable axioms and derive from these which PDEs should be used in a PDE-CNN. Here our approach to geometric learning via PDEs is inspired by the axioms of classical linear and morphological scale-space theory, which we generalize by introducing semifield-valued signals. Furthermore, we experimentally confirm for small networks that PDE-CNNs offer fewer parameters, increased performance, and better data efficiency when compared to CNNs. We also investigate what effect the use of different semifields has on the performance of the models.
♻ ☆ Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation
In this paper, we first assess and harness various Vision Foundation Models (VFMs) in the context of Domain Generalized Semantic Segmentation (DGSS). Driven by the motivation that Leveraging Stronger pre-trained models and Fewer trainable parameters for Superior generalizability, we introduce a robust fine-tuning approach, namely Rein, to parameter-efficiently harness VFMs for DGSS. Built upon a set of trainable tokens, each linked to distinct instances, Rein precisely refines and forwards the feature maps from each layer to the next layer within the backbone. This process produces diverse refinements for different categories within a single image. With fewer trainable parameters, Rein efficiently fine-tunes VFMs for DGSS tasks, surprisingly surpassing full parameter fine-tuning. Extensive experiments across various settings demonstrate that Rein significantly outperforms state-of-the-art methods. Remarkably, with just an extra 1% of trainable parameters within the frozen backbone, Rein achieves a mIoU of 78.4% on the Cityscapes, without accessing any real urban-scene datasets.Code is available at https://github.com/w1oves/Rein.git.
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: minor fixes/rephrasing
♻ ☆ JointViT: Modeling Oxygen Saturation Levels with Joint Supervision on Long-Tailed OCTA
The oxygen saturation level in the blood (SaO2) is crucial for health, particularly in relation to sleep-related breathing disorders. However, continuous monitoring of SaO2 is time-consuming and highly variable depending on patients' conditions. Recently, optical coherence tomography angiography (OCTA) has shown promising development in rapidly and effectively screening eye-related lesions, offering the potential for diagnosing sleep-related disorders. To bridge this gap, our paper presents three key contributions. Firstly, we propose JointViT, a novel model based on the Vision Transformer architecture, incorporating a joint loss function for supervision. Secondly, we introduce a balancing augmentation technique during data preprocessing to improve the model's performance, particularly on the long-tail distribution within the OCTA dataset. Lastly, through comprehensive experiments on the OCTA dataset, our proposed method significantly outperforms other state-of-the-art methods, achieving improvements of up to 12.28% in overall accuracy. This advancement lays the groundwork for the future utilization of OCTA in diagnosing sleep-related disorders. See project website https://steve-zeyu-zhang.github.io/JointViT
♻ ☆ Quantifying and Enhancing Multi-modal Robustness with Modality Preference ICLR 2024
Multi-modal models have shown a promising capability to effectively integrate information from various sources, yet meanwhile, they are found vulnerable to pervasive perturbations, such as uni-modal attacks and missing conditions. To counter these perturbations, robust multi-modal representations are highly expected, which are positioned well away from the discriminative multi-modal decision boundary. In this paper, different from conventional empirical studies, we focus on a commonly used joint multi-modal framework and theoretically discover that larger uni-modal representation margins and more reliable integration for modalities are essential components for achieving higher robustness. This discovery can further explain the limitation of multi-modal robustness and the phenomenon that multi-modal models are often vulnerable to attacks on the specific modality. Moreover, our analysis reveals how the widespread issue, that the model has different preferences for modalities, limits the multi-modal robustness by influencing the essential components and could lead to attacks on the specific modality highly effective. Inspired by our theoretical finding, we introduce a training procedure called Certifiable Robust Multi-modal Training (CRMT), which can alleviate this influence from modality preference and explicitly regulate essential components to significantly improve robustness in a certifiable manner. Our method demonstrates substantial improvements in performance and robustness compared with existing methods. Furthermore, our training procedure can be easily extended to enhance other robust training strategies, highlighting its credibility and flexibility.
comment: Accepted to ICLR 2024
♻ ☆ Relaxed forced choice improves performance of visual quality assessment methods
In image quality assessment, a collective visual quality score for an image or video is obtained from the individual ratings of many subjects. One commonly used format for these experiments is the two-alternative forced choice method. Two stimuli with the same content but differing visual quality are presented sequentially or side-by-side. Subjects are asked to select the one of better quality, and when uncertain, they are required to guess. The relaxed alternative forced choice format aims to reduce the cognitive load and the noise in the responses due to the guessing by providing a third response option, namely, ``not sure''. This work presents a large and comprehensive crowdsourcing experiment to compare these two response formats: the one with the ``not sure'' option and the one without it. To provide unambiguous ground truth for quality evaluation, subjects were shown pairs of images with differing numbers of dots and asked each time to choose the one with more dots. Our crowdsourcing study involved 254 participants and was conducted using a within-subject design. Each participant was asked to respond to 40 pair comparisons with and without the ``not sure'' response option and completed a questionnaire to evaluate their cognitive load for each testing condition. The experimental results show that the inclusion of the ``not sure'' response option in the forced choice method reduced mental load and led to models with better data fit and correspondence to ground truth. We also tested for the equivalence of the models and found that they were different. The dataset is available at http://database.mmsp-kn.de/cogvqa-database.html.
comment: 6 pages, 3 figures, accepted at the 2023 15th International Conference on Quality of Multimedia Experience (QoMEX). Database is publicly accessible at http://database.mmsp-kn.de/cogvqa-database.html
♻ ☆ Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations
Estimating building footprint maps from geospatial data is of paramount importance in urban planning, development, disaster management, and various other applications. Deep learning methodologies have gained prominence in building segmentation maps, offering the promise of precise footprint extraction without extensive post-processing. However, these methods face challenges in generalization and label efficiency, particularly in remote sensing, where obtaining accurate labels can be both expensive and time-consuming. To address these challenges, we propose terrain-aware self-supervised learning, tailored to remote sensing, using digital elevation models from LiDAR data. We propose to learn a model to differentiate between bare Earth and superimposed structures enabling the network to implicitly learn domain-relevant features without the need for extensive pixel-level annotations. We test the effectiveness of our approach by evaluating building segmentation performance on test datasets with varying label fractions. Remarkably, with only 1% of the labels (equivalent to 25 labeled examples), our method improves over ImageNet pre-training, showing the advantage of leveraging unlabeled data for feature extraction in the domain of remote sensing. The performance improvement is more pronounced in few-shot scenarios and gradually closes the gap with ImageNet pre-training as the label fraction increases. We test on a dataset characterized by substantial distribution shifts and labeling errors to demonstrate the generalizability of our approach. When compared to other baselines, including ImageNet pretraining and more complex architectures, our approach consistently performs better, demonstrating the efficiency and effectiveness of self-supervised terrain-aware feature learning.
♻ ☆ Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent
A multimodal AI agent is characterized by its ability to process and learn from various types of data, including natural language, visual, and audio inputs, to inform its actions. Despite advancements in large language models that incorporate visual data, such as GPT-4V, effectively translating image-based data into actionable outcomes for AI agents continues to be challenging. In this paper, we introduce a multimodal model that incorporates the concept of functional token specifically designed for AI agent applications. To ensure compatibility with edge devices, our model is optimized to a compact size of less than 1B parameters. Like GPT-4, our model can process both English and Chinese. We demonstrate that this model is capable of operating efficiently on a wide range of edge devices, including as constrained as a Raspberry Pi.
Information Retrieval 5
☆ Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
As AI systems enter into a growing number of societal domains, these systems increasingly shape and are shaped by user preferences, opinions, and behaviors. However, the design of AI systems rarely accounts for how AI and users shape one another. In this position paper, we argue for the development of formal interaction models which mathematically specify how AI and users shape one another. Formal interaction models can be leveraged to (1) specify interactions for implementation, (2) monitor interactions through empirical analysis, (3) anticipate societal impacts via counterfactual analysis, and (4) control societal impacts via interventions. The design space of formal interaction models is vast, and model design requires careful consideration of factors such as style, granularity, mathematical complexity, and measurability. Using content recommender systems as a case study, we critically examine the nascent literature of formal interaction models with respect to these use-cases and design axes. More broadly, we call for the community to leverage formal interaction models when designing, evaluating, or auditing any AI system which interacts with users.
☆ When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes NAACL
We present FastFit, a method, and a Python package design to provide fast and accurate few-shot classification, especially for scenarios with many semantically similar classes. FastFit utilizes a novel approach integrating batch contrastive learning and token-level similarity score. Compared to existing few-shot learning packages, such as SetFit, Transformers, or few-shot prompting of large language models via API calls, FastFit significantly improves multiclass classification performance in speed and accuracy across FewMany, our newly curated English benchmark, and Multilingual datasets. FastFit demonstrates a 3-20x improvement in training speed, completing training in just a few seconds. The FastFit package is now available on GitHub and PyPi, presenting a user-friendly solution for NLP practitioners.
comment: Accepted to NAACL
☆ iRAG: An Incremental Retrieval Augmented Generation System for Videos
Retrieval augmented generation (RAG) systems combine the strengths of language generation and information retrieval to power many real-world applications like chatbots. Use of RAG for combined understanding of multimodal data such as text, images and videos is appealing but two critical limitations exist: one-time, upfront capture of all content in large multimodal data as text descriptions entails high processing times, and not all information in the rich multimodal data is typically in the text descriptions. Since the user queries are not known apriori, developing a system for multimodal to text conversion and interactive querying of multimodal data is challenging. To address these limitations, we propose iRAG, which augments RAG with a novel incremental workflow to enable interactive querying of large corpus of multimodal data. Unlike traditional RAG, iRAG quickly indexes large repositories of multimodal data, and in the incremental workflow, it uses the index to opportunistically extract more details from select portions of the multimodal data to retrieve context relevant to an interactive user query. Such an incremental workflow avoids long multimodal to text conversion times, overcomes information loss issues by doing on-demand query-specific extraction of details in multimodal data, and ensures high quality of responses to interactive user queries that are often not known apriori. To the best of our knowledge, iRAG is the first system to augment RAG with an incremental workflow to support efficient interactive querying of large, real-world multimodal data. Experimental results on real-world long videos demonstrate 23x to 25x faster video to text ingestion, while ensuring that quality of responses to interactive user queries is comparable to responses from a traditional RAG where all video data is converted to text upfront before any querying.
☆ De-DSI: Decentralised Differentiable Search Index
This study introduces De-DSI, a novel framework that fuses large language models (LLMs) with genuine decentralization for information retrieval, particularly employing the differentiable search index (DSI) concept in a decentralized setting. Focused on efficiently connecting novel user queries with document identifiers without direct document access, De-DSI operates solely on query-docid pairs. To enhance scalability, an ensemble of DSI models is introduced, where the dataset is partitioned into smaller shards for individual model training. This approach not only maintains accuracy by reducing the number of data each model needs to handle but also facilitates scalability by aggregating outcomes from multiple models. This aggregation uses a beam search to identify top docids and applies a softmax function for score normalization, selecting documents with the highest scores for retrieval. The decentralized implementation demonstrates that retrieval success is comparable to centralized methods, with the added benefit of the possibility of distributing computational complexity across the network. This setup also allows for the retrieval of multimedia items through magnet links, eliminating the need for platforms or intermediaries.
♻ ☆ InstructIE: A Bilingual Instruction-based Information Extraction Dataset
Large language models can perform well on general natural language tasks, but their effectiveness is still not optimal for information extraction. Recent works indicate that the main reason lies in the lack of extensive data on information extraction instructions. Note that the existing datasets on information extraction instructions not only have limited coverage but also involve high construction costs. To address this issue, we introduce InstructIE, a bilingual instruction-based information extraction dataset, which covers 12 diverse domains. Specifically, we propose KG2Instruction, a framework specifically for the automatic generation of such datasets. Experimental results demonstrate that large language models trained with InstructIE can not only obtain better information extraction capabilities but also enhance zero-shot performance compared with baselines.
comment: Work in progress; project homepage: https://www.zjukg.org/project/InstructIE/ dataset: https://huggingface.co/datasets/zjunlp/InstructIE
Machine Learning 90
☆ On the Content Bias in Fréchet Video Distance CVPR 2024
Fr\'echet Video Distance (FVD), a prominent metric for evaluating video generation models, is known to conflict with human perception occasionally. In this paper, we aim to explore the extent of FVD's bias toward per-frame quality over temporal realism and identify its sources. We first quantify the FVD's sensitivity to the temporal axis by decoupling the frame and motion quality and find that the FVD increases only slightly with large temporal corruption. We then analyze the generated videos and show that via careful sampling from a large set of generated videos that do not contain motions, one can drastically decrease FVD without improving the temporal quality. Both studies suggest FVD's bias towards the quality of individual frames. We further observe that the bias can be attributed to the features extracted from a supervised video classifier trained on the content-biased dataset. We show that FVD with features extracted from the recent large-scale self-supervised video models is less biased toward image quality. Finally, we revisit a few real-world examples to validate our hypothesis.
comment: CVPR 2024. Project webpage: https://content-debiased-fvd.github.io/
☆ SOHES: Self-supervised Open-world Hierarchical Entity Segmentation ICLR 2024
Open-world entity segmentation, as an emerging computer vision task, aims at segmenting entities in images without being restricted by pre-defined classes, offering impressive generalization capabilities on unseen images and concepts. Despite its promise, existing entity segmentation methods like Segment Anything Model (SAM) rely heavily on costly expert annotators. This work presents Self-supervised Open-world Hierarchical Entity Segmentation (SOHES), a novel approach that eliminates the need for human annotations. SOHES operates in three phases: self-exploration, self-instruction, and self-correction. Given a pre-trained self-supervised representation, we produce abundant high-quality pseudo-labels through visual feature clustering. Then, we train a segmentation model on the pseudo-labels, and rectify the noises in pseudo-labels via a teacher-student mutual-learning procedure. Beyond segmenting entities, SOHES also captures their constituent parts, providing a hierarchical understanding of visual entities. Using raw images as the sole training data, our method achieves unprecedented performance in self-supervised open-world segmentation, marking a significant milestone towards high-quality open-world entity segmentation in the absence of human-annotated masks. Project page: https://SOHES.github.io.
comment: ICLR 2024
☆ 6Img-to-3D: Few-Image Large-Scale Outdoor Driving Scene Reconstruction
Current 3D reconstruction techniques struggle to infer unbounded scenes from a few images faithfully. Specifically, existing methods have high computational demands, require detailed pose information, and cannot reconstruct occluded regions reliably. We introduce 6Img-to-3D, an efficient, scalable transformer-based encoder-renderer method for single-shot image to 3D reconstruction. Our method outputs a 3D-consistent parameterized triplane from only six outward-facing input images for large-scale, unbounded outdoor driving scenarios. We take a step towards resolving existing shortcomings by combining contracted custom cross- and self-attention mechanisms for triplane parameterization, differentiable volume rendering, scene contraction, and image feature projection. We showcase that six surround-view vehicle images from a single timestamp without global pose information are enough to reconstruct 360$^{\circ}$ scenes during inference time, taking 395 ms. Our method allows, for example, rendering third-person images and birds-eye views. Our code is available at https://github.com/continental/6Img-to-3D, and more examples can be found at our website here https://6Img-to-3D.GitHub.io/.
comment: Joint first authorship. Project page: https://6Img-to-3D.GitHub.io/ Code https://github.com/continental/6Img-to-3D
☆ Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
The $k$-parity problem is a classical problem in computational complexity and algorithmic theory, serving as a key benchmark for understanding computational classes. In this paper, we solve the $k$-parity problem with stochastic gradient descent (SGD) on two-layer fully-connected neural networks. We demonstrate that SGD can efficiently solve the $k$-sparse parity problem on a $d$-dimensional hypercube ($k\le O(\sqrt{d})$) with a sample complexity of $\tilde{O}(d^{k-1})$ using $2^{\Theta(k)}$ neurons, thus matching the established $\Omega(d^{k})$ lower bounds of Statistical Query (SQ) models. Our theoretical analysis begins by constructing a good neural network capable of correctly solving the $k$-parity problem. We then demonstrate how a trained neural network with SGD can effectively approximate this good network, solving the $k$-parity problem with small statistical errors. Our theoretical results and findings are supported by empirical evidence, showcasing the efficiency and efficacy of our approach.
comment: 36 pages, 7 figures, 3 tables
☆ KDk: A Defense Mechanism Against Label Inference Attacks in Vertical Federated Learning
Vertical Federated Learning (VFL) is a category of Federated Learning in which models are trained collaboratively among parties with vertically partitioned data. Typically, in a VFL scenario, the labels of the samples are kept private from all the parties except for the aggregating server, that is the label owner. Nevertheless, recent works discovered that by exploiting gradient information returned by the server to bottom models, with the knowledge of only a small set of auxiliary labels on a very limited subset of training data points, an adversary can infer the private labels. These attacks are known as label inference attacks in VFL. In our work, we propose a novel framework called KDk, that combines Knowledge Distillation and k-anonymity to provide a defense mechanism against potential label inference attacks in a VFL scenario. Through an exhaustive experimental campaign we demonstrate that by applying our approach, the performance of the analyzed label inference attacks decreases consistently, even by more than 60%, maintaining the accuracy of the whole VFL almost unaltered.
☆ Gradient-Regularized Out-of-Distribution Detection ECCV
One of the challenges for neural networks in real-life applications is the overconfident errors these models make when the data is not from the original training distribution. Addressing this issue is known as Out-of-Distribution (OOD) detection. Many state-of-the-art OOD methods employ an auxiliary dataset as a surrogate for OOD data during training to achieve improved performance. However, these methods fail to fully exploit the local information embedded in the auxiliary dataset. In this work, we propose the idea of leveraging the information embedded in the gradient of the loss function during training to enable the network to not only learn a desired OOD score for each sample but also to exhibit similar behavior in a local neighborhood around each sample. We also develop a novel energy-based sampling method to allow the network to be exposed to more informative OOD samples during the training phase. This is especially important when the auxiliary dataset is large. We demonstrate the effectiveness of our method through extensive experiments on several OOD benchmarks, improving the existing state-of-the-art FPR95 by 4% on our ImageNet experiment. We further provide a theoretical analysis through the lens of certified robustness and Lipschitz analysis to showcase the theoretical foundation of our work. We will publicly release our code after the review process.
comment: Under review for the 18th European Conference on Computer Vision (ECCV) 2024
☆ Information theory unifies atomistic machine learning, uncertainty quantification, and materials thermodynamics
An accurate description of information is relevant for a range of problems in atomistic modeling, such as sampling methods, detecting rare events, analyzing datasets, or performing uncertainty quantification (UQ) in machine learning (ML)-driven simulations. Although individual methods have been proposed for each of these tasks, they lack a common theoretical background integrating their solutions. Here, we introduce an information theoretical framework that unifies predictions of phase transformations, kinetic events, dataset optimality, and model-free UQ from atomistic simulations, thus bridging materials modeling, ML, and statistical mechanics. We first demonstrate that, for a proposed representation, the information entropy of a distribution of atom-centered environments is a surrogate value for thermodynamic entropy. Using molecular dynamics (MD) simulations, we show that information entropy differences from trajectories can be used to build phase diagrams, identify rare events, and recover classical theories of nucleation. Building on these results, we use this general concept of entropy to quantify information in datasets for ML interatomic potentials (IPs), informing compression, explaining trends in testing errors, and evaluating the efficiency of active learning strategies. Finally, we propose a model-free UQ method for MLIPs using information entropy, showing it reliably detects extrapolation regimes, scales to millions of atoms, and goes beyond model errors. This method is made available as the package QUESTS: Quick Uncertainty and Entropy via STructural Similarity, providing a new unifying theory for data-driven atomistic modeling and combining efforts in ML, first-principles thermodynamics, and simulations.
☆ Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
As AI systems enter into a growing number of societal domains, these systems increasingly shape and are shaped by user preferences, opinions, and behaviors. However, the design of AI systems rarely accounts for how AI and users shape one another. In this position paper, we argue for the development of formal interaction models which mathematically specify how AI and users shape one another. Formal interaction models can be leveraged to (1) specify interactions for implementation, (2) monitor interactions through empirical analysis, (3) anticipate societal impacts via counterfactual analysis, and (4) control societal impacts via interventions. The design space of formal interaction models is vast, and model design requires careful consideration of factors such as style, granularity, mathematical complexity, and measurability. Using content recommender systems as a case study, we critically examine the nascent literature of formal interaction models with respect to these use-cases and design axes. More broadly, we call for the community to leverage formal interaction models when designing, evaluating, or auditing any AI system which interacts with users.
☆ When LLMs are Unfit Use FastFit: Fast and Effective Text Classification with Many Classes NAACL
We present FastFit, a method, and a Python package design to provide fast and accurate few-shot classification, especially for scenarios with many semantically similar classes. FastFit utilizes a novel approach integrating batch contrastive learning and token-level similarity score. Compared to existing few-shot learning packages, such as SetFit, Transformers, or few-shot prompting of large language models via API calls, FastFit significantly improves multiclass classification performance in speed and accuracy across FewMany, our newly curated English benchmark, and Multilingual datasets. FastFit demonstrates a 3-20x improvement in training speed, completing training in just a few seconds. The FastFit package is now available on GitHub and PyPi, presenting a user-friendly solution for NLP practitioners.
comment: Accepted to NAACL
Transformer tricks: Removing weights for skipless transformers
He and Hofmann (arXiv:2311.01906) detailed a skipless transformer without the V and P (post-attention projection) linear layers, which reduces the total number of weights. However, this scheme is only applicable to MHA (multi-head attention), but not for MQA (multi-query attention) and GQA (grouped-query attention). The latter schemes are used by many popular LLMs such as Llama 2, Mistral, Mixtral, PaLM, and Gemma. Therefore, this micro-paper proposes mathematically equivalent versions that are suitable for MQA and GQA. For example, removing Q and P from a skipless version of Mistral-7B would remove 15% of its weights (and thus reduce its compute and memory complexity). See arXiv:2402.13388 and https://github.com/OpenMachine-ai/transformer-tricks for code and more transformer tricks.
comment: 6 pages, 4 figures
☆ From $r$ to $Q^*$: Your Language Model is Secretly a Q-Function
Reinforcement Learning From Human Feedback (RLHF) has been a critical to the success of the latest generation of generative AI models. In response to the complex nature of the classical RLHF pipeline, direct alignment algorithms such as Direct Preference Optimization (DPO) have emerged as an alternative approach. Although DPO solves the same objective as the standard RLHF setup, there is a mismatch between the two approaches. Standard RLHF deploys reinforcement learning in a specific token-level MDP, while DPO is derived as a bandit problem in which the whole response of the model is treated as a single arm. In this work we rectify this difference, first we theoretically show that we can derive DPO in the token-level MDP as a general inverse Q-learning algorithm, which satisfies the Bellman equation. Using our theoretical results, we provide three concrete empirical insights. First, we show that because of its token level interpretation, DPO is able to perform some type of credit assignment. Next, we prove that under the token level formulation, classical search-based algorithms, such as MCTS, which have recently been applied to the language generation space, are equivalent to likelihood-based search on a DPO policy. Empirically we show that a simple beam search yields meaningful improvement over the base DPO policy. Finally, we show how the choice of reference policy causes implicit rewards to decline during training. We conclude by discussing applications of our work, including information elicitation in multi-tun dialogue, reasoning, agentic applications and end-to-end training of multi-model systems.
☆ Improving the interpretability of GNN predictions through conformal-based graph sparsification
Graph Neural Networks (GNNs) have achieved state-of-the-art performance in solving graph classification tasks. However, most GNN architectures aggregate information from all nodes and edges in a graph, regardless of their relevance to the task at hand, thus hindering the interpretability of their predictions. In contrast to prior work, in this paper we propose a GNN \emph{training} approach that jointly i) finds the most predictive subgraph by removing edges and/or nodes -- -\emph{without making assumptions about the subgraph structure} -- while ii) optimizing the performance of the graph classification task. To that end, we rely on reinforcement learning to solve the resulting bi-level optimization with a reward function based on conformal predictions to account for the current in-training uncertainty of the classifier. Our empirical results on nine different graph classification datasets show that our method competes in performance with baselines while relying on significantly sparser subgraphs, leading to more interpretable GNN-based predictions.
☆ Towards a Foundation Model for Partial Differential Equation: Multi-Operator Learning and Extrapolation
Foundation models, such as large language models, have demonstrated success in addressing various language and image processing tasks. In this work, we introduce a multi-modal foundation model for scientific problems, named PROSE-PDE. Our model, designed for bi-modality to bi-modality learning, is a multi-operator learning approach which can predict future states of spatiotemporal systems while concurrently learning the underlying governing equations of the physical system. Specifically, we focus on multi-operator learning by training distinct one-dimensional time-dependent nonlinear constant coefficient partial differential equations, with potential applications to many physical applications including physics, geology, and biology. More importantly, we provide three extrapolation studies to demonstrate that PROSE-PDE can generalize physical features through the robust training of multiple operators and that the proposed model can extrapolate to predict PDE solutions whose models or data were unseen during the training. Furthermore, we show through systematic numerical experiments that the utilization of the symbolic modality in our model effectively resolves the well-posedness problems with training multiple operators and thus enhances our model's predictive capabilities.
☆ Measuring Feature Dependency of Neural Networks by Collapsing Feature Dimensions in the Data Manifold
This paper introduces a new technique to measure the feature dependency of neural network models. The motivation is to better understand a model by querying whether it is using information from human-understandable features, e.g., anatomical shape, volume, or image texture. Our method is based on the principle that if a model is dependent on a feature, then removal of that feature should significantly harm its performance. A targeted feature is "removed" by collapsing the dimension in the data distribution that corresponds to that feature. We perform this by moving data points along the feature dimension to a baseline feature value while staying on the data manifold, as estimated by a deep generative model. Then we observe how the model's performance changes on the modified test data set, with the target feature dimension removed. We test our method on deep neural network models trained on synthetic image data with known ground truth, an Alzheimer's disease prediction task using MRI and hippocampus segmentations from the OASIS-3 dataset, and a cell nuclei classification task using the Lizard dataset.
comment: Accepted and will be pulished in International Symposium on Biomedical Imaging (ISBI) 2024
☆ Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach
In one calculation, adjoint sensitivity analysis provides the gradient of a quantity of interest with respect to all system's parameters. Conventionally, adjoint solvers need to be implemented by differentiating computational models, which can be a cumbersome task and is code-specific. To propose an adjoint solver that is not code-specific, we develop a data-driven strategy. We demonstrate its application on the computation of gradients of long-time averages of chaotic flows. First, we deploy a parameter-aware echo state network (ESN) to accurately forecast and simulate the dynamics of a dynamical system for a range of system's parameters. Second, we derive the adjoint of the parameter-aware ESN. Finally, we combine the parameter-aware ESN with its adjoint version to compute the sensitivities to the system parameters. We showcase the method on a prototypical chaotic system. Because adjoint sensitivities in chaotic regimes diverge for long integration times, we analyse the application of ensemble adjoint method to the ESN. We find that the adjoint sensitivities obtained from the ESN match closely with the original system. This work opens possibilities for sensitivity analysis without code-specific adjoint solvers.
☆ Guided Discrete Diffusion for Electronic Health Record Generation
Electronic health records (EHRs) are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research. Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases. To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs. While diffusion-based methods have recently demonstrated state-of-the-art performance in generating other data modalities and overcome the training instability and mode collapse issues that plague previous GAN-based approaches, their applications in EHR generation remain underexplored. The discrete nature of tabular medical code data in EHRs poses challenges for high-quality data generation, especially for continuous diffusion models. To this end, we introduce a novel tabular EHR generation method, EHR-D3PM, which enables both unconditional and conditional generation using the discrete diffusion model. Our experiments demonstrate that EHR-D3PM significantly outperforms existing generative baselines on comprehensive fidelity and utility metrics while maintaining less membership vulnerability risks. Furthermore, we show EHR-D3PM is effective as a data augmentation method and enhances performance on downstream tasks when combined with real data.
comment: 24 pages, 9 figures, 12 tables
☆ A Mean-Field Analysis of Neural Gradient Descent-Ascent: Applications to Functional Conditional Moment Equations
We study minimax optimization problems defined over infinite-dimensional function classes. In particular, we restrict the functions to the class of overparameterized two-layer neural networks and study (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural network. As an initial step, we consider the minimax optimization problem stemming from estimating a functional equation defined by conditional expectations via adversarial estimation, where the objective function is quadratic in the functional space. For this problem, we establish convergence under the mean-field regime by considering the continuous-time and infinite-width limit of the optimization dynamics. Under this regime, gradient descent-ascent corresponds to a Wasserstein gradient flow over the space of probability measures defined over the space of neural network parameters. We prove that the Wasserstein gradient flow converges globally to a stationary point of the minimax objective at a $\mathcal{O}(T^{-1} + \alpha^{-1} ) $ sublinear rate, and additionally finds the solution to the functional equation when the regularizer of the minimax objective is strongly convex. Here $T$ denotes the time and $\alpha$ is a scaling parameter of the neural network. In terms of representation learning, our results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $\mathcal{O}(\alpha^{-1})$, measured in terms of the Wasserstein distance. Finally, we apply our general results to concrete examples including policy evaluation, nonparametric instrumental variable regression, and asset pricing.
comment: 72 pages, submitted
☆ iRAG: An Incremental Retrieval Augmented Generation System for Videos
Retrieval augmented generation (RAG) systems combine the strengths of language generation and information retrieval to power many real-world applications like chatbots. Use of RAG for combined understanding of multimodal data such as text, images and videos is appealing but two critical limitations exist: one-time, upfront capture of all content in large multimodal data as text descriptions entails high processing times, and not all information in the rich multimodal data is typically in the text descriptions. Since the user queries are not known apriori, developing a system for multimodal to text conversion and interactive querying of multimodal data is challenging. To address these limitations, we propose iRAG, which augments RAG with a novel incremental workflow to enable interactive querying of large corpus of multimodal data. Unlike traditional RAG, iRAG quickly indexes large repositories of multimodal data, and in the incremental workflow, it uses the index to opportunistically extract more details from select portions of the multimodal data to retrieve context relevant to an interactive user query. Such an incremental workflow avoids long multimodal to text conversion times, overcomes information loss issues by doing on-demand query-specific extraction of details in multimodal data, and ensures high quality of responses to interactive user queries that are often not known apriori. To the best of our knowledge, iRAG is the first system to augment RAG with an incremental workflow to support efficient interactive querying of large, real-world multimodal data. Experimental results on real-world long videos demonstrate 23x to 25x faster video to text ingestion, while ensuring that quality of responses to interactive user queries is comparable to responses from a traditional RAG where all video data is converted to text upfront before any querying.
☆ ASID: Active Exploration for System Identification in Robotic Manipulation
Model-free control strategies such as reinforcement learning have shown the ability to learn control strategies without requiring an accurate model or simulator of the world. While this is appealing due to the lack of modeling requirements, such methods can be sample inefficient, making them impractical in many real-world domains. On the other hand, model-based control techniques leveraging accurate simulators can circumvent these challenges and use a large amount of cheap simulation data to learn controllers that can effectively transfer to the real world. The challenge with such model-based techniques is the requirement for an extremely accurate simulation, requiring both the specification of appropriate simulation assets and physical parameters. This requires considerable human effort to design for every environment being considered. In this work, we propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy that can be deployed in the real world. Our approach critically relies on utilizing an initial (possibly inaccurate) simulator to design effective exploration policies that, when deployed in the real world, collect high-quality data. We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks, and illustrate that only a small amount of real-world data can allow for effective sim-to-real transfer. Project website at https://weirdlabuw.github.io/asid
comment: Project website at https://weirdlabuw.github.io/asid
☆ Simultaneous Interpretation Corpus Construction by Large Language Models in Distant Language Pair
In Simultaneous Machine Translation (SiMT) systems, training with a simultaneous interpretation (SI) corpus is an effective method for achieving high-quality yet low-latency systems. However, it is very challenging to curate such a corpus due to limitations in the abilities of annotators, and hence, existing SI corpora are limited. Therefore, we propose a method to convert existing speech translation corpora into interpretation-style data, maintaining the original word order and preserving the entire source content using Large Language Models (LLM-SI-Corpus). We demonstrate that fine-tuning SiMT models in text-to-text and speech-to-text settings with the LLM-SI-Corpus reduces latencies while maintaining the same level of quality as the models trained with offline datasets. The LLM-SI-Corpus is available at \url{https://github.com/yusuke1997/LLM-SI-Corpus}.
comment: 23 pages, 9 figures
☆ floZ: Evidence estimation from posterior samples with normalizing flows
We propose a novel method (floZ), based on normalizing flows, for estimating the Bayesian evidence (and its numerical uncertainty) from a set of samples drawn from the unnormalized posterior distribution. We validate it on distributions whose evidence is known analytically, up to 15 parameter space dimensions, and compare with two state-of-the-art techniques for estimating the evidence: nested sampling (which computes the evidence as its main target) and a k-nearest-neighbors technique that produces evidence estimates from posterior samples. Provided representative samples from the target posterior are available, our method is more robust to posterior distributions with sharp features, especially in higher dimensions. It has wide applicability, e.g., to estimate the evidence from variational inference, Markov-chain Monte Carlo samples, or any other method that delivers samples from the unnormalized posterior density.
comment: 10 pages, 4 figures, 1 table
☆ Singular-limit analysis of gradient descent with noise injection
We study the limiting dynamics of a large class of noisy gradient descent systems in the overparameterized regime. In this regime the set of global minimizers of the loss is large, and when initialized in a neighbourhood of this zero-loss set a noisy gradient descent algorithm slowly evolves along this set. In some cases this slow evolution has been related to better generalisation properties. We characterize this evolution for the broad class of noisy gradient descent systems in the limit of small step size. Our results show that the structure of the noise affects not just the form of the limiting process, but also the time scale at which the evolution takes place. We apply the theory to Dropout, label noise and classical SGD (minibatching) noise, and show that these evolve on different two time scales. Classical SGD even yields a trivial evolution on both time scales, implying that additional noise is required for regularization. The results are inspired by the training of neural networks, but the theorems apply to noisy gradient descent of any loss that has a non-trivial zero-loss set.
☆ Debiased Distribution Compression
Modern compression methods can summarize a target distribution $\mathbb{P}$ more succinctly than i.i.d. sampling but require access to a low-bias input sequence like a Markov chain converging quickly to $\mathbb{P}$. We introduce a new suite of compression methods suitable for compression with biased input sequences. Given $n$ points targeting the wrong distribution and quadratic time, Stein Kernel Thinning (SKT) returns $\sqrt{n}$ equal-weighted points with $\widetilde{O}(n^{-1/2})$ maximum mean discrepancy (MMD) to $\mathbb {P}$. For larger-scale compression tasks, Low-rank SKT achieves the same feat in sub-quadratic time using an adaptive low-rank debiasing procedure that may be of independent interest. For downstream tasks that support simplex or constant-preserving weights, Stein Recombination and Stein Cholesky achieve even greater parsimony, matching the guarantees of SKT with as few as $\operatorname{poly-log}(n)$ weighted points. Underlying these advances are new guarantees for the quality of simplex-weighted coresets, the spectral decay of kernel matrices, and the covering numbers of Stein kernel Hilbert spaces. In our experiments, our techniques provide succinct and accurate posterior summaries while overcoming biases due to burn-in, approximate Markov chain Monte Carlo, and tempering.
☆ Investigating Guiding Information for Adaptive Collocation Point Sampling in PINNs CCS
Physics-informed neural networks (PINNs) provide a means of obtaining approximate solutions of partial differential equations and systems through the minimisation of an objective function which includes the evaluation of a residual function at a set of collocation points within the domain. The quality of a PINNs solution depends upon numerous parameters, including the number and distribution of these collocation points. In this paper we consider a number of strategies for selecting these points and investigate their impact on the overall accuracy of the method. In particular, we suggest that no single approach is likely to be ``optimal'' but we show how a number of important metrics can have an impact in improving the quality of the results obtained when using a fixed number of residual evaluations. We illustrate these approaches through the use of two benchmark test problems: Burgers' equation and the Allen-Cahn equation.
comment: 15 pages, 8 figures, 2 tables. Accepted for publication in the conference proceedings of the International Conference on Computational Science (ICCS) 2024
☆ FedEval-LLM: Federated Evaluation of Large Language Models on Downstream Tasks with Collective Wisdom
Federated Learning (FL) has emerged as a promising solution for collaborative training of large language models (LLMs). However, the integration of LLMs into FL introduces new challenges, particularly concerning the evaluation of LLMs. Traditional evaluation methods that rely on labeled test sets and similarity-based metrics cover only a subset of the acceptable answers, thereby failing to accurately reflect the performance of LLMs on generative tasks. Meanwhile, although automatic evaluation methods that leverage advanced LLMs present potential, they face critical risks of data leakage due to the need to transmit data to external servers and suboptimal performance on downstream tasks due to the lack of domain knowledge. To address these issues, we propose a Federated Evaluation framework of Large Language Models, named FedEval-LLM, that provides reliable performance measurements of LLMs on downstream tasks without the reliance on labeled test sets and external tools, thus ensuring strong privacy-preserving capability. FedEval-LLM leverages a consortium of personalized LLMs from participants as referees to provide domain knowledge and collective evaluation capability, thus aligning to the respective downstream tasks and mitigating uncertainties and biases associated with a single referee. Experimental results demonstrate a significant improvement in the evaluation capability of personalized evaluation models on downstream tasks. When applied to FL, these evaluation models exhibit strong agreement with human preference and RougeL-score on meticulously curated test sets. FedEval-LLM effectively overcomes the limitations of traditional metrics and the reliance on external services, making it a promising framework for the evaluation of LLMs within collaborative training scenarios.
comment: In Progress
☆ Physics-integrated generative modeling using attentive planar normalizing flow based variational autoencoder
Physics-integrated generative modeling is a class of hybrid or grey-box modeling in which we augment the the data-driven model with the physics knowledge governing the data distribution. The use of physics knowledge allows the generative model to produce output in a controlled way, so that the output, by construction, complies with the physical laws. It imparts improved generalization ability to extrapolate beyond the training distribution as well as improved interpretability because the model is partly grounded in firm domain knowledge. In this work, we aim to improve the fidelity of reconstruction and robustness to noise in the physics integrated generative model. To this end, we use variational-autoencoder as a generative model. To improve the reconstruction results of the decoder, we propose to learn the latent posterior distribution of both the physics as well as the trainable data-driven components using planar normalizng flow. Normalizng flow based posterior distribution harnesses the inherent dynamical structure of the data distribution, hence the learned model gets closer to the true underlying data distribution. To improve the robustness of generative model against noise injected in the model, we propose a modification in the encoder part of the normalizing flow based VAE. We designed the encoder to incorporate scaled dot product attention based contextual information in the noisy latent vector which will mitigate the adverse effect of noise in the latent vector and make the model more robust. We empirically evaluated our models on human locomotion dataset [33] and the results validate the efficacy of our proposed models in terms of improvement in reconstruction quality as well as robustness against noise injected in the model.
☆ Alleviating Catastrophic Forgetting in Facial Expression Recognition with Emotion-Centered Models
Facial expression recognition is a pivotal component in machine learning, facilitating various applications. However, convolutional neural networks (CNNs) are often plagued by catastrophic forgetting, impeding their adaptability. The proposed method, emotion-centered generative replay (ECgr), tackles this challenge by integrating synthetic images from generative adversarial networks. Moreover, ECgr incorporates a quality assurance algorithm to ensure the fidelity of generated images. This dual approach enables CNNs to retain past knowledge while learning new tasks, enhancing their performance in emotion recognition. The experimental results on four diverse facial expression datasets demonstrate that incorporating images generated by our pseudo-rehearsal method enhances training on the targeted dataset and the source dataset while making the CNN retain previously learned knowledge.
comment: 15 pages
☆ Food Portion Estimation via 3D Object Scaling
Image-based methods to analyze food images have alleviated the user burden and biases associated with traditional methods. However, accurate portion estimation remains a major challenge due to the loss of 3D information in the 2D representation of foods captured by smartphone cameras or wearable devices. In this paper, we propose a new framework to estimate both food volume and energy from 2D images by leveraging the power of 3D food models and physical reference in the eating scene. Our method estimates the pose of the camera and the food object in the input image and recreates the eating occasion by rendering an image of a 3D model of the food with the estimated poses. We also introduce a new dataset, SimpleFood45, which contains 2D images of 45 food items and associated annotations including food volume, weight, and energy. Our method achieves an average error of 31.10 kCal (17.67%) on this dataset, outperforming existing portion estimation methods.
☆ An Online Spatial-Temporal Graph Trajectory Planner for Autonomous Vehicles
The autonomous driving industry is expected to grow by over 20 times in the coming decade and, thus, motivate researchers to delve into it. The primary focus of their research is to ensure safety, comfort, and efficiency. An autonomous vehicle has several modules responsible for one or more of the aforementioned items. Among these modules, the trajectory planner plays a pivotal role in the safety of the vehicle and the comfort of its passengers. The module is also responsible for respecting kinematic constraints and any applicable road constraints. In this paper, a novel online spatial-temporal graph trajectory planner is introduced to generate safe and comfortable trajectories. First, a spatial-temporal graph is constructed using the autonomous vehicle, its surrounding vehicles, and virtual nodes along the road with respect to the vehicle itself. Next, the graph is forwarded into a sequential network to obtain the desired states. To support the planner, a simple behavioral layer is also presented that determines kinematic constraints for the planner. Furthermore, a novel potential function is also proposed to train the network. Finally, the proposed planner is tested on three different complex driving tasks, and the performance is compared with two frequently used methods. The results show that the proposed planner generates safe and feasible trajectories while achieving similar or longer distances in the forward direction and comparable comfort ride.
comment: This is the accepted version and published in the "Early Access" area of IEEE Xplore for the IEEE Transactions on Intelligent Vehicles on 16 April 2024. Article statistics: 11 pages, 9 figures, 2 tables
☆ Dynamic Modality and View Selection for Multimodal Emotion Recognition with Missing Modalities
The study of human emotions, traditionally a cornerstone in fields like psychology and neuroscience, has been profoundly impacted by the advent of artificial intelligence (AI). Multiple channels, such as speech (voice) and facial expressions (image), are crucial in understanding human emotions. However, AI's journey in multimodal emotion recognition (MER) is marked by substantial technical challenges. One significant hurdle is how AI models manage the absence of a particular modality - a frequent occurrence in real-world situations. This study's central focus is assessing the performance and resilience of two strategies when confronted with the lack of one modality: a novel multimodal dynamic modality and view selection and a cross-attention mechanism. Results on the RECOLA dataset show that dynamic selection-based methods are a promising approach for MER. In the missing modalities scenarios, all dynamic selection-based methods outperformed the baseline. The study concludes by emphasizing the intricate interplay between audio and video modalities in emotion prediction, showcasing the adaptability of dynamic selection methods in handling missing modalities.
comment: 15 pages
☆ Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation
In recent years, there has been a growing interest in using machine learning techniques for the estimation of treatment effects. Most of the best-performing methods rely on representation learning strategies that encourage shared behavior among potential outcomes to increase the precision of treatment effect estimates. In this paper we discuss and classify these models in terms of their algorithmic inductive biases and present a new model, NN-CGC, that considers additional information from the causal graph. NN-CGC tackles bias resulting from spurious variable interactions by implementing novel constraints on models, and it can be integrated with other representation learning methods. We test the effectiveness of our method using three different base models on common benchmarks. Our results indicate that our model constraints lead to significant improvements, achieving new state-of-the-art results in treatment effects estimation. We also show that our method is robust to imperfect causal graphs and that using partial causal information is preferable to ignoring it.
☆ Relationship Discovery for Drug Recommendation
Medication recommendation systems are designed to deliver personalized drug suggestions that are closely aligned with individual patient needs. Previous studies have primarily concentrated on developing medication embeddings, achieving significant progress. Nonetheless, these approaches often fall short in accurately reflecting individual patient profiles, mainly due to challenges in distinguishing between various patient conditions and the inability to establish precise correlations between specific conditions and appropriate medications. In response to these issues, we introduce DisMed, a model that focuses on patient conditions to enhance personalization. DisMed employs causal inference to discern clear, quantifiable causal links. It then examines patient conditions in depth, recognizing and adapting to the evolving nuances of these conditions, and mapping them directly to corresponding medications. Additionally, DisMed leverages data from multiple patient visits to propose combinations of medications. Comprehensive testing on real-world datasets demonstrates that DisMed not only improves the customization of patient profiles but also surpasses leading models in both precision and safety.
☆ A Quadrature Approach for General-Purpose Batch Bayesian Optimization via Probabilistic Lifting
Parallelisation in Bayesian optimisation is a common strategy but faces several challenges: the need for flexibility in acquisition functions and kernel choices, flexibility dealing with discrete and continuous variables simultaneously, model misspecification, and lastly fast massive parallelisation. To address these challenges, we introduce a versatile and modular framework for batch Bayesian optimisation via probabilistic lifting with kernel quadrature, called SOBER, which we present as a Python library based on GPyTorch/BoTorch. Our framework offers the following unique benefits: (1) Versatility in downstream tasks under a unified approach. (2) A gradient-free sampler, which does not require the gradient of acquisition functions, offering domain-agnostic sampling (e.g., discrete and mixed variables, non-Euclidean space). (3) Flexibility in domain prior distribution. (4) Adaptive batch size (autonomous determination of the optimal batch size). (5) Robustness against a misspecified reproducing kernel Hilbert space. (6) Natural stopping criterion.
comment: 48 pages, 11 figures
☆ Quantifying Aleatoric and Epistemic Uncertainty with Proper Scoring Rules
Uncertainty representation and quantification are paramount in machine learning and constitute an important prerequisite for safety-critical applications. In this paper, we propose novel measures for the quantification of aleatoric and epistemic uncertainty based on proper scoring rules, which are loss functions with the meaningful property that they incentivize the learner to predict ground-truth (conditional) probabilities. We assume two common representations of (epistemic) uncertainty, namely, in terms of a credal set, i.e. a set of probability distributions, or a second-order distribution, i.e., a distribution over probability distributions. Our framework establishes a natural bridge between these representations. We provide a formal justification of our approach and introduce new measures of epistemic and aleatoric uncertainty as concrete instantiations.
☆ OpenBezoar: Small, Cost-Effective and Open Models Trained on Mixes of Instruction Data
Instruction fine-tuning pretrained LLMs for diverse downstream tasks has demonstrated remarkable success and has captured the interest of both academics and practitioners. To ensure such fine-tuned LLMs align with human preferences, techniques such as RLHF and DPO have emerged. At the same time, there is increasing interest in smaller parameter counts for models. In this work, using OpenLLaMA 3Bv2 as a base model, we describe the recipe used to fine-tune the OpenBezoar family of models. In this recipe: We first generate synthetic instruction fine-tuning data using an open and commercially non-restrictive instruction fine-tuned variant of the Falcon-40B model under three schemes based on: LaMini-LM, WizardLM/Evol-Instruct (with databricks-dolly-15k as a seed dataset) and Orca (with the Flan Collection as a seed dataset), then filter these generations using GPT-4 as a human proxy. We then perform cost-effective QLoRA-based supervised fine-tuning sequentially with each scheme. The resulting checkpoint is further fine-tuned with a subset of the HH-RLHF dataset to minimize distribution shift prior to using the DPO loss to obtain the final checkpoint. Evaluation is done with the LM Eval Harness tasks/metrics as well as on MT-Bench using the "LLM-as-a-judge" framework with Claude 2.1, with the finding that the final checkpoint, "OpenBezoar-HH-RLHF-DPO", demonstrates superior performance over many models at the 3B parameter scale, even outperforming the top model in one of the categories on the Huggingface Open LLM Leaderboard. We release "OpenBezoar-SFT", "OpenBezoar-HH-RLHF-SFT", "OpenBezoar-HH-RLHF-DPO" checkpoints, alongside our generated datasets on HuggingFace at https://huggingface.co/collections/SurgeGlobal/open-bezoar-6620a24923e12127e9e2b9cc and our codebase at https://bitbucket.org/paladinanalytics/workspace/projects/OP.
comment: 25 pages, 27 Figures, 8 Tables
☆ Estimating the Hessian Matrix of Ranking Objectives for Stochastic Learning to Rank with Gradient Boosted Trees SIGIR2024
Stochastic learning to rank (LTR) is a recent branch in the LTR field that concerns the optimization of probabilistic ranking models. Their probabilistic behavior enables certain ranking qualities that are impossible with deterministic models. For example, they can increase the diversity of displayed documents, increase fairness of exposure over documents, and better balance exploitation and exploration through randomization. A core difficulty in LTR is gradient estimation, for this reason, existing stochastic LTR methods have been limited to differentiable ranking models (e.g., neural networks). This is in stark contrast with the general field of LTR where Gradient Boosted Decision Trees (GBDTs) have long been considered the state-of-the-art. In this work, we address this gap by introducing the first stochastic LTR method for GBDTs. Our main contribution is a novel estimator for the second-order derivatives, i.e., the Hessian matrix, which is a requirement for effective GBDTs. To efficiently compute both the first and second-order derivatives simultaneously, we incorporate our estimator into the existing PL-Rank framework, which was originally designed for first-order derivatives only. Our experimental results indicate that stochastic LTR without the Hessian has extremely poor performance, whilst the performance is competitive with the current state-of-the-art with our estimated Hessian. Thus, through the contribution of our novel Hessian estimation method, we have successfully introduced GBDTs to stochastic LTR.
comment: SIGIR2024 conference Short paper track
☆ Stability-informed Bayesian Optimization for MPC Cost Function Learning
Designing predictive controllers towards optimal closed-loop performance while maintaining safety and stability is challenging. This work explores closed-loop learning for predictive control parameters under imperfect information while considering closed-loop stability. We employ constrained Bayesian optimization to learn a model predictive controller's (MPC) cost function parametrized as a feedforward neural network, optimizing closed-loop behavior as well as minimizing model-plant mismatch. Doing so offers a high degree of freedom and, thus, the opportunity for efficient and global optimization towards the desired and optimal closed-loop behavior. We extend this framework by stability constraints on the learned controller parameters, exploiting the optimal value function of the underlying MPC as a Lyapunov candidate. The effectiveness of the proposed approach is underlined in simulations, highlighting its performance and safety capabilities.
comment: 7 pages, 3 figures, accepted for NMPC 2024
☆ Privacy-Preserving UCB Decision Process Verification via zk-SNARKs
With the increasingly widespread application of machine learning, how to strike a balance between protecting the privacy of data and algorithm parameters and ensuring the verifiability of machine learning has always been a challenge. This study explores the intersection of reinforcement learning and data privacy, specifically addressing the Multi-Armed Bandit (MAB) problem with the Upper Confidence Bound (UCB) algorithm. We introduce zkUCB, an innovative algorithm that employs the Zero-Knowledge Succinct Non-Interactive Argument of Knowledge (zk-SNARKs) to enhance UCB. zkUCB is carefully designed to safeguard the confidentiality of training data and algorithmic parameters, ensuring transparent UCB decision-making. Experiments highlight zkUCB's superior performance, attributing its enhanced reward to judicious quantization bit usage that reduces information entropy in the decision-making process. zkUCB's proof size and verification time scale linearly with the execution steps of zkUCB. This showcases zkUCB's adept balance between data security and operational efficiency. This approach contributes significantly to the ongoing discourse on reinforcing data privacy in complex decision-making processes, offering a promising solution for privacy-sensitive applications.
☆ How to Benchmark Vision Foundation Models for Semantic Segmentation? CVPR 2024
Recent vision foundation models (VFMs) have demonstrated proficiency in various tasks but require supervised fine-tuning to perform the task of semantic segmentation effectively. Benchmarking their performance is essential for selecting current models and guiding future model developments for this task. The lack of a standardized benchmark complicates comparisons. Therefore, the primary objective of this paper is to study how VFMs should be benchmarked for semantic segmentation. To do so, various VFMs are fine-tuned under various settings, and the impact of individual settings on the performance ranking and training time is assessed. Based on the results, the recommendation is to fine-tune the ViT-B variants of VFMs with a 16x16 patch size and a linear decoder, as these settings are representative of using a larger model, more advanced decoder and smaller patch size, while reducing training time by more than 13 times. Using multiple datasets for training and evaluation is also recommended, as the performance ranking across datasets and domain shifts varies. Linear probing, a common practice for some VFMs, is not recommended, as it is not representative of end-to-end fine-tuning. The benchmarking setup recommended in this paper enables a performance analysis of VFMs for semantic segmentation. The findings of such an analysis reveal that pretraining with promptable segmentation is not beneficial, whereas masked image modeling (MIM) with abstract representations is crucial, even more important than the type of supervision used. The code for efficiently fine-tuning VFMs for semantic segmentation can be accessed through the project page at: https://tue-mps.github.io/benchmark-vfm-ss/.
comment: CVPR 2024 Workshop Proceedings for the Second Workshop on Foundation Models
☆ Aligning language models with human preferences
Language models (LMs) trained on vast quantities of text data can acquire sophisticated skills such as generating summaries, answering questions or generating code. However, they also manifest behaviors that violate human preferences, e.g., they can generate offensive content, falsehoods or perpetuate social biases. In this thesis, I explore several approaches to aligning LMs with human preferences. First, I argue that aligning LMs can be seen as Bayesian inference: conditioning a prior (base, pretrained LM) on evidence about human preferences (Chapter 2). Conditioning on human preferences can be implemented in numerous ways. In Chapter 3, I investigate the relation between two approaches to finetuning pretrained LMs using feedback given by a scoring function: reinforcement learning from human feedback (RLHF) and distribution matching. I show that RLHF can be seen as a special case of distribution matching but distributional matching is strictly more general. In chapter 4, I show how to extend the distribution matching to conditional language models. Finally, in chapter 5 I explore a different root: conditioning an LM on human preferences already during pretraining. I show that involving human feedback from the very start tends to be more effective than using it only during supervised finetuning. Overall, these results highlight the room for alignment techniques different from and complementary to RLHF.
comment: PhD thesis
☆ MolCRAFT: Structure-Based Drug Design in Continuous Parameter Space
Generative models for structure-based drug design (SBDD) have shown promising results in recent years. Existing works mainly focus on how to generate molecules with higher binding affinity, ignoring the feasibility prerequisites for generated 3D poses and resulting in false positives. We conduct thorough studies on key factors of ill-conformational problems when applying autoregressive methods and diffusion to SBDD, including mode collapse and hybrid continuous-discrete space. In this paper, we introduce \ours, the first SBDD model that operates in the continuous parameter space, together with a novel noise reduced sampling strategy. Empirical results show that our model consistently achieves superior performance in binding affinity with more stable 3D structure, demonstrating our ability to accurately model interatomic interactions. To our best knowledge, MolCRAFT is the first to achieve reference-level Vina Scores (-6.59 kcal/mol), outperforming other strong baselines by a wide margin (-0.84 kcal/mol). Code is available at https://github.com/AlgoMole/MolCRAFT.
comment: 19 pages, 11 figures
☆ One-Shot Sequential Federated Learning for Non-IID Data by Enhancing Local Model Diversity
Traditional federated learning mainly focuses on parallel settings (PFL), which can suffer significant communication and computation costs. In contrast, one-shot and sequential federated learning (SFL) have emerged as innovative paradigms to alleviate these costs. However, the issue of non-IID (Independent and Identically Distributed) data persists as a significant challenge in one-shot and SFL settings, exacerbated by the restricted communication between clients. In this paper, we improve the one-shot sequential federated learning for non-IID data by proposing a local model diversity-enhancing strategy. Specifically, to leverage the potential of local model diversity for improving model performance, we introduce a local model pool for each client that comprises diverse models generated during local training, and propose two distance measurements to further enhance the model diversity and mitigate the effect of non-IID data. Consequently, our proposed framework can improve the global model performance while maintaining low communication costs. Extensive experiments demonstrate that our method exhibits superior performance to existing one-shot PFL methods and achieves better accuracy compared with state-of-the-art one-shot SFL methods on both label-skew and domain-shift tasks (e.g., 6%+ accuracy improvement on the CIFAR-10 dataset).
☆ Ethical-Lens: Curbing Malicious Usages of Open-Source Text-to-Image Models
The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALLE 3, has revolutionized content creation across diverse sectors. However, these advancements bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models like DALLE 3, ensuring user-generated content adheres to ethical standards while maintaining image quality. This study indicates the potential of Ethical-Lens to ensure the sustainable development of open-source text-to-image tools and their beneficial integration into society. Our code is available at https://github.com/yuzhu-cai/Ethical-Lens.
comment: 42 pages, 17 figures, 29 tables
☆ MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models
In this paper, we consider the problem of reference tracking in uncertain nonlinear systems. A neural State-Space Model (NSSM) is used to approximate the nonlinear system, where a deep encoder network learns the nonlinearity from data, and a state-space component captures the temporal relationship. This transforms the nonlinear system into a linear system in a latent space, enabling the application of model predictive control (MPC) to determine effective control actions. Our objective is to design the optimal controller using limited data from the \textit{target system} (the system of interest). To this end, we employ an implicit model-agnostic meta-learning (iMAML) framework that leverages information from \textit{source systems} (systems that share similarities with the target system) to expedite training in the target system and enhance its control performance. The framework consists of two phases: the (offine) meta-training phase learns a aggregated NSSM using data from source systems, and the (online) meta-inference phase quickly adapts this aggregated model to the target system using only a few data points and few online training iterations, based on local loss function gradients. The iMAML algorithm exploits the implicit function theorem to exactly compute the gradient during training, without relying on the entire optimization path. By focusing solely on the optimal solution, rather than the path, we can meta-train with less storage complexity and fewer approximations than other contemporary meta-learning algorithms. We demonstrate through numerical examples that our proposed method can yield accurate predictive models by adaptation, resulting in a downstream MPC that outperforms several baselines.
☆ LongEmbed: Extending Embedding Models for Long Context Retrieval
Embedding models play a pivot role in modern NLP applications such as IR and RAG. While the context limit of LLMs has been pushed beyond 1 million tokens, embedding models are still confined to a narrow context window not exceeding 8k tokens, refrained from application scenarios requiring long inputs such as legal contracts. This paper explores context window extension of existing embedding models, pushing the limit to 32k without requiring additional training. First, we examine the performance of current embedding models for long context retrieval on our newly constructed LongEmbed benchmark. LongEmbed comprises two synthetic tasks and four carefully chosen real-world tasks, featuring documents of varying length and dispersed target information. Benchmarking results underscore huge room for improvement in these models. Based on this, comprehensive experiments show that training-free context window extension strategies like position interpolation can effectively extend the context window of existing embedding models by several folds, regardless of their original context being 512 or beyond 4k. Furthermore, for models employing absolute position encoding (APE), we show the possibility of further fine-tuning to harvest notable performance gains while strictly preserving original behavior for short inputs. For models using rotary position embedding (RoPE), significant enhancements are observed when employing RoPE-specific methods, such as NTK and SelfExtend, indicating RoPE's superiority over APE for context window extension. To facilitate future research, we release E5-Base-4k and E5-RoPE-Base, along with the LongEmbed benchmark.
☆ TIMIT Speaker Profiling: A Comparison of Multi-task learning and Single-task learning Approaches
This study employs deep learning techniques to explore four speaker profiling tasks on the TIMIT dataset, namely gender classification, accent classification, age estimation, and speaker identification, highlighting the potential and challenges of multi-task learning versus single-task models. The motivation for this research is twofold: firstly, to empirically assess the advantages and drawbacks of multi-task learning over single-task models in the context of speaker profiling; secondly, to emphasize the undiminished significance of skillful feature engineering for speaker recognition tasks. The findings reveal challenges in accent classification, and multi-task learning is found advantageous for tasks of similar complexity. Non-sequential features are favored for speaker recognition, but sequential ones can serve as starting points for complex models. The study underscores the necessity of meticulous experimentation and parameter tuning for deep learning models.
☆ Towards an Approximation Theory of Observable Operator Models
Observable operator models (OOMs) offer a powerful framework for modelling stochastic processes, surpassing the traditional hidden Markov models (HMMs) in generality and efficiency. However, using OOMs to model infinite-dimensional processes poses significant theoretical challenges. This article explores a rigorous approach to developing an approximation theory for OOMs of infinite-dimensional processes. Building upon foundational work outlined in an unpublished tutorial [Jae98], an inner product structure on the space of future distributions is rigorously established and the continuity of observable operators with respect to the associated 2-norm is proven. The original theorem proven in this thesis describes a fundamental obstacle in making an infinite-dimensional space of future distributions into a Hilbert space. The presented findings lay the groundwork for future research in approximating observable operators of infinite-dimensional processes, while a remedy to the encountered obstacle is suggested.
comment: 15 pages
☆ PureForest: A Large-scale Aerial Lidar and Aerial Imagery Dataset for Tree Species Classification in Monospecific Forests
Knowledge of tree species distribution is fundamental to managing forests. New deep learning approaches promise significant accuracy gains for forest mapping, and are becoming a critical tool for mapping multiple tree species at scale. To advance the field, deep learning researchers need large benchmark datasets with high-quality annotations. To this end, we present the PureForest dataset: a large-scale, open, multimodal dataset designed for tree species classification from both Aerial Lidar Scanning (ALS) point clouds and Very High Resolution (VHR) aerial images. Most current public Lidar datasets for tree species classification have low diversity as they only span a small area of a few dozen annotated hectares at most. In contrast, PureForest has 18 tree species grouped into 13 semantic classes, and spans 339 km$^2$ across 449 distinct monospecific forests, and is to date the largest and most comprehensive Lidar dataset for the identification of tree species. By making PureForest publicly available, we hope to provide a challenging benchmark dataset to support the development of deep learning approaches for tree species identification from Lidar and/or aerial imagery. In this data paper, we describe the annotation workflow, the dataset, the recommended evaluation methodology, and establish a baseline performance from both 3D and 2D modalities.
comment: 14 pages | 5 figures | Dataset is available at http://huggingface.co/datasets/IGNF/PureForest
☆ FastVPINNs: Tensor-Driven Acceleration of VPINNs for Complex Geometries
Variational Physics-Informed Neural Networks (VPINNs) utilize a variational loss function to solve partial differential equations, mirroring Finite Element Analysis techniques. Traditional hp-VPINNs, while effective for high-frequency problems, are computationally intensive and scale poorly with increasing element counts, limiting their use in complex geometries. This work introduces FastVPINNs, a tensor-based advancement that significantly reduces computational overhead and improves scalability. Using optimized tensor operations, FastVPINNs achieve a 100-fold reduction in the median training time per epoch compared to traditional hp-VPINNs. With proper choice of hyperparameters, FastVPINNs surpass conventional PINNs in both speed and accuracy, especially in problems with high-frequency solutions. Demonstrated effectiveness in solving inverse problems on complex domains underscores FastVPINNs' potential for widespread application in scientific and engineering challenges, opening new avenues for practical implementations in scientific machine learning.
comment: 31 pages, 19 figures, 4 algorithms
☆ PID Tuning using Cross-Entropy Deep Learning: a Lyapunov Stability Analysis
Underwater Unmanned Vehicles (UUVs) have to constantly compensate for the external disturbing forces acting on their body. Adaptive Control theory is commonly used there to grant the control law some flexibility in its response to process variation. Today, learning-based (LB) adaptive methods are leading the field where model-based control structures are combined with deep model-free learning algorithms. This work proposes experiments and metrics to empirically study the stability of such a controller. We perform this stability analysis on a LB adaptive control system whose adaptive parameters are determined using a Cross-Entropy Deep Learning method.
☆ ParaFusion: A Large-Scale LLM-Driven English Paraphrase Dataset Infused with High-Quality Lexical and Syntactic Diversity
Paraphrase generation is a pivotal task in natural language processing (NLP). Existing datasets in the domain lack syntactic and lexical diversity, resulting in paraphrases that closely resemble the source sentences. Moreover, these datasets often contain hate speech and noise, and may unintentionally include non-English language sentences. This research introduces ParaFusion, a large-scale, high-quality English paraphrase dataset developed using Large Language Models (LLM) to address these challenges. ParaFusion augments existing datasets with high-quality data, significantly enhancing both lexical and syntactic diversity while maintaining close semantic similarity. It also mitigates the presence of hate speech and reduces noise, ensuring a cleaner and more focused English dataset. Results show that ParaFusion offers at least a 25% improvement in both syntactic and lexical diversity, measured across several metrics for each data source. The paper also aims to set a gold standard for paraphrase evaluation as it contains one of the most comprehensive evaluation strategies to date. The results underscore the potential of ParaFusion as a valuable resource for improving NLP applications.
♻ ☆ NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields
Neural fields excel in computer vision and robotics due to their ability to understand the 3D visual world such as inferring semantics, geometry, and dynamics. Given the capabilities of neural fields in densely representing a 3D scene from 2D images, we ask the question: Can we scale their self-supervised pretraining, specifically using masked autoencoders, to generate effective 3D representations from posed RGB images. Owing to the astounding success of extending transformers to novel data modalities, we employ standard 3D Vision Transformers to suit the unique formulation of NeRFs. We leverage NeRF's volumetric grid as a dense input to the transformer, contrasting it with other 3D representations such as pointclouds where the information density can be uneven, and the representation is irregular. Due to the difficulty of applying masked autoencoders to an implicit representation, such as NeRF, we opt for extracting an explicit representation that canonicalizes scenes across domains by employing the camera trajectory for sampling. Our goal is made possible by masking random patches from NeRF's radiance and density grid and employing a standard 3D Swin Transformer to reconstruct the masked patches. In doing so, the model can learn the semantic and spatial structure of complete scenes. We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.6 million images. Once pretrained, the encoder is used for effective 3D transfer learning. Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks. Utilizing unlabeled posed 2D data for pretraining, NeRF-MAE significantly outperforms self-supervised 3D pretraining and NeRF scene understanding baselines on Front3D and ScanNet datasets with an absolute performance improvement of over 20% AP50 and 8% AP25 for 3D object detection.
comment: 29 pages, 13 figures. Project Page: https://nerf-mae.github.io/
♻ ☆ Private graphon estimation via sum-of-squares STOC 2024
We develop the first pure node-differentially-private algorithms for learning stochastic block models and for graphon estimation with polynomial running time for any constant number of blocks. The statistical utility guarantees match those of the previous best information-theoretic (exponential-time) node-private mechanisms for these problems. The algorithm is based on an exponential mechanism for a score function defined in terms of a sum-of-squares relaxation whose level depends on the number of blocks. The key ingredients of our results are (1) a characterization of the distance between the block graphons in terms of a quadratic optimization over the polytope of doubly stochastic matrices, (2) a general sum-of-squares convergence result for polynomial optimization over arbitrary polytopes, and (3) a general approach to perform Lipschitz extensions of score functions as part of the sum-of-squares algorithmic paradigm.
comment: 71 pages, accepted to STOC 2024
♻ ☆ Beyond Known Clusters: Probe New Prototypes for Efficient Generalized Class Discovery
Generalized Class Discovery (GCD) aims to dynamically assign labels to unlabelled data partially based on knowledge learned from labelled data, where the unlabelled data may come from known or novel classes. The prevailing approach generally involves clustering across all data and learning conceptions by prototypical contrastive learning. However, existing methods largely hinge on the performance of clustering algorithms and are thus subject to their inherent limitations. Firstly, the estimated cluster number is often smaller than the ground truth, making the existing methods suffer from the lack of prototypes for comprehensive conception learning. To address this issue, we propose an adaptive probing mechanism that introduces learnable potential prototypes to expand cluster prototypes (centers). As there is no ground truth for the potential prototype, we develop a self-supervised prototype learning framework to optimize the potential prototype in an end-to-end fashion. Secondly, clustering is computationally intensive, and the conventional strategy of clustering both labelled and unlabelled instances exacerbates this issue. To counteract this inefficiency, we opt to cluster only the unlabelled instances and subsequently expand the cluster prototypes with our introduced potential prototypes to fast explore novel classes. Despite the simplicity of our proposed method, extensive empirical analysis on a wide range of datasets confirms that our method consistently delivers state-of-the-art results. Specifically, our method surpasses the nearest competitor by a significant margin of \textbf{9.7}$\%$ within the Stanford Cars dataset and \textbf{12$\times$} clustering efficiency within the Herbarium 19 dataset. We will make the code and checkpoints publicly available at \url{https://github.com/xjtuYW/PNP.git}.
comment: 9 pages, 7 figures
♻ ☆ One-shot Empirical Privacy Estimation for Federated Learning ICLR 2024
Privacy estimation techniques for differentially private (DP) algorithms are useful for comparing against analytical bounds, or to empirically measure privacy loss in settings where known analytical bounds are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks, model architectures, or DP algorithm, and/or require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel "one-shot" approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters, and without requiring any a priori knowledge about the model architecture, task, or DP training algorithm. We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism, and we demonstrate its performance on well-established FL benchmark datasets under several adversarial threat models.
comment: Final revision, oral presentation at ICLR 2024
♻ ☆ The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data.
♻ ☆ VisRuler: Visual Analytics for Extracting Decision Rules from Bagged and Boosted Decision Trees
Bagging and boosting are two popular ensemble methods in machine learning (ML) that produce many individual decision trees. Due to the inherent ensemble characteristic of these methods, they typically outperform single decision trees or other ML models in predictive performance. However, numerous decision paths are generated for each decision tree, increasing the overall complexity of the model and hindering its use in domains that require trustworthy and explainable decisions, such as finance, social care, and health care. Thus, the interpretability of bagging and boosting algorithms, such as random forest and adaptive boosting, reduces as the number of decisions rises. In this paper, we propose a visual analytics tool that aims to assist users in extracting decisions from such ML models via a thorough visual inspection workflow that includes selecting a set of robust and diverse models (originating from different ensemble learning algorithms), choosing important features according to their global contribution, and deciding which decisions are essential for global explanation (or locally, for specific cases). The outcome is a final decision based on the class agreement of several models and the explored manual decisions exported by users. We evaluated the applicability and effectiveness of VisRuler via a use case, a usage scenario, and a user study. The evaluation revealed that most users managed to successfully use our system to explore decision rules visually, performing the proposed tasks and answering the given questions in a satisfying way.
comment: This manuscript is accepted for publication in the Information Visualization (IV) - SAGE Journals
♻ ☆ DeforestVis: Behavior Analysis of Machine Learning Models with Surrogate Decision Stumps
As the complexity of machine learning (ML) models increases and their application in different (and critical) domains grows, there is a strong demand for more interpretable and trustworthy ML. A direct, model-agnostic, way to interpret such models is to train surrogate models-such as rule sets and decision trees-that sufficiently approximate the original ones while being simpler and easier-to-explain. Yet, rule sets can become very lengthy, with many if-else statements, and decision tree depth grows rapidly when accurately emulating complex ML models. In such cases, both approaches can fail to meet their core goal-providing users with model interpretability. To tackle this, we propose DeforestVis, a visual analytics tool that offers summarization of the behaviour of complex ML models by providing surrogate decision stumps (one-level decision trees) generated with the Adaptive Boosting (AdaBoost) technique. DeforestVis helps users to explore the complexity versus fidelity trade-off by incrementally generating more stumps, creating attribute-based explanations with weighted stumps to justify decision making, and analysing the impact of rule overriding on training instance allocation between one or more stumps. An independent test set allows users to monitor the effectiveness of manual rule changes and form hypotheses based on case-by-case analyses. We show the applicability and usefulness of DeforestVis with two use cases and expert interviews with data analysts and model developers.
comment: This manuscript is accepted for publication in Computer Graphics Forum (CGF)
♻ ☆ Transferability Ranking of Adversarial Examples
Adversarial transferability in black-box scenarios presents a unique challenge: while attackers can employ surrogate models to craft adversarial examples, they lack assurance on whether these examples will successfully compromise the target model. Until now, the prevalent method to ascertain success has been trial and error-testing crafted samples directly on the victim model. This approach, however, risks detection with every attempt, forcing attackers to either perfect their first try or face exposure. Our paper introduces a ranking strategy that refines the transfer attack process, enabling the attacker to estimate the likelihood of success without repeated trials on the victim's system. By leveraging a set of diverse surrogate models, our method can predict transferability of adversarial examples. This strategy can be used to either select the best sample to use in an attack or the best perturbation to apply to a specific sample. Using our strategy, we were able to raise the transferability of adversarial examples from a mere 20% - akin to random selection-up to near upper-bound levels, with some scenarios even witnessing a 100% success rate. This substantial improvement not only sheds light on the shared susceptibilities across diverse architectures but also demonstrates that attackers can forego the detectable trial-and-error tactics raising increasing the threat of surrogate-based attacks.
♻ ☆ VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization
During the training phase of machine learning (ML) models, it is usually necessary to configure several hyperparameters. This process is computationally intensive and requires an extensive search to infer the best hyperparameter set for the given problem. The challenge is exacerbated by the fact that most ML models are complex internally, and training involves trial-and-error processes that could remarkably affect the predictive result. Moreover, each hyperparameter of an ML algorithm is potentially intertwined with the others, and changing it might result in unforeseeable impacts on the remaining hyperparameters. Evolutionary optimization is a promising method to try and address those issues. According to this method, performant models are stored, while the remainder are improved through crossover and mutation processes inspired by genetic algorithms. We present VisEvol, a visual analytics tool that supports interactive exploration of hyperparameters and intervention in this evolutionary procedure. In summary, our proposed tool helps the user to generate new models through evolution and eventually explore powerful hyperparameter combinations in diverse regions of the extensive hyperparameter space. The outcome is a voting ensemble (with equal rights) that boosts the final predictive performance. The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.
comment: This manuscript is accepted for publication in a special issue of Computer Graphics Forum (CGF)
♻ ☆ InstructIE: A Bilingual Instruction-based Information Extraction Dataset
Large language models can perform well on general natural language tasks, but their effectiveness is still not optimal for information extraction. Recent works indicate that the main reason lies in the lack of extensive data on information extraction instructions. Note that the existing datasets on information extraction instructions not only have limited coverage but also involve high construction costs. To address this issue, we introduce InstructIE, a bilingual instruction-based information extraction dataset, which covers 12 diverse domains. Specifically, we propose KG2Instruction, a framework specifically for the automatic generation of such datasets. Experimental results demonstrate that large language models trained with InstructIE can not only obtain better information extraction capabilities but also enhance zero-shot performance compared with baselines.
comment: Work in progress; project homepage: https://www.zjukg.org/project/InstructIE/ dataset: https://huggingface.co/datasets/zjunlp/InstructIE
♻ ☆ MetaStackVis: Visually-Assisted Performance Evaluation of Metamodels
Stacking (or stacked generalization) is an ensemble learning method with one main distinctiveness from the rest: even though several base models are trained on the original data set, their predictions are further used as input data for one or more metamodels arranged in at least one extra layer. Composing a stack of models can produce high-performance outcomes, but it usually involves a trial-and-error process. Therefore, our previously developed visual analytics system, StackGenVis, was mainly designed to assist users in choosing a set of top-performing and diverse models by measuring their predictive performance. However, it only employs a single logistic regression metamodel. In this paper, we investigate the impact of alternative metamodels on the performance of stacking ensembles using a novel visualization tool, called MetaStackVis. Our interactive tool helps users to visually explore different singular and pairs of metamodels according to their predictive probabilities and multiple validation metrics, as well as their ability to predict specific problematic data instances. MetaStackVis was evaluated with a usage scenario based on a medical data set and via expert interviews.
comment: This manuscript is accepted for publication in Proceedings of the 16th IEEE Pacific Visualization Symposium (PacificVis '23)
♻ ☆ t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections
t-Distributed Stochastic Neighbor Embedding (t-SNE) for the visualization of multidimensional data has proven to be a popular approach, with successful applications in a wide range of domains. Despite their usefulness, t-SNE projections can be hard to interpret or even misleading, which hurts the trustworthiness of the results. Understanding the details of t-SNE itself and the reasons behind specific patterns in its output may be a daunting task, especially for non-experts in dimensionality reduction. In this work, we present t-viSNE, an interactive tool for the visual exploration of t-SNE projections that enables analysts to inspect different aspects of their accuracy and meaning, such as the effects of hyper-parameters, distance and neighborhood preservation, densities and costs of specific neighborhoods, and the correlations between dimensions and visual patterns. We propose a coherent, accessible, and well-integrated collection of different views for the visualization of t-SNE projections. The applicability and usability of t-viSNE are demonstrated through hypothetical usage scenarios with real data sets. Finally, we present the results of a user study where the tool's effectiveness was evaluated. By bringing to light information that would normally be lost after running t-SNE, we hope to support analysts in using t-SNE and making its results better understandable.
comment: This manuscript is published in the IEEE Transactions on Visualization and Computer Graphics Journal (IEEE TVCG)
♻ ☆ Can We Edit Multimodal Large Language Models? EMNLP 2023
In this paper, we focus on editing Multimodal Large Language Models (MLLMs). Compared to editing single-modal LLMs, multimodal model editing is more challenging, which demands a higher level of scrutiny and careful consideration in the editing process. To facilitate research in this area, we construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite of innovative metrics for evaluation. We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components for multimodal LLMs. Empirically, we notice that previous baselines can implement editing multimodal LLMs to some extent, but the effect is still barely satisfactory, indicating the potential difficulty of this task. We hope that our work can provide the NLP community with insights. Code and dataset are available in https://github.com/zjunlp/EasyEdit.
comment: EMNLP 2023. Add the Exact Match/Accuracy results of Reliability and T-Generality
♻ ☆ State Space Models for Event Cameras CVPR 2024
Today, state-of-the-art deep neural networks that process event-camera data first convert a temporal window of events into dense, grid-like input representations. As such, they exhibit poor generalizability when deployed at higher inference frequencies (i.e., smaller temporal windows) than the ones they were trained on. We address this challenge by introducing state-space models (SSMs) with learnable timescale parameters to event-based vision. This design adapts to varying frequencies without the need to retrain the network at different frequencies. Additionally, we investigate two strategies to counteract aliasing effects when deploying the model at higher frequencies. We comprehensively evaluate our approach against existing methods based on RNN and Transformer architectures across various benchmarks, including Gen1 and 1 Mpx event camera datasets. Our results demonstrate that SSM-based models train 33% faster and also exhibit minimal performance degradation when tested at higher frequencies than the training input. Traditional RNN and Transformer models exhibit performance drops of more than 20 mAP, with SSMs having a drop of 3.76 mAP, highlighting the effectiveness of SSMs in event-based vision tasks.
comment: 18 pages, 5 figures, 6 tables, CVPR 2024 Camera Ready paper
♻ ☆ Visualization for Trust in Machine Learning Revisited: The State of the Field in 2023
Visualization for explainable and trustworthy machine learning remains one of the most important and heavily researched fields within information visualization and visual analytics with various application domains, such as medicine, finance, and bioinformatics. After our 2020 state-of-the-art report comprising 200 techniques, we have persistently collected peer-reviewed articles describing visualization techniques, categorized them based on the previously established categorization schema consisting of 119 categories, and provided the resulting collection of 542 techniques in an online survey browser. In this survey article, we present the updated findings of new analyses of this dataset as of fall 2023 and discuss trends, insights, and eight open challenges for using visualizations in machine learning. Our results corroborate the rapidly growing trend of visualization techniques for increasing trust in machine learning models in the past three years, with visualization found to help improve popular model explainability methods and check new deep learning architectures, for instance.
comment: This manuscript is accepted for publication in the IEEE Computer Graphics and Applications Journal (IEEE CG&A)
♻ ☆ TensAIR: Real-Time Training of Neural Networks from Data-streams
Online learning (OL) from data streams is an emerging area of research that encompasses numerous challenges from stream processing, machine learning, and networking. Stream-processing platforms, such as Apache Kafka and Flink, have basic extensions for the training of Artificial Neural Networks (ANNs) in a stream-processing pipeline. However, these extensions were not designed to train ANNs in real-time, and they suffer from performance and scalability issues when doing so. This paper presents TensAIR, the first OL system for training ANNs in real time. TensAIR achieves remarkable performance and scalability by using a decentralized and asynchronous architecture to train ANN models (either freshly initialized or pre-trained) via DASGD (decentralized and asynchronous stochastic gradient descent). We empirically demonstrate that TensAIR achieves a nearly linear scale-out performance in terms of (1) the number of worker nodes deployed in the network, and (2) the throughput at which the data batches arrive at the dataflow operators. We depict the versatility of TensAIR by investigating both sparse (word embedding) and dense (image classification) use cases, for which TensAIR achieved from 6 to 116 times higher sustainable throughput rates than state-of-the-art systems for training ANN in a stream-processing pipeline.
♻ ☆ A Large-Scale Exploration of $μ$-Transfer SP
Large neural network models have become a mainstay of natural language processing and computer vision, yet their initialization and learning rates are set in a largely heuristic fashion, potentially varying from paper to paper and one model size to the next. The $\mu$-Parameterization ($\mu$P) offers a potential solution to these challenges, yielding scaling rules for model initialization and learning rates, and reportedly enabling zero-shot hyperparameter transfer from small to large models in a variety of cases. Despite the evident promise, the $\mu$P scaling rules are not yet widely adopted, perhaps due to higher implementation complexity, many variations, or complex theoretical background. This work investigates $\mu$P empirically, focusing on the ubiquitous transformer architecture, and aims to answer a simple question: does $\mu$-Transfer yield optimal learning rates in practice? Studying models with up to 10B parameters and training budgets of up to 190B tokens, we find $\mu$-Transfer works as intended for the majority of important cases, yet also identify a few cases where it may not. Our experiment codebase is available at https://github.com/lucaslingle/mu_transformer/
comment: V3: Formatting, refs, extra data. V2: Formatting, SP experiment
♻ ☆ Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition
We address the computational barrier of deploying advanced deep learning segmentation models in clinical settings by studying the efficacy of network compression through tensor decomposition. We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy. We applied Tucker decomposition to the convolutional kernels of the TotalSegmentator (TS) model, an nnU-Net model trained on a comprehensive dataset for automatic segmentation of 117 anatomical structures. Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TS dataset, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation performance. The application of Tucker decomposition to the TS model substantially reduced the model parameters and FLOPs across various compression rates, with limited loss in segmentation accuracy. We removed up to 88% of the model's parameters with no significant performance changes in the majority of classes after fine-tuning. Practical benefits varied across different graphics processing unit (GPU) architectures, with more distinct speed-ups on less powerful hardware. Post-hoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially sacrificing accuracy. This approach enables the broader adoption of advanced deep learning technologies in clinical practice, offering a way to navigate the constraints of hardware capabilities.
♻ ☆ Parallel Best Arm Identification in Heterogeneous Environments SP
In this paper, we study the tradeoffs between the time and the number of communication rounds of the best arm identification problem in the heterogeneous collaborative learning model, where multiple agents interact with possibly different environments and they want to learn in parallel an objective function in the aggregated environment. By proving almost tight upper and lower bounds, we show that collaborative learning in the heterogeneous setting is inherently more difficult than that in the homogeneous setting in terms of the time-round tradeoff.
comment: 15 pages (published in SPAA 2024)
♻ ☆ Graph Edits for Counterfactual Explanations: A comparative study
Counterfactuals have been established as a popular explainability technique which leverages a set of minimal edits to alter the prediction of a classifier. When considering conceptual counterfactuals on images, the edits requested should correspond to salient concepts present in the input data. At the same time, conceptual distances are defined by knowledge graphs, ensuring the optimality of conceptual edits. In this work, we extend previous endeavors on graph edits as counterfactual explanations by conducting a comparative study which encompasses both supervised and unsupervised Graph Neural Network (GNN) approaches. To this end, we pose the following significant research question: should we represent input data as graphs, which is the optimal GNN approach in terms of performance and time efficiency to generate minimal and meaningful counterfactual explanations for black-box image classifiers?
♻ ☆ Beyond Spatio-Temporal Representations: Evolving Fourier Transform for Temporal Graphs
We present the Evolving Graph Fourier Transform (EFT), the first invertible spectral transform that captures evolving representations on temporal graphs. We motivate our work by the inadequacy of existing methods for capturing the evolving graph spectra, which are also computationally expensive due to the temporal aspect along with the graph vertex domain. We view the problem as an optimization over the Laplacian of the continuous time dynamic graph. Additionally, we propose pseudo-spectrum relaxations that decompose the transformation process, making it highly computationally efficient. The EFT method adeptly captures the evolving graph's structural and positional properties, making it effective for downstream tasks on evolving graphs. Hence, as a reference implementation, we develop a simple neural model induced with EFT for capturing evolving graph spectra. We empirically validate our theoretical findings on a number of large-scale and standard temporal graph benchmarks and demonstrate that our model achieves state-of-the-art performance.
comment: Accepted as a full conference paper in the International Conference on Learning Representations 2024
♻ ☆ DimVis: Interpreting Visual Clusters in Dimensionality Reduction With Explainable Boosting Machine
Dimensionality Reduction (DR) techniques such as t-SNE and UMAP are popular for transforming complex datasets into simpler visual representations. However, while effective in uncovering general dataset patterns, these methods may introduce artifacts and suffer from interpretability issues. This paper presents DimVis, a visualization tool that employs supervised Explainable Boosting Machine (EBM) models (trained on user-selected data of interest) as an interpretation assistant for DR projections. Our tool facilitates high-dimensional data analysis by providing an interpretation of feature relevance in visual clusters through interactive exploration of UMAP projections. Specifically, DimVis uses a contrastive EBM model that is trained in real time to differentiate between the data inside and outside a cluster of interest. Taking advantage of the inherent explainable nature of the EBM, we then use this model to interpret the cluster itself via single and pairwise feature comparisons in a ranking based on the EBM model's feature importance. The applicability and effectiveness of DimVis are demonstrated via a use case and a usage scenario with real-world data. We also discuss the limitations and potential directions for future research.
comment: This manuscript is accepted for publication in EuroVis 2024 MLVis Workshop
♻ ☆ Multi-Level Aggregation and Recursive Alignment Architecture for Efficient Parallel Inference Segmentation Network
Real-time semantic segmentation is a crucial research for real-world applications. However, many methods lay particular emphasis on reducing the computational complexity and model size, while largely sacrificing the accuracy. To tackle this problem, we propose a parallel inference network customized for semantic segmentation tasks to achieve a good trade-off between speed and accuracy. We employ a shallow backbone to ensure real-time speed, and propose three core components to compensate for the reduced model capacity to improve accuracy. Specifically, we first design a dual-pyramidal path architecture (Multi-level Feature Aggregation Module, MFAM) to aggregate multi-level features from the encoder to each scale, providing hierarchical clues for subsequent spatial alignment and corresponding in-network inference. Then, we build Recursive Alignment Module (RAM) by combining the flow-based alignment module with recursive upsampling architecture for accurate spatial alignment between multi-scale feature maps with half the computational complexity of the straightforward alignment method. Finally, we perform independent parallel inference on the aligned features to obtain multi-scale scores, and adaptively fuse them through an attention-based Adaptive Scores Fusion Module (ASFM) so that the final prediction can favor objects of multiple scales. Our framework shows a better balance between speed and accuracy than state-of-the-art real-time methods on Cityscapes and CamVid datasets. We also conducted systematic ablation studies to gain insight into our motivation and architectural design. Code is available at: https://github.com/Yanhua-Zhang/MFARANet.
comment: 15 pages, 9 figures and 12 Tables. Manuscript completed on April 30, 2022
♻ ☆ Hacking Task Confounder in Meta-Learning IJCAI 2024
Meta-learning enables rapid generalization to new tasks by learning knowledge from various tasks. It is intuitively assumed that as the training progresses, a model will acquire richer knowledge, leading to better generalization performance. However, our experiments reveal an unexpected result: there is negative knowledge transfer between tasks, affecting generalization performance. To explain this phenomenon, we conduct Structural Causal Models (SCMs) for causal analysis. Our investigation uncovers the presence of spurious correlations between task-specific causal factors and labels in meta-learning. Furthermore, the confounding factors differ across different batches. We refer to these confounding factors as "Task Confounders". Based on these findings, we propose a plug-and-play Meta-learning Causal Representation Learner (MetaCRL) to eliminate task confounders. It encodes decoupled generating factors from multiple tasks and utilizes an invariant-based bi-level optimization mechanism to ensure their causality for meta-learning. Extensive experiments on various benchmark datasets demonstrate that our work achieves state-of-the-art (SOTA) performance.
comment: Accepted by IJCAI 2024, 9 pages, 5 figures, 4 tables
♻ ☆ A Closer Look at AUROC and AUPRC under Class Imbalance
In machine learning (ML), a widespread adage is that the area under the precision-recall curve (AUPRC) is a superior metric for model comparison to the area under the receiver operating characteristic (AUROC) for binary classification tasks with class imbalance. This paper challenges this notion through novel mathematical analysis, illustrating that AUROC and AUPRC can be concisely related in probabilistic terms. We demonstrate that AUPRC, contrary to popular belief, is not superior in cases of class imbalance and might even be a harmful metric, given its inclination to unduly favor model improvements in subpopulations with more frequent positive labels. This bias can inadvertently heighten algorithmic disparities. Prompted by these insights, a thorough review of existing ML literature was conducted, utilizing large language models to analyze over 1.5 million papers from arXiv. Our investigation focused on the prevalence and substantiation of the purported AUPRC superiority. The results expose a significant deficit in empirical backing and a trend of misattributions that have fuelled the widespread acceptance of AUPRC's supposed advantages. Our findings represent a dual contribution: a significant technical advancement in understanding metric behaviors and a stark warning about unchecked assumptions in the ML community. All experiments are accessible at https://github.com/mmcdermott/AUC_is_all_you_need.
♻ ☆ Language Imbalance Can Boost Cross-lingual Generalisation
Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
♻ ☆ Optimal Parallelization Strategies for Active Flow Control in Deep Reinforcement Learning-Based Computational Fluid Dynamics
Deep Reinforcement Learning (DRL) has emerged as a promising approach for handling highly dynamic and nonlinear Active Flow Control (AFC) problems. However, the computational cost associated with training DRL models presents a significant performance bottleneck. To address this challenge and enable efficient scaling on high-performance computing architectures, this study focuses on optimizing DRL-based algorithms in parallel settings. We validate an existing state-of-the-art DRL framework used for AFC problems and discuss its efficiency bottlenecks. Subsequently, by deconstructing the overall framework and conducting extensive scalability benchmarks for individual components, we investigate various hybrid parallelization configurations and propose efficient parallelization strategies. Moreover, we refine input/output (I/O) operations in multi-environment DRL training to tackle critical overhead associated with data movement. Finally, we demonstrate the optimized framework for a typical AFC problem where near-linear scaling can be obtained for the overall framework. We achieve a significant boost in parallel efficiency from around 49% to approximately 78%, and the training process is accelerated by approximately 47 times using 60 CPU cores. These findings are expected to provide valuable insights for further advancements in DRL-based AFC studies.
♻ ☆ Explainable Ponzi Schemes Detection on Ethereum
Blockchain technology has been successfully exploited for deploying new economic applications. However, it has started arousing the interest of malicious actors who deliver scams to deceive honest users and to gain economic advantages. Ponzi schemes are one of the most common scams. Here, we present a classifier for detecting smart Ponzi contracts on Ethereum, which can be used as the backbone for developing detection tools. First, we release a labelled data set with 4422 unique real-world smart contracts to address the problem of the unavailability of labelled data. Then, we show that our classifier outperforms the ones proposed in the literature when considering the AUC as a metric. Finally, we identify a small and effective set of features that ensures a good classification quality and investigate their impacts on the classification using eXplainable AI techniques.
comment: Accepted to ACM SAC'24
♻ ☆ A Clustering Method with Graph Maximum Decoding Information IJCNN 2024
The clustering method based on graph models has garnered increased attention for its widespread applicability across various knowledge domains. Its adaptability to integrate seamlessly with other relevant applications endows the graph model-based clustering analysis with the ability to robustly extract "natural associations" or "graph structures" within datasets, facilitating the modelling of relationships between data points. Despite its efficacy, the current clustering method utilizing the graph-based model overlooks the uncertainty associated with random walk access between nodes and the embedded structural information in the data. To address this gap, we present a novel Clustering method for Maximizing Decoding Information within graph-based models, named CMDI. CMDI innovatively incorporates two-dimensional structural information theory into the clustering process, consisting of two phases: graph structure extraction and graph vertex partitioning. Within CMDI, graph partitioning is reformulated as an abstract clustering problem, leveraging maximum decoding information to minimize uncertainty associated with random visits to vertices. Empirical evaluations on three real-world datasets demonstrate that CMDI outperforms classical baseline methods, exhibiting a superior decoding information ratio (DI-R). Furthermore, CMDI showcases heightened efficiency, particularly when considering prior knowledge (PK). These findings underscore the effectiveness of CMDI in enhancing decoding information quality and computational efficiency, positioning it as a valuable tool in graph-based clustering analyses.
comment: 9 pages, 9 figures, IJCNN 2024
♻ ☆ XIMAGENET-12: An Explainable AI Benchmark Dataset for Model Robustness Evaluation CVPR 2024
Despite the promising performance of existing visual models on public benchmarks, the critical assessment of their robustness for real-world applications remains an ongoing challenge. To bridge this gap, we propose an explainable visual dataset, XIMAGENET-12, to evaluate the robustness of visual models. XIMAGENET-12 consists of over 200K images with 15,410 manual semantic annotations. Specifically, we deliberately selected 12 categories from ImageNet, representing objects commonly encountered in practical life. To simulate real-world situations, we incorporated six diverse scenarios, such as overexposure, blurring, and color changes, etc. We further develop a quantitative criterion for robustness assessment, allowing for a nuanced understanding of how visual models perform under varying conditions, notably in relation to the background. We make the XIMAGENET-12 dataset and its corresponding code openly accessible at \url{https://sites.google.com/view/ximagenet-12/home}. We expect the introduction of the XIMAGENET-12 dataset will empower researchers to thoroughly evaluate the robustness of their visual models under challenging conditions.
comment: Paper accepted by Synthetic Data for Computer Vision Workshop @ IEEE CVPR 2024
♻ ☆ Confident Feature Ranking
Machine learning models are widely applied in various fields. Stakeholders often use post-hoc feature importance methods to better understand the input features' contribution to the models' predictions. The interpretation of the importance values provided by these methods is frequently based on the relative order of the features (their ranking) rather than the importance values themselves. Since the order may be unstable, we present a framework for quantifying the uncertainty in global importance values. We propose a novel method for the post-hoc interpretation of feature importance values that is based on the framework and pairwise comparisons of the feature importance values. This method produces simultaneous confidence intervals for the features' ranks, which include the ``true'' (infinite sample) ranks with high probability, and enables the selection of the set of the top-k important features.
♻ ☆ Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models
In a mixed generalized linear model, the objective is to learn multiple signals from unlabeled observations: each sample comes from exactly one signal, but it is not known which one. We consider the prototypical problem of estimating two statistically independent signals in a mixed generalized linear model with Gaussian covariates. Spectral methods are a popular class of estimators which output the top two eigenvectors of a suitable data-dependent matrix. However, despite the wide applicability, their design is still obtained via heuristic considerations, and the number of samples $n$ needed to guarantee recovery is super-linear in the signal dimension $d$. In this paper, we develop exact asymptotics on spectral methods in the challenging proportional regime in which $n, d$ grow large and their ratio converges to a finite constant. By doing so, we are able to optimize the design of the spectral method, and combine it with a simple linear estimator, in order to minimize the estimation error. Our characterization exploits a mix of tools from random matrices, free probability and the theory of approximate message passing algorithms. Numerical simulations for mixed linear regression and phase retrieval demonstrate the advantage enabled by our analysis over existing designs of spectral methods.
♻ ☆ Deep Neural Networks via Complex Network Theory: a Perspective IJCAI'24
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures. However, classic works adapt CNT metrics that only permit a topological analysis as they do not account for the effect of the input data. In addition, CNT metrics have been applied to a limited range of architectures, mainly including Fully Connected neural networks. In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning. For the novel metrics, in addition to the existing ones, we provide a mathematical formalisation for Fully Connected, AutoEncoder, Convolutional and Recurrent neural networks, of which we vary the activation functions and the number of hidden layers. We show that these metrics differentiate DNNs based on the architecture, the number of hidden layers, and the activation function. Our contribution provides a method rooted in physics for interpreting DNNs that offers insights beyond the traditional input-output relationship and the CNT topological analysis.
comment: IJCAI'24 (full paper, main track)
♻ ☆ Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers ICML 2021
Two-player, constant-sum games are well studied in the literature, but there has been limited progress outside of this setting. We propose Joint Policy-Space Response Oracles (JPSRO), an algorithm for training agents in n-player, general-sum extensive form games, which provably converges to an equilibrium. We further suggest correlated equilibria (CE) as promising meta-solvers, and propose a novel solution concept Maximum Gini Correlated Equilibrium (MGCE), a principled and computationally efficient family of solutions for solving the correlated equilibrium selection problem. We conduct several experiments using CE meta-solvers for JPSRO and demonstrate convergence on n-player, general-sum games.
comment: ICML 2021, 9 pages, coded implementation available in https://github.com/deepmind/open_spiel/ (jpsro.py in examples)
♻ ☆ Integrated Sensing-Communication-Computation for Edge Artificial Intelligence
Edge artificial intelligence (AI) has been a promising solution towards 6G to empower a series of advanced techniques such as digital twins, holographic projection, semantic communications, and auto-driving, for achieving intelligence of everything. The performance of edge AI tasks, including edge learning and edge AI inference, depends on the quality of three highly coupled processes, i.e., sensing for data acquisition, computation for information extraction, and communication for information transmission. However, these three modules need to compete for network resources for enhancing their own quality-of-services. To this end, integrated sensing-communication-computation (ISCC) is of paramount significance for improving resource utilization as well as achieving the customized goals of edge AI tasks. By investigating the interplay among the three modules, this article presents various kinds of ISCC schemes for federated edge learning tasks and edge AI inference tasks in both application and physical layers.
comment: This paper was accepted by IEEE Internet of Things Magazine on April-18-2024
♻ ☆ Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer. The model distinguishes itself through several significant innovations: (1) VMD-MIC+FE Feature Engineering: The incorporation of sophisticated feature engineering techniques, specifically through the integration of Variational Mode Decomposition (VMD), Maximal Information Coefficient (MIC), and feature engineering (FE) methods, enables comprehensive perception and extraction of deep-level features from complex and variable financial datasets. (2) DS Encoder Informer: The architecture of the original Informer has been modified by adopting a Stacked Informer structure in the encoder, and an innovative introduction of a multi-head decentralized sparse attention mechanism, referred to as the Distributed Informer. This modification has led to a reduction in the number of attention blocks, thereby enhancing both the training accuracy and speed. (3) GC Enhanced Adam \& Dynamic Loss Function: The deployment of a Gradient Clipping-enhanced Adam optimization algorithm and a dynamic loss function represents a pioneering approach within the domain of financial time series prediction. This novel methodology optimizes model performance and adapts more dynamically to evolving data patterns. Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models and other Informer-based architectures in terms of prediction accuracy, adaptability, and generality. Furthermore, the paper identifies potential avenues for future enhancements, with a particular focus on the identification and quantification of pivotal impacting events and news. This is aimed at further refining the predictive efficacy of the model.
comment: The methodology, experiments, and language of the original version have been completely updated. Detailed adjustments will be made in the future
♻ ☆ Beacon, a lightweight deep reinforcement learning benchmark library for flow control
Recently, the increasing use of deep reinforcement learning for flow control problems has led to a new area of research, focused on the coupling and the adaptation of the existing algorithms to the control of numerical fluid dynamics environments. Although still in its infancy, the field has seen multiple successes in a short time span, and its fast development pace can certainly be partly imparted to the open-source effort that drives the expansion of the community. Yet, this emerging domain still misses a common ground to (i) ensure the reproducibility of the results, and (ii) offer a proper ad-hoc benchmarking basis. To this end, we propose Beacon, an open-source benchmark library composed of seven lightweight 1D and 2D flow control problems with various characteristics, action and observation space characteristics, and CPU requirements. In this contribution, the seven considered problems are described, and reference control solutions are provided. The sources for the following work are available at https://github.com/jviquerat/beacon.
♻ ☆ Label Inference Attacks against Node-level Vertical Federated GNNs
Federated learning enables collaborative training of machine learning models by keeping the raw data of the involved workers private. Three of its main objectives are to improve the models' privacy, security, and scalability. Vertical Federated Learning (VFL) offers an efficient cross-silo setting where a few parties collaboratively train a model without sharing the same features. In such a scenario, classification labels are commonly considered sensitive information held exclusively by one (active) party, while other (passive) parties use only their local information. Recent works have uncovered important flaws of VFL, leading to possible label inference attacks under the assumption that the attacker has some, even limited, background knowledge on the relation between labels and data. In this work, we are the first (to the best of our knowledge) to investigate label inference attacks on VFL using a zero-background knowledge strategy. To formulate our proposal, we focus on Graph Neural Networks (GNNs) as a target model for the underlying VFL. In particular, we refer to node classification tasks, which are widely studied, and GNNs have shown promising results. Our proposed attack, BlindSage, provides impressive results in the experiments, achieving nearly 100% accuracy in most cases. Even when the attacker has no information about the used architecture or the number of classes, the accuracy remains above 90% in most instances. Finally, we observe that well-known defenses cannot mitigate our attack without affecting the model's performance on the main classification task.
♻ ☆ PDE-CNNs: Axiomatic Derivations and Applications
PDE-based Group Convolutional Neural Networks (PDE-G-CNNs) utilize solvers of geometrically meaningful evolution PDEs as substitutes for the conventional components in G-CNNs. PDE-G-CNNs offer several key benefits all at once: fewer parameters, inherent equivariance, better performance, data efficiency, and geometric interpretability. In this article we focus on Euclidean equivariant PDE-G-CNNs where the feature maps are two dimensional throughout. We call this variant of the framework a PDE-CNN. From a machine learning perspective, we list several practically desirable axioms and derive from these which PDEs should be used in a PDE-CNN. Here our approach to geometric learning via PDEs is inspired by the axioms of classical linear and morphological scale-space theory, which we generalize by introducing semifield-valued signals. Furthermore, we experimentally confirm for small networks that PDE-CNNs offer fewer parameters, increased performance, and better data efficiency when compared to CNNs. We also investigate what effect the use of different semifields has on the performance of the models.
Multimedia 7
☆ A Perspective on Deep Vision Performance with Standard Image and Video Codecs CVPR 2024
Resource-constrained hardware, such as edge devices or cell phones, often rely on cloud servers to provide the required computational resources for inference in deep vision models. However, transferring image and video data from an edge or mobile device to a cloud server requires coding to deal with network constraints. The use of standardized codecs, such as JPEG or H.264, is prevalent and required to ensure interoperability. This paper aims to examine the implications of employing standardized codecs within deep vision pipelines. We find that using JPEG and H.264 coding significantly deteriorates the accuracy across a broad range of vision tasks and models. For instance, strong compression rates reduce semantic segmentation accuracy by more than 80% in mIoU. In contrast to previous findings, our analysis extends beyond image and action classification to localization and dense prediction tasks, thus providing a more comprehensive perspective.
comment: Accepted at CVPR 2024 Workshop on AI for Streaming (AIS)
☆ Food Portion Estimation via 3D Object Scaling
Image-based methods to analyze food images have alleviated the user burden and biases associated with traditional methods. However, accurate portion estimation remains a major challenge due to the loss of 3D information in the 2D representation of foods captured by smartphone cameras or wearable devices. In this paper, we propose a new framework to estimate both food volume and energy from 2D images by leveraging the power of 3D food models and physical reference in the eating scene. Our method estimates the pose of the camera and the food object in the input image and recreates the eating occasion by rendering an image of a 3D model of the food with the estimated poses. We also introduce a new dataset, SimpleFood45, which contains 2D images of 45 food items and associated annotations including food volume, weight, and energy. Our method achieves an average error of 31.10 kCal (17.67%) on this dataset, outperforming existing portion estimation methods.
☆ Shotit: compute-efficient image-to-video search engine for the cloud ICMR 2024
With the rapid growth of information technology, users are exposed to a massive amount of data online, including image, music, and video. This has led to strong needs to provide effective corresponsive search services such as image, music, and video search services. Most of them are operated based on keywords, namely using keywords to find related image, music, and video. Additionally, there are image-to-image search services that enable users to find similar images using one input image. Given that videos are essentially composed of image frames, then similar videos can be searched by one input image or screenshot. We want to target this scenario and provide an efficient method and implementation in this paper. We present Shotit, a cloud-native image-to-video search engine that tailors this search scenario in a compute-efficient approach. One main limitation faced in this scenario is the scale of its dataset. A typical image-to-image search engine only handles one-to-one relationships, colloquially, one image corresponds to another single image. But image-to-video proliferates. Take a 24-min length video as an example, it will generate roughly 20,000 image frames. As the number of videos grows, the scale of the dataset explodes exponentially. In this case, a compute-efficient approach ought to be considered, and the system design should cater to the cloud-native trend. Choosing an emerging technology - vector database as its backbone, Shotit fits these two metrics performantly. Experiments for two different datasets, a 50 thousand-scale Blender Open Movie dataset, and a 50 million-scale proprietary TV genre dataset at a 4 Core 32GB RAM Intel Xeon Gold 6271C cloud machine with object storage reveal the effectiveness of Shotit. A demo regarding the Blender Open Movie dataset is illustrated within this paper.
comment: Submitted to ACM ICMR 2024
☆ HyDiscGAN: A Hybrid Distributed cGAN for Audio-Visual Privacy Preservation in Multimodal Sentiment Analysis IJCAI-2024
Multimodal Sentiment Analysis (MSA) aims to identify speakers' sentiment tendencies in multimodal video content, raising serious concerns about privacy risks associated with multimodal data, such as voiceprints and facial images. Recent distributed collaborative learning has been verified as an effective paradigm for privacy preservation in multimodal tasks. However, they often overlook the privacy distinctions among different modalities, struggling to strike a balance between performance and privacy preservation. Consequently, it poses an intriguing question of maximizing multimodal utilization to improve performance while simultaneously protecting necessary modalities. This paper forms the first attempt at modality-specified (i.e., audio and visual) privacy preservation in MSA tasks. We propose a novel Hybrid Distributed cross-modality cGAN framework (HyDiscGAN), which learns multimodality alignment to generate fake audio and visual features conditioned on shareable de-identified textual data. The objective is to leverage the fake features to approximate real audio and visual content to guarantee privacy preservation while effectively enhancing performance. Extensive experiments show that compared with the state-of-the-art MSA model, HyDiscGAN can achieve superior or competitive performance while preserving privacy.
comment: 13 pages, IJCAI-2024
♻ ☆ Can We Edit Multimodal Large Language Models? EMNLP 2023
In this paper, we focus on editing Multimodal Large Language Models (MLLMs). Compared to editing single-modal LLMs, multimodal model editing is more challenging, which demands a higher level of scrutiny and careful consideration in the editing process. To facilitate research in this area, we construct a new benchmark, dubbed MMEdit, for editing multimodal LLMs and establishing a suite of innovative metrics for evaluation. We conduct comprehensive experiments involving various model editing baselines and analyze the impact of editing different components for multimodal LLMs. Empirically, we notice that previous baselines can implement editing multimodal LLMs to some extent, but the effect is still barely satisfactory, indicating the potential difficulty of this task. We hope that our work can provide the NLP community with insights. Code and dataset are available in https://github.com/zjunlp/EasyEdit.
comment: EMNLP 2023. Add the Exact Match/Accuracy results of Reliability and T-Generality
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: minor fixes/rephrasing
♻ ☆ Quantifying and Enhancing Multi-modal Robustness with Modality Preference ICLR 2024
Multi-modal models have shown a promising capability to effectively integrate information from various sources, yet meanwhile, they are found vulnerable to pervasive perturbations, such as uni-modal attacks and missing conditions. To counter these perturbations, robust multi-modal representations are highly expected, which are positioned well away from the discriminative multi-modal decision boundary. In this paper, different from conventional empirical studies, we focus on a commonly used joint multi-modal framework and theoretically discover that larger uni-modal representation margins and more reliable integration for modalities are essential components for achieving higher robustness. This discovery can further explain the limitation of multi-modal robustness and the phenomenon that multi-modal models are often vulnerable to attacks on the specific modality. Moreover, our analysis reveals how the widespread issue, that the model has different preferences for modalities, limits the multi-modal robustness by influencing the essential components and could lead to attacks on the specific modality highly effective. Inspired by our theoretical finding, we introduce a training procedure called Certifiable Robust Multi-modal Training (CRMT), which can alleviate this influence from modality preference and explicitly regulate essential components to significantly improve robustness in a certifiable manner. Our method demonstrates substantial improvements in performance and robustness compared with existing methods. Furthermore, our training procedure can be easily extended to enhance other robust training strategies, highlighting its credibility and flexibility.
comment: Accepted to ICLR 2024
Computation and Language 96
☆ Related Work and Citation Text Generation: A Survey
To convince readers of the novelty of their research paper, authors must perform a literature review and compose a coherent story that connects and relates prior works to the current work. This challenging nature of literature review writing makes automatic related work generation (RWG) academically and computationally interesting, and also makes it an excellent test bed for examining the capability of SOTA natural language processing (NLP) models. Since the initial proposal of the RWG task, its popularity has waxed and waned, following the capabilities of mainstream NLP approaches. In this work, we survey the zoo of RWG historical works, summarizing the key approaches and task definitions and discussing the ongoing challenges of RWG.
☆ The Landscape of Emerging AI Agent Architectures for Reasoning, Planning, and Tool Calling: A Survey
This survey paper examines the recent advancements in AI agent implementations, with a focus on their ability to achieve complex goals that require enhanced reasoning, planning, and tool execution capabilities. The primary objectives of this work are to a) communicate the current capabilities and limitations of existing AI agent implementations, b) share insights gained from our observations of these systems in action, and c) suggest important considerations for future developments in AI agent design. We achieve this by providing overviews of single-agent and multi-agent architectures, identifying key patterns and divergences in design choices, and evaluating their overall impact on accomplishing a provided goal. Our contribution outlines key themes when selecting an agentic architecture, the impact of leadership on agent systems, agent communication styles, and key phases for planning, execution, and reflection that enable robust AI agent systems.
comment: 13 pages,6 figures,38 references
☆ Quantifying Multilingual Performance of Large Language Models Across Languages
The training process of Large Language Models (LLMs) requires extensive text corpus. However, these data are often unevenly distributed in different languages. As a result, LLMs perform well on common languages, such as English, German, and French, but perform poorly on low-resource languages. However, currently there is no work to quantitatively measure the performance of LLMs in low-resource languages. To fill this gap, we proposed the Language Ranker that aims to benchmark and rank different languages according to the performance of LLMs on those languages. We employ the LLM's performance on the English corpus as a baseline to compare the performances of different languages and English. We have the following three findings: 1. The performance rankings of different LLMs in all languages are roughly the same. 2. LLMs with different sizes have the same partial order of performance. 3. There is a strong correlation between LlaMa2's performance in different languages and the proportion of the pre-training corpus. These findings illustrate that the Language Ranker can be used as an indicator to measure the language performance of LLMs.
☆ Evaluating Span Extraction in Generative Paradigm: A Reflection on Aspect-Based Sentiment Analysis
In the era of rapid evolution of generative language models within the realm of natural language processing, there is an imperative call to revisit and reformulate evaluation methodologies, especially in the domain of aspect-based sentiment analysis (ABSA). This paper addresses the emerging challenges introduced by the generative paradigm, which has moderately blurred traditional boundaries between understanding and generation tasks. Building upon prevailing practices in the field, we analyze the advantages and shortcomings associated with the prevalent ABSA evaluation paradigms. Through an in-depth examination, supplemented by illustrative examples, we highlight the intricacies involved in aligning generative outputs with other evaluative metrics, specifically those derived from other tasks, including question answering. While we steer clear of advocating for a singular and definitive metric, our contribution lies in paving the path for a comprehensive guideline tailored for ABSA evaluations in this generative paradigm. In this position paper, we aim to provide practitioners with profound reflections, offering insights and directions that can aid in navigating this evolving landscape, ensuring evaluations that are both accurate and reflective of generative capabilities.
comment: 10 pages
☆ GenFighter: A Generative and Evolutive Textual Attack Removal
Adversarial attacks pose significant challenges to deep neural networks (DNNs) such as Transformer models in natural language processing (NLP). This paper introduces a novel defense strategy, called GenFighter, which enhances adversarial robustness by learning and reasoning on the training classification distribution. GenFighter identifies potentially malicious instances deviating from the distribution, transforms them into semantically equivalent instances aligned with the training data, and employs ensemble techniques for a unified and robust response. By conducting extensive experiments, we show that GenFighter outperforms state-of-the-art defenses in accuracy under attack and attack success rate metrics. Additionally, it requires a high number of queries per attack, making the attack more challenging in real scenarios. The ablation study shows that our approach integrates transfer learning, a generative/evolutive procedure, and an ensemble method, providing an effective defense against NLP adversarial attacks.
☆ Select and Reorder: A Novel Approach for Neural Sign Language Production LREC
Sign languages, often categorised as low-resource languages, face significant challenges in achieving accurate translation due to the scarcity of parallel annotated datasets. This paper introduces Select and Reorder (S&R), a novel approach that addresses data scarcity by breaking down the translation process into two distinct steps: Gloss Selection (GS) and Gloss Reordering (GR). Our method leverages large spoken language models and the substantial lexical overlap between source spoken languages and target sign languages to establish an initial alignment. Both steps make use of Non-AutoRegressive (NAR) decoding for reduced computation and faster inference speeds. Through this disentanglement of tasks, we achieve state-of-the-art BLEU and Rouge scores on the Meine DGS Annotated (mDGS) dataset, demonstrating a substantial BLUE-1 improvement of 37.88% in Text to Gloss (T2G) Translation. This innovative approach paves the way for more effective translation models for sign languages, even in resource-constrained settings.
comment: 8 Pages, 5 Figures, 7 Tables, LREC-COLING 2024
☆ Pack of LLMs: Model Fusion at Test-Time via Perplexity Optimization
Fusing knowledge from multiple Large Language Models (LLMs) can combine their diverse strengths to achieve improved performance on a given task. However, current fusion approaches either rely on learning-based fusers that do not generalize to new LLMs, or do not take into account how well each LLM understands the input. In this work, we study LLM fusion at test-time, which enables leveraging knowledge from arbitrary user-specified LLMs during inference. We introduce Pack of LLMs (PackLLM), an effective method for test-time fusion that leverages each LLM's expertise, given an input prompt. PackLLM performs model fusion by solving an optimization problem for determining each LLM's importance, so that perplexity over the input prompt is minimized. First, our simple PackLLM-sim variant validates that perplexity is a good indicator for measuring each LLM's expertise. Second, our PackLLM-opt variant approximately solves the perplexity minimization problem via a greedy algorithm. The derived importance weights are used to combine the LLMs during inference. We conduct experiments with over 100 total LLMs on a diverse set of tasks. Experimental results show that (i) perplexity is a reliable measure for LLM fusion, (ii) PackLLM outperforms test-time fusion baselines by 1.89% accuracy points, and (iii) PackLLM can leverage new LLMs to improve performance over learning-based fusion approaches by 3.92-11.94% accuracy points.
☆ Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models
In real world, large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications. For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work, and numerous optimization algorithms and code libraries have been proposed to improve it. Nonetheless, users still find it challenging to compare the effectiveness of all the above methods and understand the underlying mechanisms. In this work, we perform a detailed coarse-to-fine analysis of the inference performance of various code libraries. To evaluate the overall effectiveness, we examine four usage scenarios within two practical applications. We further provide both theoretical and empirical fine-grained analyses of each module in the Transformer architecture. Our experiments yield comprehensive results that are invaluable for researchers to evaluate code libraries and improve inference strategies.
☆ Paraphrase and Solve: Exploring and Exploiting the Impact of Surface Form on Mathematical Reasoning in Large Language Models NAACL
This paper studies the relationship between the surface form of a mathematical problem and its solvability by large language models. We find that subtle alterations in the surface form can significantly impact the answer distribution and the solve rate, exposing the language model's lack of robustness and sensitivity to the surface form in reasoning through complex problems. To improve mathematical reasoning performance, we propose Self-Consistency-over-Paraphrases (SCoP), which diversifies reasoning paths from specific surface forms of the problem. We evaluate our approach on four mathematics reasoning benchmarks over three large language models and show that SCoP improves mathematical reasoning performance over vanilla self-consistency, particularly for problems initially deemed unsolvable. Finally, we provide additional experiments and discussion regarding problem difficulty and surface forms, including cross-model difficulty agreement and paraphrasing transferability, and Variance of Variations (VOV) for language model evaluation.
comment: Accepted to the main conference of NAACL (2024)
☆ A Data-Driven Representation for Sign Language Production
Phonetic representations are used when recording spoken languages, but no equivalent exists for recording signed languages. As a result, linguists have proposed several annotation systems that operate on the gloss or sub-unit level; however, these resources are notably irregular and scarce. Sign Language Production (SLP) aims to automatically translate spoken language sentences into continuous sequences of sign language. However, current state-of-the-art approaches rely on scarce linguistic resources to work. This has limited progress in the field. This paper introduces an innovative solution by transforming the continuous pose generation problem into a discrete sequence generation problem. Thus, overcoming the need for costly annotation. Although, if available, we leverage the additional information to enhance our approach. By applying Vector Quantisation (VQ) to sign language data, we first learn a codebook of short motions that can be combined to create a natural sequence of sign. Where each token in the codebook can be thought of as the lexicon of our representation. Then using a transformer we perform a translation from spoken language text to a sequence of codebook tokens. Each token can be directly mapped to a sequence of poses allowing the translation to be performed by a single network. Furthermore, we present a sign stitching method to effectively join tokens together. We evaluate on the RWTH-PHOENIX-Weather-2014T (PHOENIX14T) and the more challenging Meine DGS Annotated (mDGS) datasets. An extensive evaluation shows our approach outperforms previous methods, increasing the BLEU-1 back translation score by up to 72%.
comment: 8 Pages, 3 Figures, 7 Tables, 18th IEEE International Conference on Automatic Face and Gesture Recognition 2024
☆ A Federated Learning Approach to Privacy Preserving Offensive Language Identification LREC
The spread of various forms of offensive speech online is an important concern in social media. While platforms have been investing heavily in ways of coping with this problem, the question of privacy remains largely unaddressed. Models trained to detect offensive language on social media are trained and/or fine-tuned using large amounts of data often stored in centralized servers. Since most social media data originates from end users, we propose a privacy preserving decentralized architecture for identifying offensive language online by introducing Federated Learning (FL) in the context of offensive language identification. FL is a decentralized architecture that allows multiple models to be trained locally without the need for data sharing hence preserving users' privacy. We propose a model fusion approach to perform FL. We trained multiple deep learning models on four publicly available English benchmark datasets (AHSD, HASOC, HateXplain, OLID) and evaluated their performance in detail. We also present initial cross-lingual experiments in English and Spanish. We show that the proposed model fusion approach outperforms baselines in all the datasets while preserving privacy.
comment: Accepted to TRAC 2024 (Fourth Workshop on Threat, Aggression and Cyberbullying) at LREC-COLING 2024 (The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation)
☆ Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent
A multimodal AI agent is characterized by its ability to process and learn from various types of data, including natural language, visual, and audio inputs, to inform its actions. Despite advancements in large language models that incorporate visual data, such as GPT-4V, effectively translating image-based data into actionable outcomes for AI agents continues to be challenging. In this paper, we introduce a multimodal model that incorporates the concept of functional token specifically designed for AI agent applications. To ensure compatibility with edge devices, our model is optimized to a compact size of less than 1B parameters. Like GPT-4, our model can process both English and Chinese. We demonstrate that this model is capable of operating efficiently on a wide range of edge devices, including as constrained as a Raspberry Pi.
☆ Unifying Bias and Unfairness in Information Retrieval: A Survey of Challenges and Opportunities with Large Language Models
With the rapid advancement of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.
☆ AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts
Cognitive Behavioral Therapy (CBT) is an effective technique for addressing the irrational thoughts stemming from mental illnesses, but it necessitates precise identification of cognitive pathways to be successfully implemented in patient care. In current society, individuals frequently express negative emotions on social media on specific topics, often exhibiting cognitive distortions, including suicidal behaviors in extreme cases. Yet, there is a notable absence of methodologies for analyzing cognitive pathways that could aid psychotherapists in conducting effective interventions online. In this study, we gathered data from social media and established the task of extracting cognitive pathways, annotating the data based on a cognitive theoretical framework. We initially categorized the task of extracting cognitive pathways as a hierarchical text classification with four main categories and nineteen subcategories. Following this, we structured a text summarization task to help psychotherapists quickly grasp the essential information. Our experiments evaluate the performance of deep learning and large language models (LLMs) on these tasks. The results demonstrate that our deep learning method achieved a micro-F1 score of 62.34% in the hierarchical text classification task. Meanwhile, in the text summarization task, GPT-4 attained a Rouge-1 score of 54.92 and a Rouge-2 score of 30.86, surpassing the experimental deep learning model's performance. However, it may suffer from an issue of hallucination. We have made all models and codes publicly available to support further research in this field.
☆ Research on emotionally intelligent dialogue generation based on automatic dialogue system
Automated dialogue systems are important applications of artificial intelligence, and traditional systems struggle to understand user emotions and provide empathetic feedback. This study integrates emotional intelligence technology into automated dialogue systems and creates a dialogue generation model with emotional intelligence through deep learning and natural language processing techniques. The model can detect and understand a wide range of emotions and specific pain signals in real time, enabling the system to provide empathetic interaction. By integrating the results of the study "Can artificial intelligence detect pain and express pain empathy?", the model's ability to understand the subtle elements of pain empathy has been enhanced, setting higher standards for emotional intelligence dialogue systems. The project aims to provide theoretical understanding and practical suggestions to integrate advanced emotional intelligence capabilities into dialogue systems, thereby improving user experience and interaction quality.
☆ Open-Ended Wargames with Large Language Models
Wargames are a powerful tool for understanding and rehearsing real-world decision making. Automated play of wargames using artificial intelligence (AI) enables possibilities beyond those of human-conducted games, such as playing the game many times over to see a range of possible outcomes. There are two categories of wargames: quantitative games, with discrete types of moves, and qualitative games, which revolve around open-ended responses. Historically, automation efforts have focused on quantitative games, but large language models (LLMs) make it possible to automate qualitative wargames. We introduce "Snow Globe," an LLM-powered multi-agent system for playing qualitative wargames. With Snow Globe, every stage of a text-based qualitative wargame from scenario preparation to post-game analysis can be optionally carried out by AI, humans, or a combination thereof. We describe its software architecture conceptually and release an open-source implementation alongside this publication. As case studies, we simulate a tabletop exercise about an AI incident response and a political wargame about a geopolitical crisis. We discuss potential applications of the approach and how it fits into the broader wargaming ecosystem.
comment: 15 pages, 2 figures
☆ Exploring Key Point Analysis with Pairwise Generation and Graph Partitioning NAACL 2024
Key Point Analysis (KPA), the summarization of multiple arguments into a concise collection of key points, continues to be a significant and unresolved issue within the field of argument mining. Existing models adapt a two-stage pipeline of clustering arguments or generating key points for argument clusters. This approach rely on semantic similarity instead of measuring the existence of shared key points among arguments. Additionally, it only models the intra-cluster relationship among arguments, disregarding the inter-cluster relationship between arguments that do not share key points. To address these limitations, we propose a novel approach for KPA with pairwise generation and graph partitioning. Our objective is to train a generative model that can simultaneously provide a score indicating the presence of shared key point between a pair of arguments and generate the shared key point. Subsequently, to map generated redundant key points to a concise set of key points, we proceed to construct an arguments graph by considering the arguments as vertices, the generated key points as edges, and the scores as edge weights. We then propose a graph partitioning algorithm to partition all arguments sharing the same key points to the same subgraph. Notably, our experimental findings demonstrate that our proposed model surpasses previous models when evaluated on both the ArgKP and QAM datasets.
comment: 11 pages, 4 figures, 4 tables. Accepted to NAACL 2024
☆ TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu LREC
News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
comment: Accepted at LREC-COLING 2024
☆ To Drop or Not to Drop? Predicting Argument Ellipsis Judgments: A Case Study in Japanese LREC
Speakers sometimes omit certain arguments of a predicate in a sentence; such omission is especially frequent in pro-drop languages. This study addresses a question about ellipsis -- what can explain the native speakers' ellipsis decisions? -- motivated by the interest in human discourse processing and writing assistance for this choice. To this end, we first collect large-scale human annotations of whether and why a particular argument should be omitted across over 2,000 data points in the balanced corpus of Japanese, a prototypical pro-drop language. The data indicate that native speakers overall share common criteria for such judgments and further clarify their quantitative characteristics, e.g., the distribution of related linguistic factors in the balanced corpus. Furthermore, the performance of the language model-based argument ellipsis judgment model is examined, and the gap between the systems' prediction and human judgments in specific linguistic aspects is revealed. We hope our fundamental resource encourages further studies on natural human ellipsis judgment.
comment: 13 pages; accepted by LREC-COLING 2024
☆ A Preference-driven Paradigm for Enhanced Translation with Large Language Models NAACL 2024
Recent research has shown that large language models (LLMs) can achieve remarkable translation performance through supervised fine-tuning (SFT) using only a small amount of parallel data. However, SFT simply instructs the model to imitate the reference translations at the token level, making it vulnerable to the noise present in the references. Hence, the assistance from SFT often reaches a plateau once the LLMs have achieved a certain level of translation capability, and further increasing the size of parallel data does not provide additional benefits. To overcome this plateau associated with imitation-based SFT, we propose a preference-based approach built upon the Plackett-Luce model. The objective is to steer LLMs towards a more nuanced understanding of translation preferences from a holistic view, while also being more resilient in the absence of gold translations. We further build a dataset named MAPLE to verify the effectiveness of our approach, which includes multiple translations of varying quality for each source sentence. Extensive experiments demonstrate the superiority of our approach in "breaking the plateau" across diverse LLMs and test settings. Our in-depth analysis underscores the pivotal role of diverse translations and accurate preference scores in the success of our approach.
comment: Accepted to NAACL 2024 (long, main)
☆ Sampling-based Pseudo-Likelihood for Membership Inference Attacks
Large Language Models (LLMs) are trained on large-scale web data, which makes it difficult to grasp the contribution of each text. This poses the risk of leaking inappropriate data such as benchmarks, personal information, and copyrighted texts in the training data. Membership Inference Attacks (MIA), which determine whether a given text is included in the model's training data, have been attracting attention. Previous studies of MIAs revealed that likelihood-based classification is effective for detecting leaks in LLMs. However, the existing methods cannot be applied to some proprietary models like ChatGPT or Claude 3 because the likelihood is unavailable to the user. In this study, we propose a Sampling-based Pseudo-Likelihood (\textbf{SPL}) method for MIA (\textbf{SaMIA}) that calculates SPL using only the text generated by an LLM to detect leaks. The SaMIA treats the target text as the reference text and multiple outputs from the LLM as text samples, calculates the degree of $n$-gram match as SPL, and determines the membership of the text in the training data. Even without likelihoods, SaMIA performed on par with existing likelihood-based methods.
☆ In-Context Learning State Vector with Inner and Momentum Optimization
Large Language Models (LLMs) have exhibited an impressive ability to perform In-Context Learning (ICL) from only a few examples. Recent works have indicated that the functions learned by ICL can be represented through compressed vectors derived from the transformer. However, the working mechanisms and optimization of these vectors are yet to be thoroughly explored. In this paper, we address this gap by presenting a comprehensive analysis of these compressed vectors, drawing parallels to the parameters trained with gradient descent, and introduce the concept of state vector. Inspired by the works on model soup and momentum-based gradient descent, we propose inner and momentum optimization methods that are applied to refine the state vector progressively as test-time adaptation. Moreover, we simulate state vector aggregation in the multiple example setting, where demonstrations comprising numerous examples are usually too lengthy for regular ICL, and further propose a divide-and-conquer aggregation method to address this challenge. We conduct extensive experiments using Llama-2 and GPT-J in both zero-shot setting and few-shot setting. The experimental results show that our optimization method effectively enhances the state vector and achieves the state-of-the-art performance on diverse tasks. Code is available at https://github.com/HITsz-TMG/ICL-State-Vector
comment: 17 pages, 7 figures, 5 tables
☆ Position Engineering: Boosting Large Language Models through Positional Information Manipulation
The performance of large language models (LLMs) is significantly influenced by the quality of the prompts provided. In response, researchers have developed enormous prompt engineering strategies aimed at modifying the prompt text to enhance task performance. In this paper, we introduce a novel technique termed position engineering, which offers a more efficient way to guide large language models. Unlike prompt engineering, which requires substantial effort to modify the text provided to LLMs, position engineering merely involves altering the positional information in the prompt without modifying the text itself. We have evaluated position engineering in two widely-used LLM scenarios: retrieval-augmented generation (RAG) and in-context learning (ICL). Our findings show that position engineering substantially improves upon the baseline in both cases. Position engineering thus represents a promising new strategy for exploiting the capabilities of large language models.
Prompt-tuning for Clickbait Detection via Text Summarization
Clickbaits are surprising social posts or deceptive news headlines that attempt to lure users for more clicks, which have posted at unprecedented rates for more profit or commercial revenue. The spread of clickbait has significant negative impacts on the users, which brings users misleading or even click-jacking attacks. Different from fake news, the crucial problem in clickbait detection is determining whether the headline matches the corresponding content. Most existing methods compute the semantic similarity between the headlines and contents for detecting clickbait. However, due to significant differences in length and semantic features between headlines and contents, directly calculating semantic similarity is often difficult to summarize the relationship between them. To address this problem, we propose a prompt-tuning method for clickbait detection via text summarization in this paper, text summarization is introduced to summarize the contents, and clickbait detection is performed based on the similarity between the generated summary and the contents. Specifically, we first introduce a two-stage text summarization model to produce high-quality news summaries based on pre-trained language models, and then both the headlines and new generated summaries are incorporated as the inputs for prompt-tuning. Additionally, a variety of strategies are conducted to incorporate external knowledge for improving the performance of clickbait detection. The extensive experiments on well-known clickbait detection datasets demonstrate that our method achieved state-of-the-art performance.
☆ Kathakali Hand Gesture Recognition With Minimal Data
The Indian classical dance-drama Kathakali has a set of hand gestures called Mudras, which form the fundamental units of all its dance moves and postures. Recognizing the depicted mudra becomes one of the first steps in its digital processing. The work treats the problem as a 24-class classification task and proposes a vector-similarity-based approach using pose estimation, eliminating the need for further training or fine-tuning. This approach overcomes the challenge of data scarcity that limits the application of AI in similar domains. The method attains 92% accuracy which is a similar or better performance as other model-training-based works existing in the domain, with the added advantage that the method can still work with data sizes as small as 1 or 5 samples with a slightly reduced performance. Working with images, videos, and even real-time streams is possible. The system can work with hand-cropped or full-body images alike. We have developed and made public a dataset for the Kathakali Mudra Recognition as part of this work.
☆ Neuron Specialization: Leveraging intrinsic task modularity for multilingual machine translation
Training a unified multilingual model promotes knowledge transfer but inevitably introduces negative interference. Language-specific modeling methods show promise in reducing interference. However, they often rely on heuristics to distribute capacity and struggle to foster cross-lingual transfer via isolated modules. In this paper, we explore intrinsic task modularity within multilingual networks and leverage these observations to circumvent interference under multilingual translation. We show that neurons in the feed-forward layers tend to be activated in a language-specific manner. Meanwhile, these specialized neurons exhibit structural overlaps that reflect language proximity, which progress across layers. Based on these findings, we propose Neuron Specialization, an approach that identifies specialized neurons to modularize feed-forward layers and then continuously updates them through sparse networks. Extensive experiments show that our approach achieves consistent performance gains over strong baselines with additional analyses demonstrating reduced interference and increased knowledge transfer.
☆ FIZZ: Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document ACL
Through the advent of pre-trained language models, there have been notable advancements in abstractive summarization systems. Simultaneously, a considerable number of novel methods for evaluating factual consistency in abstractive summarization systems has been developed. But these evaluation approaches incorporate substantial limitations, especially on refinement and interpretability. In this work, we propose highly effective and interpretable factual inconsistency detection method metric Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document for abstractive summarization systems that is based on fine-grained atomic facts decomposition. Moreover, we align atomic facts decomposed from the summary with the source document through adaptive granularity expansion. These atomic facts represent a more fine-grained unit of information, facilitating detailed understanding and interpretability of the summary's factual inconsistency. Experimental results demonstrate that our proposed factual consistency checking system significantly outperforms existing systems. We release the code at https://github.com/plm3332/FIZZ.
comment: Submitted to ACL ARR on April 17th 2024
☆ Context-Aware Siamese Networks for Efficient Emotion Recognition in Conversation
The advent of deep learning models has made a considerable contribution to the achievement of Emotion Recognition in Conversation (ERC). However, this task still remains an important challenge due to the plurality and subjectivity of human emotions. Previous work on ERC provides predictive models using mostly graph-based conversation representations. In this work, we propose a way to model the conversational context that we incorporate into a metric learning training strategy, with a two-step process. This allows us to perform ERC in a flexible classification scenario and to end up with a lightweight yet efficient model. Using metric learning through a Siamese Network architecture, we achieve 57.71 in macro F1 score for emotion classification in conversation on DailyDialog dataset, which outperforms the related work. This state-of-the-art result is promising regarding the use of metric learning for emotion recognition, yet perfectible compared to the microF1 score obtained.
☆ A Novel ICD Coding Framework Based on Associated and Hierarchical Code Description Distillation
ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. ICD coding is a challenging multilabel text classification problem due to noisy medical document inputs. Recent advancements in automated ICD coding have enhanced performance by integrating additional data and knowledge bases with the encoding of medical notes and codes. However, most of them ignore the code hierarchy, leading to improper code assignments. To address these problems, we propose a novel framework based on associated and hierarchical code description distillation (AHDD) for better code representation learning and avoidance of improper code assignment.we utilize the code description and the hierarchical structure inherent to the ICD codes. Therefore, in this paper, we leverage the code description and the hierarchical structure inherent to the ICD codes. The code description is also applied to aware the attention layer and output layer. Experimental results on the benchmark dataset show the superiority of the proposed framework over several state-of-the-art baselines.
☆ What's under the hood: Investigating Automatic Metrics on Meeting Summarization
Meeting summarization has become a critical task considering the increase in online interactions. While new techniques are introduced regularly, their evaluation uses metrics not designed to capture meeting-specific errors, undermining effective evaluation. This paper investigates what the frequently used automatic metrics capture and which errors they mask by correlating automatic metric scores with human evaluations across a broad error taxonomy. We commence with a comprehensive literature review on English meeting summarization to define key challenges like speaker dynamics and contextual turn-taking and error types such as missing information and linguistic inaccuracy, concepts previously loosely defined in the field. We examine the relationship between characteristic challenges and errors by using annotated transcripts and summaries from Transformer-based sequence-to-sequence and autoregressive models from the general summary QMSum dataset. Through experimental validation, we find that different model architectures respond variably to challenges in meeting transcripts, resulting in different pronounced links between challenges and errors. Current default-used metrics struggle to capture observable errors, showing weak to mid-correlations, while a third of the correlations show trends of error masking. Only a subset reacts accurately to specific errors, while most correlations show either unresponsiveness or failure to reflect the error's impact on summary quality.
☆ Consistency Training by Synthetic Question Generation for Conversational Question Answering
Efficiently modeling historical information is a critical component in addressing user queries within a conversational question-answering (QA) context, as historical context plays a vital role in clarifying the user's questions. However, irrelevant history induces noise in the reasoning process, especially for those questions with a considerable historical context. In our novel model-agnostic approach, referred to as CoTaH (Consistency-Trained augmented History), we augment the historical information with synthetic questions and subsequently employ consistency training to train a model that utilizes both real and augmented historical data to implicitly make the reasoning robust to irrelevant history. To the best of our knowledge, this is the first instance of research using question generation as a form of data augmentation to model conversational QA settings. By citing a common modeling error prevalent in previous research, we introduce a new baseline model and compare our model's performance against it, demonstrating an improvement in results, particularly when dealing with questions that include a substantial amount of historical context. The source code can be found on our GitHub page.
☆ Inductive-Deductive Strategy Reuse for Multi-Turn Instructional Dialogues
Aligning large language models (LLMs) with human expectations requires high-quality instructional dialogues, which can be achieved by raising diverse, in-depth, and insightful instructions that deepen interactions. Existing methods target instructions from real instruction dialogues as a learning goal and fine-tune a user simulator for posing instructions. However, the user simulator struggles to implicitly model complex dialogue flows and pose high-quality instructions. In this paper, we take inspiration from the cognitive abilities inherent in human learning and propose the explicit modeling of complex dialogue flows through instructional strategy reuse. Specifically, we first induce high-level strategies from various real instruction dialogues. These strategies are applied to new dialogue scenarios deductively, where the instructional strategies facilitate high-quality instructions. Experimental results show that our method can generate diverse, in-depth, and insightful instructions for a given dialogue history. The constructed multi-turn instructional dialogues can outperform competitive baselines on the downstream chat model.
comment: 27 pages, 3 figures, 12 tables
☆ ViLLM-Eval: A Comprehensive Evaluation Suite for Vietnamese Large Language Models
The rapid advancement of large language models (LLMs) necessitates the development of new benchmarks to accurately assess their capabilities. To address this need for Vietnamese, this work aims to introduce ViLLM-Eval, the comprehensive evaluation suite designed to measure the advanced knowledge and reasoning abilities of foundation models within a Vietnamese context. ViLLM-Eval consists of multiple-choice questions and predict next word tasks spanning various difficulty levels and diverse disciplines, ranging from humanities to science and engineering. A thorough evaluation of the most advanced LLMs on ViLLM-Eval revealed that even the best performing models have significant room for improvement in understanding and responding to Vietnamese language tasks. ViLLM-Eval is believed to be instrumental in identifying key strengths and weaknesses of foundation models, ultimately promoting their development and enhancing their performance for Vietnamese users.
comment: arXiv admin note: text overlap with arXiv:2305.08322 by other authors
☆ Unified Examination of Entity Linking in Absence of Candidate Sets
Despite remarkable strides made in the development of entity linking systems in recent years, a comprehensive comparative analysis of these systems using a unified framework is notably absent. This paper addresses this oversight by introducing a new black-box benchmark and conducting a comprehensive evaluation of all state-of-the-art entity linking methods. We use an ablation study to investigate the impact of candidate sets on the performance of entity linking. Our findings uncover exactly how much such entity linking systems depend on candidate sets, and how much this limits the general applicability of each system. We present an alternative approach to candidate sets, demonstrating that leveraging the entire in-domain candidate set can serve as a viable substitute for certain models. We show the trade-off between less restrictive candidate sets, increased inference time and memory footprint for some models.
☆ On the Causal Nature of Sentiment Analysis
Sentiment analysis (SA) aims to identify the sentiment expressed in a text, such as a product review. Given a review and the sentiment associated with it, this paper formulates SA as a combination of two tasks: (1) a causal discovery task that distinguishes whether a review "primes" the sentiment (Causal Hypothesis C1), or the sentiment "primes" the review (Causal Hypothesis C2); and (2) the traditional prediction task to model the sentiment using the review as input. Using the peak-end rule in psychology, we classify a sample as C1 if its overall sentiment score approximates an average of all the sentence-level sentiments in the review, and C2 if the overall sentiment score approximates an average of the peak and end sentiments. For the prediction task, we use the discovered causal mechanisms behind the samples to improve the performance of LLMs by proposing causal prompts that give the models an inductive bias of the underlying causal graph, leading to substantial improvements by up to 32.13 F1 points on zero-shot five-class SA. Our code is at https://github.com/cogito233/causal-sa
comment: An enhanced version of our previous exploration in arXiv:2305.01764
☆ Stepwise Alignment for Constrained Language Model Policy Optimization
Safety and trustworthiness are indispensable requirements for applying AI systems based on large language models (LLMs) in real-world applications. This paper formulates a human value alignment as a language model policy optimization problem to maximize reward under a safety constraint and then proposes an algorithm called Stepwise Alignment for Constrained Policy Optimization (SACPO). A key idea behind SACPO, supported by theory, is that the optimal policy incorporating both reward and safety can be directly obtained from a reward-aligned policy. Based on this key idea, SACPO aligns the LLMs with each metric step-wise while leveraging simple yet powerful alignment algorithms such as direct preference optimization (DPO). SACPO provides many benefits such as simplicity, stability, computational efficiency, and flexibility regarding algorithms and dataset selection. Under mild assumption, our theoretical analysis provides the upper bounds regarding near-optimality and safety constraint violation. Our experimental results show that SACPO can fine-tune Alpaca-7B better than the state-of-the-art method in terms of both helpfulness and harmlessness
☆ Offset Unlearning for Large Language Models
Despite the strong capabilities of Large Language Models (LLMs) to acquire knowledge from their training corpora, the memorization of sensitive information in the corpora such as copyrighted, harmful, and private content has led to ethical and legal concerns. In response to these challenges, unlearning has emerged as a potential remedy for LLMs affected by problematic training data. However, previous unlearning techniques are either not applicable to black-box LLMs due to required access to model internal weights, or violate data protection principles by retaining sensitive data for inference-time correction. We propose $\delta$-unlearning, an offset unlearning framework for black-box LLMs. Instead of tuning the black-box LLM itself, $\delta$-unlearning learns the logit offset needed for unlearning by contrasting the logits from a pair of smaller models. Experiments demonstrate that $\delta$-unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks. $\delta$-unlearning also effectively incorporates different unlearning algorithms, making our approach a versatile solution to adapting various existing unlearning algorithms to black-box LLMs.
☆ Cross-Platform Hate Speech Detection with Weakly Supervised Causal Disentanglement
Content moderation faces a challenging task as social media's ability to spread hate speech contrasts with its role in promoting global connectivity. With rapidly evolving slang and hate speech, the adaptability of conventional deep learning to the fluid landscape of online dialogue remains limited. In response, causality inspired disentanglement has shown promise by segregating platform specific peculiarities from universal hate indicators. However, its dependency on available ground truth target labels for discerning these nuances faces practical hurdles with the incessant evolution of platforms and the mutable nature of hate speech. Using confidence based reweighting and contrastive regularization, this study presents HATE WATCH, a novel framework of weakly supervised causal disentanglement that circumvents the need for explicit target labeling and effectively disentangles input features into invariant representations of hate. Empirical validation across platforms two with target labels and two without positions HATE WATCH as a novel method in cross platform hate speech detection with superior performance. HATE WATCH advances scalable content moderation techniques towards developing safer online communities.
☆ Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal that involves creating agents that can sense, perceive, reason about, learn from, and respond to affect, behavior, and cognition of other agents (human or artificial). Progress towards Social-AI has accelerated in the past decade across several computing communities, including natural language processing, machine learning, robotics, human-machine interaction, computer vision, and speech. Natural language processing, in particular, has been prominent in Social-AI research, as language plays a key role in constructing the social world. In this position paper, we identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI. We anchor our discussion in the context of social intelligence concepts and prior progress in Social-AI research.
comment: Position Paper, Under Review, 19 pages, 2 figures
☆ Many-Shot In-Context Learning
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases and can learn high-dimensional functions with numerical inputs. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
☆ A Survey on Retrieval-Augmented Text Generation for Large Language Models
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
comment: Ongoing work
☆ Procedural Dilemma Generation for Evaluating Moral Reasoning in Humans and Language Models
As AI systems like language models are increasingly integrated into decision-making processes affecting people's lives, it's critical to ensure that these systems have sound moral reasoning. To test whether they do, we need to develop systematic evaluations. We provide a framework that uses a language model to translate causal graphs that capture key aspects of moral dilemmas into prompt templates. With this framework, we procedurally generated a large and diverse set of moral dilemmas -- the OffTheRails benchmark -- consisting of 50 scenarios and 400 unique test items. We collected moral permissibility and intention judgments from human participants for a subset of our items and compared these judgments to those from two language models (GPT-4 and Claude-2) across eight conditions. We find that moral dilemmas in which the harm is a necessary means (as compared to a side effect) resulted in lower permissibility and higher intention ratings for both participants and language models. The same pattern was observed for evitable versus inevitable harmful outcomes. However, there was no clear effect of whether the harm resulted from an agent's action versus from having omitted to act. We discuss limitations of our prompt generation pipeline and opportunities for improving scenarios to increase the strength of experimental effects.
comment: CogSci 2024
☆ Enhancing Argument Summarization: Prioritizing Exhaustiveness in Key Point Generation and Introducing an Automatic Coverage Evaluation Metric NAACL 2024
The proliferation of social media platforms has given rise to the amount of online debates and arguments. Consequently, the need for automatic summarization methods for such debates is imperative, however this area of summarization is rather understudied. The Key Point Analysis (KPA) task formulates argument summarization as representing the summary of a large collection of arguments in the form of concise sentences in bullet-style format, called key points. A sub-task of KPA, called Key Point Generation (KPG), focuses on generating these key points given the arguments. This paper introduces a novel extractive approach for key point generation, that outperforms previous state-of-the-art methods for the task. Our method utilizes an extractive clustering based approach that offers concise, high quality generated key points with higher coverage of reference summaries, and less redundant outputs. In addition, we show that the existing evaluation metrics for summarization such as ROUGE are incapable of differentiating between generated key points of different qualities. To this end, we propose a new evaluation metric for assessing the generated key points by their coverage. Our code can be accessed online.
comment: NAACL 2024 Main Conference
☆ REQUAL-LM: Reliability and Equity through Aggregation in Large Language Models
The extensive scope of large language models (LLMs) across various domains underscores the critical importance of responsibility in their application, beyond natural language processing. In particular, the randomized nature of LLMs, coupled with inherent biases and historical stereotypes in data, raises critical concerns regarding reliability and equity. Addressing these challenges are necessary before using LLMs for applications with societal impact. Towards addressing this gap, we introduce REQUAL-LM, a novel method for finding reliable and equitable LLM outputs through aggregation. Specifically, we develop a Monte Carlo method based on repeated sampling to find a reliable output close to the mean of the underlying distribution of possible outputs. We formally define the terms such as reliability and bias, and design an equity-aware aggregation to minimize harmful bias while finding a highly reliable output. REQUAL-LM does not require specialized hardware, does not impose a significant computing load, and uses LLMs as a blackbox. This design choice enables seamless scalability alongside the rapid advancement of LLM technologies. Our system does not require retraining the LLMs, which makes it deployment ready and easy to adapt. Our comprehensive experiments using various tasks and datasets demonstrate that REQUAL- LM effectively mitigates bias and selects a more equitable response, specifically the outputs that properly represents minority groups.
☆ Language Models Still Struggle to Zero-shot Reason about Time Series
Time series are critical for decision-making in fields like finance and healthcare. Their importance has driven a recent influx of works passing time series into language models, leading to non-trivial forecasting on some datasets. But it remains unknown whether non-trivial forecasting implies that language models can reason about time series. To address this gap, we generate a first-of-its-kind evaluation framework for time series reasoning, including formal tasks and a corresponding dataset of multi-scale time series paired with text captions across ten domains. Using these data, we probe whether language models achieve three forms of reasoning: (1) Etiological Reasoning - given an input time series, can the language model identify the scenario that most likely created it? (2) Question Answering - can a language model answer factual questions about time series? (3) Context-Aided Forecasting - does highly relevant textual context improve a language model's time series forecasts? We find that otherwise highly-capable language models demonstrate surprisingly limited time series reasoning: they score marginally above random on etiological and question answering tasks (up to 30 percentage points worse than humans) and show modest success in using context to improve forecasting. These weakness showcase that time series reasoning is an impactful, yet deeply underdeveloped direction for language model research. We also make our datasets and code public at to support further research in this direction at https://github.com/behavioral-data/TSandLanguage
☆ Mapping Violence: Developing an Extensive Framework to Build a Bangla Sectarian Expression Dataset from Social Media Interactions
Communal violence in online forums has become extremely prevalent in South Asia, where many communities of different cultures coexist and share resources. These societies exhibit a phenomenon characterized by strong bonds within their own groups and animosity towards others, leading to conflicts that frequently escalate into violent confrontations. To address this issue, we have developed the first comprehensive framework for the automatic detection of communal violence markers in online Bangla content accompanying the largest collection (13K raw sentences) of social media interactions that fall under the definition of four major violence class and their 16 coarse expressions. Our workflow introduces a 7-step expert annotation process incorporating insights from social scientists, linguists, and psychologists. By presenting data statistics and benchmarking performance using this dataset, we have determined that, aside from the category of Non-communal violence, Religio-communal violence is particularly pervasive in Bangla text. Moreover, we have substantiated the effectiveness of fine-tuning language models in identifying violent comments by conducting preliminary benchmarking on the state-of-the-art Bangla deep learning model.
☆ Missed Connections: Lateral Thinking Puzzles for Large Language Models
The Connections puzzle published each day by the New York Times tasks players with dividing a bank of sixteen words into four groups of four words that each relate to a common theme. Solving the puzzle requires both common linguistic knowledge (i.e. definitions and typical usage) as well as, in many cases, lateral or abstract thinking. This is because the four categories ascend in complexity, with the most challenging category often requiring thinking about words in uncommon ways or as parts of larger phrases. We investigate the capacity for automated AI systems to play Connections and explore the game's potential as an automated benchmark for abstract reasoning and a way to measure the semantic information encoded by data-driven linguistic systems. In particular, we study both a sentence-embedding baseline and modern large language models (LLMs). We report their accuracy on the task, measure the impacts of chain-of-thought prompting, and discuss their failure modes. Overall, we find that the Connections task is challenging yet feasible, and a strong test-bed for future work.
comment: 8 pages, 3 figures
☆ Investigating Gender Bias in Turkish Language Models
Language models are trained mostly on Web data, which often contains social stereotypes and biases that the models can inherit. This has potentially negative consequences, as models can amplify these biases in downstream tasks or applications. However, prior research has primarily focused on the English language, especially in the context of gender bias. In particular, grammatically gender-neutral languages such as Turkish are underexplored despite representing different linguistic properties to language models with possibly different effects on biases. In this paper, we fill this research gap and investigate the significance of gender bias in Turkish language models. We build upon existing bias evaluation frameworks and extend them to the Turkish language by translating existing English tests and creating new ones designed to measure gender bias in the context of T\"urkiye. Specifically, we also evaluate Turkish language models for their embedded ethnic bias toward Kurdish people. Based on the experimental results, we attribute possible biases to different model characteristics such as the model size, their multilingualism, and the training corpora. We make the Turkish gender bias dataset publicly available.
comment: arXiv admin note: text overlap with arXiv:1903.10561 by other authors
☆ How often are errors in natural language reasoning due to paraphrastic variability? ACL 2024
Large language models have been shown to behave inconsistently in response to meaning-preserving paraphrastic inputs. At the same time, researchers evaluate the knowledge and reasoning abilities of these models with test evaluations that do not disaggregate the effect of paraphrastic variability on performance. We propose a metric for evaluating the paraphrastic consistency of natural language reasoning models based on the probability of a model achieving the same correctness on two paraphrases of the same problem. We mathematically connect this metric to the proportion of a model's variance in correctness attributable to paraphrasing. To estimate paraphrastic consistency, we collect ParaNLU, a dataset of 7,782 human-written and validated paraphrased reasoning problems constructed on top of existing benchmark datasets for defeasible and abductive natural language inference. Using ParaNLU, we measure the paraphrastic consistency of several model classes and show that consistency dramatically increases with pretraining but not finetuning. All models tested exhibited room for improvement in paraphrastic consistency.
comment: accepted to TACL 2024 (pre-MIT Press publication version)
☆ Improvement in Semantic Address Matching using Natural Language Processing
Address matching is an important task for many businesses especially delivery and take out companies which help them to take out a certain address from their data warehouse. Existing solution uses similarity of strings, and edit distance algorithms to find out the similar addresses from the address database, but these algorithms could not work effectively with redundant, unstructured, or incomplete address data. This paper discuss semantic Address matching technique, by which we can find out a particular address from a list of possible addresses. We have also reviewed existing practices and their shortcoming. Semantic address matching is an essentially NLP task in the field of deep learning. Through this technique We have the ability to triumph the drawbacks of existing methods like redundant or abbreviated data problems. The solution uses the OCR on invoices to extract the address and create the data pool of addresses. Then this data is fed to the algorithm BM-25 for scoring the best matching entries. Then to observe the best result, this will pass through BERT for giving the best possible result from the similar queries. Our investigation exhibits that our methodology enormously improves both accuracy and review of cutting-edge technology existing techniques.
comment: 5 pages, 7 tables, 2021 2nd International Conference for Emerging Technology (INCET)
☆ How Well Can You Articulate that Idea? Insights from Automated Formative Assessment
Automated methods are becoming increasingly integrated into studies of formative feedback on students' science explanation writing. Most of this work, however, addresses students' responses to short answer questions. We investigate automated feedback on students' science explanation essays, where students must articulate multiple ideas. Feedback is based on a rubric that identifies the main ideas students are prompted to include in explanatory essays about the physics of energy and mass, given their experiments with a simulated roller coaster. We have found that students generally improve on revised versions of their essays. Here, however, we focus on two factors that affect the accuracy of the automated feedback. First, we find that the main ideas in the rubric differ with respect to how much freedom they afford in explanations of the idea, thus explanation of a natural law is relatively constrained. Students have more freedom in how they explain complex relations they observe in their roller coasters, such as transfer of different forms of energy. Second, by tracing the automated decision process, we can diagnose when a student's statement lacks sufficient clarity for the automated tool to associate it more strongly with one of the main ideas above all others. This in turn provides an opportunity for teachers and peers to help students reflect on how to state their ideas more clearly.
☆ MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
While current large language models (LLMs) demonstrate some capabilities in knowledge-intensive tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with infrequent knowledge and temporal degradation. In addition, the uninterpretable nature of parametric memorization makes it challenging to understand and prevent hallucination. Parametric memory pools and model editing are only partial solutions. Retrieval Augmented Generation (RAG) $\unicode{x2013}$ though non-parametric $\unicode{x2013}$ has its own limitations: it lacks structure, complicates interpretability and makes it hard to effectively manage stored knowledge. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation.
♻ ☆ Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning
Large language models (LLMs) have shown great potential in complex reasoning tasks, yet their performance is often hampered by the scarcity of high-quality and reasoning-focused training datasets. Addressing this challenge, we propose Key-Point-Driven Data Synthesis (KPDDS), a novel data synthesis framework that synthesizes question-answer pairs by leveraging key points and exemplar practices from authentic data sources. KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability. As a result, we present KPMath, an extensive synthetic dataset tailored for mathematical reasoning, comprising over 800K question-answer pairs. Utilizing KPMath and augmenting it with additional reasoning-intensive corpora, we create the comprehensive KPMath-Plus dataset. The fine-tuned DeepSeekMath model on KPMath-Plus achieves zero-shot PASS@1 accuracies of 83.9% on GSM8K and 48.8% on MATH, and also reaches promising performance on other math reasoning datasets, outperforming competitors in the 7B to 70B range.
comment: In progress
♻ ☆ Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering ACL
Retriever-augmented instruction-following models are attractive alternatives to fine-tuned approaches for information-seeking tasks such as question answering (QA). By simply prepending retrieved documents in its input along with an instruction, these models can be adapted to various information domains and tasks without additional fine-tuning. While the model responses tend to be natural and fluent, the additional verbosity makes traditional QA evaluation metrics such as exact match (EM) and F1 unreliable for accurately quantifying model performance. In this work, we investigate the performance of instruction-following models across three information-seeking QA tasks. We use both automatic and human evaluation to evaluate these models along two dimensions: 1) how well they satisfy the user's information need (correctness), and 2) whether they produce a response based on the provided knowledge (faithfulness). Guided by human evaluation and analysis, we highlight the shortcomings of traditional metrics for both correctness and faithfulness. We then propose simple token-overlap based and model-based metrics that reflect the true performance of these models. Our analysis reveals that instruction-following models are competitive, and sometimes even outperform fine-tuned models for correctness. However, these models struggle to stick to the provided knowledge and often hallucinate in their responses. We hope our work encourages a more holistic evaluation of instruction-following models for QA. Our code and data is available at https://github.com/McGill-NLP/instruct-qa
comment: accepted at TACL
♻ ☆ ML-Bench: Evaluating Large Language Models for Code Generation in Repository-Level Machine Learning Tasks
While Large Language Models (LLMs) have demonstrated proficiency in code generation benchmarks, translating these results into practical development scenarios - where leveraging existing repository-level libraries is the norm - remains challenging. To bridge the gap between lab-scale benchmarks and real-world coding practices, we introduce ML-Bench: a novel benchmark designed to assess LLMs' ability to integrate and utilize repository-level open-source libraries to complete machine learning tasks. ML-Bench comprises a diverse set of 9,641 samples across 169 distinct tasks derived from 18 GitHub repositories. Our findings reveal that while GPT-4 outshines other LLMs, it successfully addresses only 33.82% of the tasks, highlighting the complexity of the challenge. Complementarily, we introduce a baseline agent, ML-Agent, capable of skillful codebase navigation and precise generation of functional code segments. This groundwork aims at catalyzing the development of more sophisticated LLM agents that can handle the intricacies of real-world programming. Our code, data, and models are available at https://github.com/gersteinlab/ML-bench.
♻ ☆ Generative Representational Instruction Tuning
All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.
comment: 66 pages (16 main), 25 figures, 34 tables
♻ ☆ Gradient Flow of Energy: A General and Efficient Approach for Entity Alignment Decoding
Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to maximize graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively generalizes adjacency matrices to multi-views matrices:entity-to-entity, entity-to-relation, relation-to-entity, and relation-to-triple. The gradient flow through generalized matrices enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse public datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.
♻ ☆ HateCOT: An Explanation-Enhanced Dataset for Generalizable Offensive Speech Detection via Large Language Models
The ubiquitousness of social media has led to the need for reliable and efficient detection of offensive content to limit harmful effects. This has led to a proliferation of datasets and models related to detecting offensive content. While sophisticated models have attained strong performance on individual datasets, these models often do not generalize due to differences between how "offensive content" is conceptualized, and the resulting differences in how these datasets are labeled. In this paper, we introduce HateCOT, a dataset of 52,000 samples drawn from diverse existing sources with explanations generated by GPT-3.5-Turbo and human-curated. We show that pre-training models for the detection of offensive content on HateCOT significantly boots open-sourced Language Models on three benchmark datasets in both zero and few-shot settings, despite differences in domain and task.} We further find that HateCOT enables effective K-shot fine-tuning in the low-resource settings.
comment: Preprint
♻ ☆ mEdIT: Multilingual Text Editing via Instruction Tuning NAACL 2024
We introduce mEdIT, a multi-lingual extension to CoEdIT -- the recent state-of-the-art text editing models for writing assistance. mEdIT models are trained by fine-tuning multi-lingual large, pre-trained language models (LLMs) via instruction tuning. They are designed to take instructions from the user specifying the attributes of the desired text in the form of natural language instructions, such as Grammatik korrigieren (German) or Parafrasee la oraci\'on (Spanish). We build mEdIT by curating data from multiple publicly available human-annotated text editing datasets for three text editing tasks (Grammatical Error Correction (GEC), Text Simplification, and Paraphrasing) across diverse languages belonging to six different language families. We detail the design and training of mEdIT models and demonstrate their strong performance on many multi-lingual text editing benchmarks against other multilingual LLMs. We also find that mEdIT generalizes effectively to new languages over multilingual baselines. We publicly release our data, code, and trained models at https://github.com/vipulraheja/medit.
comment: Accepted to NAACL 2024 (Main). 23 pages, 8 tables, 11 figures
♻ ☆ What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
♻ ☆ Solving morphological analogies: from retrieval to generation
Analogical inference is a remarkable capability of human reasoning, and has been used to solve hard reasoning tasks. Analogy based reasoning (AR) has gained increasing interest from the artificial intelligence community and has shown its potential in multiple machine learning tasks such as classification, decision making and recommendation with competitive results. We propose a deep learning (DL) framework to address and tackle two key tasks in AR: analogy detection and solving. The framework is thoroughly tested on the Siganalogies dataset of morphological analogical proportions (APs) between words, and shown to outperform symbolic approaches in many languages. Previous work have explored the behavior of the Analogy Neural Network for classification (ANNc) on analogy detection and of the Analogy Neural Network for retrieval (ANNr) on analogy solving by retrieval, as well as the potential of an autoencoder (AE) for analogy solving by generating the solution word. In this article we summarize these findings and we extend them by combining ANNr and the AE embedding model, and checking the performance of ANNc as an retrieval method. The combination of ANNr and AE outperforms the other approaches in almost all cases, and ANNc as a retrieval method achieves competitive or better performance than 3CosMul. We conclude with general guidelines on using our framework to tackle APs with DL.
♻ ☆ Qilin-Med: Multi-stage Knowledge Injection Advanced Medical Large Language Model
Integrating large language models (LLMs) into healthcare holds great potential but faces challenges. Pre-training LLMs from scratch for domains like medicine is resource-heavy and often unfeasible. On the other hand, sole reliance on Supervised Fine-tuning (SFT) can result in overconfident predictions and may not tap into domain-specific insights. In response, we present a multi-stage training method combining Domain-specific Continued Pre-training (DCPT), SFT, and Direct Preference Optimization (DPO). In addition, we publish a 3Gb Chinese Medicine (ChiMed) dataset, encompassing medical question answering, plain texts, knowledge graphs, and dialogues, segmented into three training stages. The medical LLM trained with our pipeline, Qilin-Med, shows substantial performance improvement. In the CPT and SFT phases, Qilin-Med achieved 38.4% and 40.0% accuracy on the CMExam test set, respectively. It outperformed the basemodel Baichuan-7B (accuracy: 33.5%), by 7.5%. In the DPO phase, it scored 16.66 in BLEU-1 and 27.44 in ROUGE-1 on the Huatuo-26M test set, bringing further improvement to the SFT phase (12.69 in BLEU-1 and 24.21 in ROUGE-1). Additionally, we have further enhanced the model's performance through the Retrieval Augmented Generation (RAG) approach. Experiments demonstrate that Qilin-Med-RAG achieves an accuracy rate of 42.8% on CMExam. These results highlight the contribution of our novel training approach in building LLMs for medical applications.
♻ ☆ Reformatted Alignment
The quality of finetuning data is crucial for aligning large language models (LLMs) with human values. Current methods to improve data quality are either labor-intensive or prone to factual errors caused by LLM hallucinations. This paper explores elevating the quality of existing instruction data to better align with human values, introducing a simple and effective approach named ReAlign, which reformats the responses of instruction data into a format that better aligns with pre-established criteria and the collated evidence. This approach minimizes human annotation, hallucination, and the difficulty in scaling, remaining orthogonal to existing alignment techniques. Experimentally, ReAlign significantly boosts the general alignment ability, math reasoning, factuality, and readability of the LLMs. Encouragingly, without introducing any additional data or advanced training techniques, and merely by reformatting the response, LLaMA-2-13B's mathematical reasoning ability on GSM8K can be improved from 46.77% to 56.63% in accuracy. Additionally, a mere 5% of ReAlign data yields a 67% boost in general alignment ability measured by the Alpaca dataset. This work highlights the need for further research into the science and mechanistic interpretability of LLMs. We have made the associated code and data publicly accessible to support future studies at https://github.com/GAIR-NLP/ReAlign.
comment: Homepage: https://gair-nlp.github.io/ReAlign/
♻ ☆ Multi-Cultural Commonsense Knowledge Distillation
Despite recent progress, large language models (LLMs) still face the challenge of appropriately reacting to the intricacies of social and cultural conventions. This paper presents MANGO, a methodology for distilling high-accuracy, high-recall assertions of cultural knowledge. We judiciously and iteratively prompt LLMs for this purpose from two entry points, concepts and cultures. Outputs are consolidated via clustering and generative summarization. Running the MANGO method with GPT-3.5 as underlying LLM yields 167K high-accuracy assertions for 30K concepts and 11K cultures, surpassing prior resources by a large margin. For extrinsic evaluation, we explore augmenting dialogue systems with cultural knowledge assertions. We find that adding knowledge from MANGO improves the overall quality, specificity, and cultural sensitivity of dialogue responses, as judged by human annotators. Data and code are available for download.
comment: 20 pages, 5 figures, 13 tables
♻ ☆ Corpus Considerations for Annotator Modeling and Scaling NAACL 2024
Recent trends in natural language processing research and annotation tasks affirm a paradigm shift from the traditional reliance on a single ground truth to a focus on individual perspectives, particularly in subjective tasks. In scenarios where annotation tasks are meant to encompass diversity, models that solely rely on the majority class labels may inadvertently disregard valuable minority perspectives. This oversight could result in the omission of crucial information and, in a broader context, risk disrupting the balance within larger ecosystems. As the landscape of annotator modeling unfolds with diverse representation techniques, it becomes imperative to investigate their effectiveness with the fine-grained features of the datasets in view. This study systematically explores various annotator modeling techniques and compares their performance across seven corpora. From our findings, we show that the commonly used user token model consistently outperforms more complex models. We introduce a composite embedding approach and show distinct differences in which model performs best as a function of the agreement with a given dataset. Our findings shed light on the relationship between corpus statistics and annotator modeling performance, which informs future work on corpus construction and perspectivist NLP.
comment: Accepted at NAACL 2024
♻ ☆ EgoPlan-Bench: Benchmarking Egocentric Embodied Planning with Multimodal Large Language Models
Multimodal Large Language Models, combining the remarkable reasoning and generalization capabilities of Large Language Models (LLMs) with the ability to comprehend visual inputs, have opened up new avenues for embodied task planning. Given diverse environmental inputs, including real-time task progress, visual observations, and open-form language instructions, a proficient task planner is expected to predict feasible actions, which is a feat inherently achievable by Multimodal Large Language Models (MLLMs). In this paper, we aim to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios by introducing a benchmark with human annotations named EgoPlan-Bench. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied scenes. We evaluate a wide range of MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos with human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but can also be applied as a task planner for guiding embodied agents in simulations.
comment: Project released at: https://github.com/ChenYi99/EgoPlan
♻ ☆ Predicting Emergent Abilities with Infinite Resolution Evaluation
The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy with theoretically infinite resolution, through massive sampling in the decoding phase. With PassUntil, we conduct a quantitative investigation into the scaling law of task performance. The investigation contains two parts. Firstly, a strict task scaling law that is not conventionally known to exist, is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts, which is the first systematic attempt to verify predictable scaling proposed by GPT-4's report. Secondly, we are able to study emergent abilities quantitatively. We identify a kind of accelerated emergence whose scaling curve cannot be fitted by standard scaling law function and has a increasing speed. We then examine two hypothesis and imply that the ``multiple circuits hypothesis'' might be responsible for the accelerated emergence.
comment: After revision
♻ ☆ Benchingmaking Large Langage Models in Biomedical Triple Extraction
Biomedical triple extraction systems aim to automatically extract biomedical entities and relations between entities. The exploration of applying large language models (LLM) to triple extraction is still relatively unexplored. In this work, we mainly focus on sentence-level biomedical triple extraction. Furthermore, the absence of a high-quality biomedical triple extraction dataset impedes the progress in developing robust triple extraction systems. To address these challenges, initially, we compare the performance of various large language models. Additionally, we present GIT, an expert-annotated biomedical triple extraction dataset that covers a wider range of relation types.
comment: this is the onging work
♻ ☆ Topic-Controllable Summarization: Topic-Aware Evaluation and Transformer Methods LREC
Topic-controllable summarization is an emerging research area with a wide range of potential applications. However, existing approaches suffer from significant limitations. For example, the majority of existing methods built upon recurrent architectures, which can significantly limit their performance compared to more recent Transformer-based architectures, while they also require modifications to the model's architecture for controlling the topic. At the same time, there is currently no established evaluation metric designed specifically for topic-controllable summarization. This work proposes a new topic-oriented evaluation measure to automatically evaluate the generated summaries based on the topic affinity between the generated summary and the desired topic. The reliability of the proposed measure is demonstrated through appropriately designed human evaluation. In addition, we adapt topic embeddings to work with powerful Transformer architectures and propose a novel and efficient approach for guiding the summary generation through control tokens. Experimental results reveal that control tokens can achieve better performance compared to more complicated embedding-based approaches while also being significantly faster.
comment: Accepted at LREC-COLING 2024
♻ ☆ Unlocking Bias Detection: Leveraging Transformer-Based Models for Content Analysis
Bias detection in text is crucial for combating the spread of negative stereotypes, misinformation, and biased decision-making. Traditional language models frequently face challenges in generalizing beyond their training data and are typically designed for a single task, often focusing on bias detection at the sentence level. To address this, we present the Contextualized Bi-Directional Dual Transformer (CBDT) \textcolor{green}{\faLeaf} classifier. This model combines two complementary transformer networks: the Context Transformer and the Entity Transformer, with a focus on improving bias detection capabilities. We have prepared a dataset specifically for training these models to identify and locate biases in texts. Our evaluations across various datasets demonstrate CBDT \textcolor{green} effectiveness in distinguishing biased narratives from neutral ones and identifying specific biased terms. This work paves the way for applying the CBDT \textcolor{green} model in various linguistic and cultural contexts, enhancing its utility in bias detection efforts. We also make the annotated dataset available for research purposes.
comment: Accepted in IEEE Transactions on Computational Social Systems
♻ ☆ KnowTuning: Knowledge-aware Fine-tuning for Large Language Models
Despite their success at many natural language processing (NLP) tasks, large language models still struggle to effectively leverage knowledge for knowledge-intensive tasks, manifesting limitations such as generating incomplete, non-factual, or illogical answers. These limitations stem from inadequate knowledge awareness of LLMs during vanilla fine-tuning. To address these problems, we propose a knowledge-aware fine-tuning (KnowTuning) method to improve fine-grained and coarse-grained knowledge awareness of LLMs. We devise a fine-grained knowledge augmentation stage to train LLMs to identify difficult fine-grained knowledge in answers. We also propose a coarse-grained knowledge comparison stage to train LLMs to distinguish between reliable and unreliable knowledge, in three aspects: completeness, factuality, and logicality. Extensive experiments on both generic and medical question answering (QA) datasets confirm the effectiveness of KnowTuning, through automatic and human evaluations, across various sizes of LLMs. We further verify that KnowTuning generates more facts with less factual error rate under fine-grained facts evaluation.
♻ ☆ ICSVR: Investigating Compositional and Syntactic Understanding in Video Retrieval Models
Video retrieval (VR) involves retrieving the ground truth video from the video database given a text caption or vice-versa. The two important components of compositionality: objects & attributes and actions are joined using correct syntax to form a proper text query. These components (objects & attributes, actions and syntax) each play an important role to help distinguish among videos and retrieve the correct ground truth video. However, it is unclear what is the effect of these components on the video retrieval performance. We therefore, conduct a systematic study to evaluate the compositional and syntactic understanding of video retrieval models on standard benchmarks such as MSRVTT, MSVD and DIDEMO. The study is performed on two categories of video retrieval models: (i) which are pre-trained on video-text pairs and fine-tuned on downstream video retrieval datasets (Eg. Frozen-in-Time, Violet, MCQ etc.) (ii) which adapt pre-trained image-text representations like CLIP for video retrieval (Eg. CLIP4Clip, XCLIP, CLIP2Video etc.). Our experiments reveal that actions and syntax play a minor role compared to objects & attributes in video understanding. Moreover, video retrieval models that use pre-trained image-text representations (CLIP) have better syntactic and compositional understanding as compared to models pre-trained on video-text data. The code is available at https://github.com/IntelLabs/multimodal_cognitive_ai/tree/main/ICSVR
♻ ☆ AQuA -- Combining Experts' and Non-Experts' Views To Assess Deliberation Quality in Online Discussions Using LLMs
Measuring the quality of contributions in political online discussions is crucial in deliberation research and computer science. Research has identified various indicators to assess online discussion quality, and with deep learning advancements, automating these measures has become feasible. While some studies focus on analyzing specific quality indicators, a comprehensive quality score incorporating various deliberative aspects is often preferred. In this work, we introduce AQuA, an additive score that calculates a unified deliberative quality score from multiple indices for each discussion post. Unlike other singular scores, AQuA preserves information on the deliberative aspects present in comments, enhancing model transparency. We develop adapter models for 20 deliberative indices, and calculate correlation coefficients between experts' annotations and the perceived deliberativeness by non-experts to weigh the individual indices into a single deliberative score. We demonstrate that the AQuA score can be computed easily from pre-trained adapters and aligns well with annotations on other datasets that have not be seen during training. The analysis of experts' vs. non-experts' annotations confirms theoretical findings in the social science literature.
♻ ☆ Can LLMs perform structured graph reasoning?
Pretrained Large Language Models (LLMs) have demonstrated various reasoning capabilities through language-based prompts alone, particularly in unstructured task settings (tasks purely based on language semantics). However, LLMs often struggle with structured tasks, because of the inherent incompatibility of input representation. Reducing structured tasks to uni-dimensional language semantics often renders the problem trivial. Keeping the trade-off between LLM compatibility and structure complexity in mind, we design various graph reasoning tasks as a proxy to semi-structured tasks in this paper, in order to test the ability to navigate through representations beyond plain text in various LLMs. Particularly, we design 10 distinct problems of graph traversal, each representing increasing levels of complexity, and benchmark 5 different instruct-finetuned LLMs (GPT-4, GPT-3.5, Claude-2, Llama-2 and Palm-2) on the aforementioned tasks. Further, we analyse the performance of models across various settings such as varying sizes of graphs as well as different forms of k-shot prompting. We highlight various limitations, biases and properties of LLMs through this benchmarking process, such as an inverse relation to the average degrees of freedom of traversal per node in graphs, the overall negative impact of k-shot prompting on graph reasoning tasks, and a positive response bias which prevents LLMs from identifying the absence of a valid solution. Finally, we introduce a new prompting technique specially designed for graph traversal tasks (PathCompare), which demonstrates a notable increase in the performance of LLMs in comparison to standard prompting techniques such as Chain-of-Thought (CoT).
♻ ☆ Humans or LLMs as the Judge? A Study on Judgement Biases
Adopting human and large language models (LLM) as judges (\textit{a.k.a} human- and LLM-as-a-judge) for evaluating the performance of LLMs has recently gained attention. Nonetheless, this approach concurrently introduces potential biases from human and LLM judges, questioning the reliability of the evaluation results. In this paper, we propose a novel framework that is free from referencing groundtruth annotations for investigating Fallacy Oversight Bias, Authority Bias and Beauty Bias on LLM and human judges. We curate a dataset referring to the revised Bloom's Taxonomy and conduct thousands of human and LLM evaluations. Results show that human and LLM judges are vulnerable to perturbations to various degrees, and that even the cutting-edge judges possess considerable biases. We further exploit their weakness and conduct attacks on LLM judges. We hope that our work can notify the community of the vulnerability of human- and LLM-as-a-judge against perturbations, as well as the urgency of developing robust evaluation systems.
comment: 22 pages
♻ ☆ T$^3$Bench: Benchmarking Current Progress in Text-to-3D Generation
Recent methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF. Notably, these methods are able to produce high-quality 3D scenes without training on 3D data. Due to the open-ended nature of the task, most studies evaluate their results with subjective case studies and user experiments, thereby presenting a challenge in quantitatively addressing the question: How has current progress in Text-to-3D gone so far? In this paper, we introduce T$^3$Bench, the first comprehensive text-to-3D benchmark containing diverse text prompts of three increasing complexity levels that are specially designed for 3D generation. To assess both the subjective quality and the text alignment, we propose two automatic metrics based on multi-view images produced by the 3D contents. The quality metric combines multi-view text-image scores and regional convolution to detect quality and view inconsistency. The alignment metric uses multi-view captioning and GPT-4 evaluation to measure text-3D consistency. Both metrics closely correlate with different dimensions of human judgments, providing a paradigm for efficiently evaluating text-to-3D models. The benchmarking results, shown in Fig. 1, reveal performance differences among an extensive 10 prevalent text-to-3D methods. Our analysis further highlights the common struggles for current methods on generating surroundings and multi-object scenes, as well as the bottleneck of leveraging 2D guidance for 3D generation. Our project page is available at: https://t3bench.com.
comment: Under review
♻ ☆ How Prevalent is Gender Bias in ChatGPT? -- Exploring German and English ChatGPT Responses ECML
With the introduction of ChatGPT, OpenAI made large language models (LLM) accessible to users with limited IT expertise. However, users with no background in natural language processing (NLP) might lack a proper understanding of LLMs. Thus the awareness of their inherent limitations, and therefore will take the systems' output at face value. In this paper, we systematically analyse prompts and the generated responses to identify possible problematic issues with a special focus on gender biases, which users need to be aware of when processing the system's output. We explore how ChatGPT reacts in English and German if prompted to answer from a female, male, or neutral perspective. In an in-depth investigation, we examine selected prompts and analyse to what extent responses differ if the system is prompted several times in an identical way. On this basis, we show that ChatGPT is indeed useful for helping non-IT users draft texts for their daily work. However, it is absolutely crucial to thoroughly check the system's responses for biases as well as for syntactic and grammatical mistakes.
comment: Accepted @ "1st Workshop on Biased Data in Conversational Agents" (co-located with ECML PKDD 2023). This is the author's version of the work. The definite version of record will be published in the proceedings
♻ ☆ Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ Formal Aspects of Language Modeling
Large language models have become one of the most commonly deployed NLP inventions. In the past half-decade, their integration into core natural language processing tools has dramatically increased the performance of such tools, and they have entered the public discourse surrounding artificial intelligence. Consequently, it is important for both developers and researchers alike to understand the mathematical foundations of large language models, as well as how to implement them. These notes are the accompaniment to the theoretical portion of the ETH Z\"urich course on large language models, covering what constitutes a language model from a formal, theoretical perspective.
♻ ☆ Consecutive Model Editing with Batch alongside HooK Layers
As the typical retraining paradigm is unacceptably time- and resource-consuming, researchers are turning to model editing in order to seek an effective, consecutive, and batch-supportive way to edit the model behavior directly. Despite all these practical expectations, existing model editing methods fail to realize all of them. Furthermore, the memory demands for such succession-supportive model editing approaches tend to be prohibitive, frequently necessitating an external memory that grows incrementally over time. To cope with these challenges, we propose COMEBA-HK, a model editing method that is both consecutive and batch-supportive. COMEBA-HK is memory-friendly as it only needs a small amount of it to store several hook layers with updated weights. Experimental results demonstrate the superiority of our method over other batch-supportive model editing methods under both single-round and consecutive batch editing scenarios. Extensive analyses of COMEBA-HK have been conducted to verify the stability of our method over 1) the number of consecutive steps and 2) the number of editing instance.
comment: Under review
♻ ☆ The Hallucinations Leaderboard -- An Open Effort to Measure Hallucinations in Large Language Models
Large Language Models (LLMs) have transformed the Natural Language Processing (NLP) landscape with their remarkable ability to understand and generate human-like text. However, these models are prone to ``hallucinations'' -- outputs that do not align with factual reality or the input context. This paper introduces the Hallucinations Leaderboard, an open initiative to quantitatively measure and compare the tendency of each model to produce hallucinations. The leaderboard uses a comprehensive set of benchmarks focusing on different aspects of hallucinations, such as factuality and faithfulness, across various tasks, including question-answering, summarisation, and reading comprehension. Our analysis provides insights into the performance of different models, guiding researchers and practitioners in choosing the most reliable models for their applications.
♻ ☆ Strings from the Library of Babel: Random Sampling as a Strong Baseline for Prompt Optimisation NAACL 2024
Recent prompt optimisation approaches use the generative nature of language models to produce prompts -- even rivaling the performance of human-curated prompts. In this paper, we demonstrate that randomly sampling tokens from the model vocabulary as ``separators'' can be as effective as language models for prompt-style text classification. Our experiments show that random separators are competitive baselines, having less than a 1% difference compared to previous self-optimisation methods and showing a 12% average relative improvement over strong human baselines across nine text classification tasks and eight language models. We further analyse this phenomenon in detail using three different random generation strategies, establishing that the language space is rich with potentially good separators, with a greater than 40% average chance that a randomly drawn separator performs better than human-curated separators. These observations challenge the common assumption that an effective prompt should be human readable or task relevant and establish a strong baseline for prompt optimisation research.
comment: Accepted to NAACL 2024. The code is publicly available at https://github.com/yaolu/random-prompt
♻ ☆ SYNFAC-EDIT: Synthetic Imitation Edit Feedback for Factual Alignment in Clinical Summarization
Large Language Models (LLMs) such as GPT & Llama have demonstrated significant achievements in summarization tasks but struggle with factual inaccuracies, a critical issue in clinical NLP applications where errors could lead to serious consequences. To counter the high costs and limited availability of expert-annotated data for factual alignment, this study introduces an innovative pipeline that utilizes >100B parameter GPT variants like GPT-3.5 & GPT-4 to act as synthetic experts to generate high-quality synthetics feedback aimed at enhancing factual consistency in clinical note summarization. Our research primarily focuses on edit feedback generated by these synthetic feedback experts without additional human annotations, mirroring and optimizing the practical scenario in which medical professionals refine AI system outputs. Although such 100B+ parameter GPT variants have proven to demonstrate expertise in various clinical NLP tasks, such as the Medical Licensing Examination, there is scant research on their capacity to act as synthetic feedback experts and deliver expert-level edit feedback for improving the generation quality of weaker (<10B parameter) LLMs like GPT-2 (1.5B) & Llama 2 (7B) in clinical domain. So in this work, we leverage 100B+ GPT variants to act as synthetic feedback experts offering expert-level edit feedback, that is used to reduce hallucinations and align weaker (<10B parameter) LLMs with medical facts using two distinct alignment algorithms (DPO & SALT), endeavoring to narrow the divide between AI-generated content and factual accuracy. This highlights the substantial potential of LLM-based synthetic edits in enhancing the alignment of clinical factuality.
comment: Equal contribution for the first two authors
♻ ☆ Can Large Language Models Infer Causation from Correlation? ICLR 2024
Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 200K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize -- they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and would be helpful in guiding future research on improving LLMs' pure reasoning skills and generalizability. Our data is at https://huggingface.co/datasets/causalnlp/corr2cause. Our code is at https://github.com/causalNLP/corr2cause.
comment: ICLR 2024
♻ ☆ Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models ICLR 2024
We investigate the internal behavior of Transformer-based Large Language Models (LLMs) when they generate factually incorrect text. We propose modeling factual queries as constraint satisfaction problems and use this framework to investigate how the LLM interacts internally with factual constraints. We find a strong positive relationship between the LLM's attention to constraint tokens and the factual accuracy of generations. We curate a suite of 10 datasets containing over 40,000 prompts to study the task of predicting factual errors with the Llama-2 family across all scales (7B, 13B, 70B). We propose SAT Probe, a method probing attention patterns, that can predict factual errors and fine-grained constraint satisfaction, and allow early error identification. The approach and findings take another step towards using the mechanistic understanding of LLMs to enhance their reliability.
comment: Published at ICLR 2024
♻ ☆ Use of a Structured Knowledge Base Enhances Metadata Curation by Large Language Models
Metadata play a crucial role in ensuring the findability, accessibility, interoperability, and reusability of datasets. This paper investigates the potential of large language models (LLMs), specifically GPT-4, to improve adherence to metadata standards. We conducted experiments on 200 random data records describing human samples relating to lung cancer from the NCBI BioSample repository, evaluating GPT-4's ability to suggest edits for adherence to metadata standards. We computed the adherence accuracy of field name-field value pairs through a peer review process, and we observed a marginal average improvement in adherence to the standard data dictionary from 79% to 80% (p<0.01). We then prompted GPT-4 with domain information in the form of the textual descriptions of CEDAR templates and recorded a significant improvement to 97% from 79% (p<0.01). These results indicate that, while LLMs may not be able to correct legacy metadata to ensure satisfactory adherence to standards when unaided, they do show promise for use in automated metadata curation when integrated with a structured knowledge base.
♻ ☆ EVJVQA Challenge: Multilingual Visual Question Answering SP2022
Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems. We released the challenge on the Codalab evaluation system for further research.
comment: VLSP2022 EVJVQA challenge
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers
Automatic prompt optimization is an important approach to improving the performance of large language models (LLMs). Recent research demonstrates the potential of using LLMs as prompt optimizers, which can generate improved task prompts via iterative refinement. In this paper, we propose a novel perspective to investigate the design of LLM-based prompt optimizers, by drawing an analogy with gradient-based model optimizers. To connect these two approaches, we identify two pivotal factors in model parameter learning: update direction and update method. Focused on the two aspects, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies for LLM-based prompt optimizers. By systematically analyzing a rich set of improvement strategies, we further develop a capable Gradient-inspired LLM-based Prompt Optimizer called GPO. At each step, it first retrieves relevant prompts from the optimization trajectory as the update direction. Then, it utilizes the generation-based refinement strategy to perform the update, while controlling the edit distance through a cosine-based decay strategy. Extensive experiments demonstrate the effectiveness and efficiency of GPO. In particular, GPO brings an additional improvement of up to 56.8% on Big-Bench Hard and 55.3% on MMLU compared to baseline methods.
♻ ☆ LLMBind: A Unified Modality-Task Integration Framework
In the multi-modal domain, the dependence of various models on specific input formats leads to user confusion and hinders progress. To address this challenge, we introduce \textbf{LLMBind}, a novel framework designed to unify a diverse array of multi-modal tasks. By harnessing a Mixture-of-Experts (MoE) Large Language Model (LLM), LLMBind processes multi-modal inputs and generates task-specific tokens, enabling the invocation of corresponding models to accomplish tasks. This unique approach empowers LLMBind to interpret inputs and generate outputs across various modalities, including image, text, video, and audio. Furthermore, we have constructed an interaction dataset comprising 400k instructions, which unlocks the ability of LLMBind for interactive visual generation and editing tasks. Extensive experimentation demonstrates that LLMBind achieves very superior performance across diverse tasks and outperforms existing models in user evaluations conducted in real-world scenarios. Moreover, the adaptability of LLMBind allows for seamless integration with the latest models and extension to new modality tasks, highlighting its potential to serve as a unified AI agent for modeling universal modalities.
♻ ☆ Structured Entity Extraction Using Large Language Models
Recent advances in machine learning have significantly impacted the field of information extraction, with Large Language Models (LLMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction (SEE) and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new model that harnesses the power of LLMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction.
♻ ☆ SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages SemEval 2024
We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
comment: SemEval 2024 Task Description Paper. arXiv admin note: text overlap with arXiv:2402.08638
♻ ☆ Improving Socratic Question Generation using Data Augmentation and Preference Optimization NAACL-2024
The Socratic method is a way of guiding students toward solving a problem independently without directly revealing the solution to the problem. Although this method has been shown to significantly improve student learning outcomes, it remains a complex labor-intensive task for instructors. Large language models (LLMs) can be used to augment human effort by automatically generating Socratic questions for students. However, existing methods that involve prompting these LLMs sometimes produce invalid outputs, e.g., those that directly reveal the solution to the problem or provide irrelevant or premature questions. To alleviate this problem, inspired by reinforcement learning with AI feedback (RLAIF), we first propose a data augmentation method to enrich existing Socratic questioning datasets with questions that are invalid in specific ways. Next, we propose a method to optimize open-source LLMs such as LLama 2 to prefer ground-truth questions over generated invalid ones, using direct preference optimization (DPO). Our experiments on a Socratic questions dataset for student code debugging show that a DPO-optimized 7B LLama 2 model can effectively avoid generating invalid questions, and as a result, outperforms existing state-of-the-art prompting methods.
comment: To appear at the 19th BEA Workshop co-located with NAACL-2024
♻ ☆ A decoder-only foundation model for time-series forecasting
Motivated by recent advances in large language models for Natural Language Processing (NLP), we design a time-series foundation model for forecasting whose out-of-the-box zero-shot performance on a variety of public datasets comes close to the accuracy of state-of-the-art supervised forecasting models for each individual dataset. Our model is based on pretraining a patched-decoder style attention model on a large time-series corpus, and can work well across different forecasting history lengths, prediction lengths and temporal granularities.
♻ ☆ MFE-NER: Multi-feature Fusion Embedding for Chinese Named Entity Recognition
In Chinese Named Entity Recognition, character substitution is a complicated linguistic phenomenon. Some Chinese characters are quite similar as they share the same components or have similar pronunciations. People replace characters in a named entity with similar characters to generate a new collocation but referring to the same object. As a result, it always leads to unrecognizable or mislabeling errors in the NER task. In this paper, we propose a lightweight method, MFE-NER, which fuses glyph and phonetic features, to help pre-trained language models handle the character substitution problem in the NER task with limited extra cost. Basically, in the glyph domain, we disassemble Chinese characters into Five-Stroke components to represent structure features. In the phonetic domain, an improved phonetic system is proposed in our work, making it reasonable to describe phonetic similarity among Chinese characters. Experiments demonstrate that our method performs especially well in detecting character substitutions while slightly improving the overall performance of Chinese NER.
Computer Vision and Pattern Recognition 150
☆ Factorized Diffusion: Perceptual Illusions by Noise Decomposition
Given a factorization of an image into a sum of linear components, we present a zero-shot method to control each individual component through diffusion model sampling. For example, we can decompose an image into low and high spatial frequencies and condition these components on different text prompts. This produces hybrid images, which change appearance depending on viewing distance. By decomposing an image into three frequency subbands, we can generate hybrid images with three prompts. We also use a decomposition into grayscale and color components to produce images whose appearance changes when they are viewed in grayscale, a phenomena that naturally occurs under dim lighting. And we explore a decomposition by a motion blur kernel, which produces images that change appearance under motion blurring. Our method works by denoising with a composite noise estimate, built from the components of noise estimates conditioned on different prompts. We also show that for certain decompositions, our method recovers prior approaches to compositional generation and spatial control. Finally, we show that we can extend our approach to generate hybrid images from real images. We do this by holding one component fixed and generating the remaining components, effectively solving an inverse problem.
☆ Dynamic Typography: Bringing Words to Life
Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. Our code is available at: https://animate-your-word.github.io/demo/.
comment: Our demo page is available at: https://animate-your-word.github.io/demo/
☆ InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior
3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points for visually harmonious rendering. Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points, whose optimization largely benefits from their initial 3D positions. To this end, we propose to guide the point initialization with an image-conditioned depth completion model, which learns to directly restore the depth map based on the observed image. Such a design allows our model to fill in depth values at an aligned scale with the original depth, and also to harness strong generalizability from largescale diffusion prior. Thanks to the more accurate depth completion, our approach, dubbed InFusion, surpasses existing alternatives with sufficiently better fidelity and efficiency under various complex scenarios. We further demonstrate the effectiveness of InFusion with several practical applications, such as inpainting with user-specific texture or with novel object insertion.
comment: Project page: https://johanan528.github.io/Infusion
☆ VG4D: Vision-Language Model Goes 4D Video Recognition ICRA 2024
Understanding the real world through point cloud video is a crucial aspect of robotics and autonomous driving systems. However, prevailing methods for 4D point cloud recognition have limitations due to sensor resolution, which leads to a lack of detailed information. Recent advances have shown that Vision-Language Models (VLM) pre-trained on web-scale text-image datasets can learn fine-grained visual concepts that can be transferred to various downstream tasks. However, effectively integrating VLM into the domain of 4D point clouds remains an unresolved problem. In this work, we propose the Vision-Language Models Goes 4D (VG4D) framework to transfer VLM knowledge from visual-text pre-trained models to a 4D point cloud network. Our approach involves aligning the 4D encoder's representation with a VLM to learn a shared visual and text space from training on large-scale image-text pairs. By transferring the knowledge of the VLM to the 4D encoder and combining the VLM, our VG4D achieves improved recognition performance. To enhance the 4D encoder, we modernize the classic dynamic point cloud backbone and propose an improved version of PSTNet, im-PSTNet, which can efficiently model point cloud videos. Experiments demonstrate that our method achieves state-of-the-art performance for action recognition on both the NTU RGB+D 60 dataset and the NTU RGB+D 120 dataset. Code is available at \url{https://github.com/Shark0-0/VG4D}.
comment: ICRA 2024
☆ Variational Bayesian Last Layers ICLR
We introduce a deterministic variational formulation for training Bayesian last layer neural networks. This yields a sampling-free, single-pass model and loss that effectively improves uncertainty estimation. Our variational Bayesian last layer (VBLL) can be trained and evaluated with only quadratic complexity in last layer width, and is thus (nearly) computationally free to add to standard architectures. We experimentally investigate VBLLs, and show that they improve predictive accuracy, calibration, and out of distribution detection over baselines across both regression and classification. Finally, we investigate combining VBLL layers with variational Bayesian feature learning, yielding a lower variance collapsed variational inference method for Bayesian neural networks.
comment: International Conference on Learning Representations (ICLR) 2024
☆ IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination
This paper aims to recover object materials from posed images captured under an unknown static lighting condition. Recent methods solve this task by optimizing material parameters through differentiable physically based rendering. However, due to the coupling between object geometry, materials, and environment lighting, there is inherent ambiguity during the inverse rendering process, preventing previous methods from obtaining accurate results. To overcome this ill-posed problem, our key idea is to learn the material prior with a generative model for regularizing the optimization process. We observe that the general rendering equation can be split into diffuse and specular shading terms, and thus formulate the material prior as diffusion models of albedo and specular. Thanks to this design, our model can be trained using the existing abundant 3D object data, and naturally acts as a versatile tool to resolve the ambiguity when recovering material representations from RGB images. In addition, we develop a coarse-to-fine training strategy that leverages estimated materials to guide diffusion models to satisfy multi-view consistent constraints, leading to more stable and accurate results. Extensive experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery. The code will be available at https://zju3dv.github.io/IntrinsicAnything.
comment: Project page: https://zju3dv.github.io/IntrinsicAnything
☆ A Subspace-Constrained Tyler's Estimator and its Applications to Structure from Motion CVPR 24
We present the subspace-constrained Tyler's estimator (STE) designed for recovering a low-dimensional subspace within a dataset that may be highly corrupted with outliers. STE is a fusion of the Tyler's M-estimator (TME) and a variant of the fast median subspace. Our theoretical analysis suggests that, under a common inlier-outlier model, STE can effectively recover the underlying subspace, even when it contains a smaller fraction of inliers relative to other methods in the field of robust subspace recovery. We apply STE in the context of Structure from Motion (SfM) in two ways: for robust estimation of the fundamental matrix and for the removal of outlying cameras, enhancing the robustness of the SfM pipeline. Numerical experiments confirm the state-of-the-art performance of our method in these applications. This research makes significant contributions to the field of robust subspace recovery, particularly in the context of computer vision and 3D reconstruction.
comment: 23 pages, accepted by CVPR 24
Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding WWW 2024
The rapid evolution of text-to-image diffusion models has opened the door of generative AI, enabling the translation of textual descriptions into visually compelling images with remarkable quality. However, a persistent challenge within this domain is the optimization of prompts to effectively convey abstract concepts into concrete objects. For example, text encoders can hardly express "peace", while can easily illustrate olive branches and white doves. This paper introduces a novel approach named Prompt Optimizer for Abstract Concepts (POAC) specifically designed to enhance the performance of text-to-image diffusion models in interpreting and generating images from abstract concepts. We propose a Prompt Language Model (PLM), which is initialized from a pre-trained language model, and then fine-tuned with a curated dataset of abstract concept prompts. The dataset is created with GPT-4 to extend the abstract concept to a scene and concrete objects. Our framework employs a Reinforcement Learning (RL)-based optimization strategy, focusing on the alignment between the generated images by a stable diffusion model and optimized prompts. Through extensive experiments, we demonstrate that our proposed POAC significantly improves the accuracy and aesthetic quality of generated images, particularly in the description of abstract concepts and alignment with optimized prompts. We also present a comprehensive analysis of our model's performance across diffusion models under different settings, showcasing its versatility and effectiveness in enhancing abstract concept representation.
comment: WWW 2024 Companion
☆ State-space Decomposition Model for Video Prediction Considering Long-term Motion Trend
Stochastic video prediction enables the consideration of uncertainty in future motion, thereby providing a better reflection of the dynamic nature of the environment. Stochastic video prediction methods based on image auto-regressive recurrent models need to feed their predictions back into the latent space. Conversely, the state-space models, which decouple frame synthesis and temporal prediction, proves to be more efficient. However, inferring long-term temporal information about motion and generalizing to dynamic scenarios under non-stationary assumptions remains an unresolved challenge. In this paper, we propose a state-space decomposition stochastic video prediction model that decomposes the overall video frame generation into deterministic appearance prediction and stochastic motion prediction. Through adaptive decomposition, the model's generalization capability to dynamic scenarios is enhanced. In the context of motion prediction, obtaining a prior on the long-term trend of future motion is crucial. Thus, in the stochastic motion prediction branch, we infer the long-term motion trend from conditional frames to guide the generation of future frames that exhibit high consistency with the conditional frames. Experimental results demonstrate that our model outperforms baselines on multiple datasets.
☆ Simple Image Signal Processing using Global Context Guidance
In modern smartphone cameras, the Image Signal Processor (ISP) is the core element that converts the RAW readings from the sensor into perceptually pleasant RGB images for the end users. The ISP is typically proprietary and handcrafted and consists of several blocks such as white balance, color correction, and tone mapping. Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks. However, most learned ISPs are trained using patches (small regions) due to computational limitations. Such methods lack global context, which limits their efficacy on full-resolution images and harms their ability to capture global properties such as color constancy or illumination. First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images. Second, we propose an efficient and simple neural ISP that utilizes our proposed module. Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
comment: Preprint under review
☆ MoA: Mixture-of-Attention for Subject-Context Disentanglement in Personalized Image Generation
We introduce a new architecture for personalization of text-to-image diffusion models, coined Mixture-of-Attention (MoA). Inspired by the Mixture-of-Experts mechanism utilized in large language models (LLMs), MoA distributes the generation workload between two attention pathways: a personalized branch and a non-personalized prior branch. MoA is designed to retain the original model's prior by fixing its attention layers in the prior branch, while minimally intervening in the generation process with the personalized branch that learns to embed subjects in the layout and context generated by the prior branch. A novel routing mechanism manages the distribution of pixels in each layer across these branches to optimize the blend of personalized and generic content creation. Once trained, MoA facilitates the creation of high-quality, personalized images featuring multiple subjects with compositions and interactions as diverse as those generated by the original model. Crucially, MoA enhances the distinction between the model's pre-existing capability and the newly augmented personalized intervention, thereby offering a more disentangled subject-context control that was previously unattainable. Project page: https://snap-research.github.io/mixture-of-attention
comment: Project Website: https://snap-research.github.io/mixture-of-attention
☆ Predicting Long-horizon Futures by Conditioning on Geometry and Time
Our work explores the task of generating future sensor observations conditioned on the past. We are motivated by `predictive coding' concepts from neuroscience as well as robotic applications such as self-driving vehicles. Predictive video modeling is challenging because the future may be multi-modal and learning at scale remains computationally expensive for video processing. To address both challenges, our key insight is to leverage the large-scale pretraining of image diffusion models which can handle multi-modality. We repurpose image models for video prediction by conditioning on new frame timestamps. Such models can be trained with videos of both static and dynamic scenes. To allow them to be trained with modestly-sized datasets, we introduce invariances by factoring out illumination and texture by forcing the model to predict (pseudo) depth, readily obtained for in-the-wild videos via off-the-shelf monocular depth networks. In fact, we show that simply modifying networks to predict grayscale pixels already improves the accuracy of video prediction. Given the extra controllability with timestamp conditioning, we propose sampling schedules that work better than the traditional autoregressive and hierarchical sampling strategies. Motivated by probabilistic metrics from the object forecasting literature, we create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes and a large vocabulary of objects. Our experiments illustrate the effectiveness of learning to condition on timestamps, and show the importance of predicting the future with invariant modalities.
comment: Project page: http://www.cs.cmu.edu/~tkhurana/depthforecasting/
☆ SSDiff: Spatial-spectral Integrated Diffusion Model for Remote Sensing Pansharpening
Pansharpening is a significant image fusion technique that merges the spatial content and spectral characteristics of remote sensing images to generate high-resolution multispectral images. Recently, denoising diffusion probabilistic models have been gradually applied to visual tasks, enhancing controllable image generation through low-rank adaptation (LoRA). In this paper, we introduce a spatial-spectral integrated diffusion model for the remote sensing pansharpening task, called SSDiff, which considers the pansharpening process as the fusion process of spatial and spectral components from the perspective of subspace decomposition. Specifically, SSDiff utilizes spatial and spectral branches to learn spatial details and spectral features separately, then employs a designed alternating projection fusion module (APFM) to accomplish the fusion. Furthermore, we propose a frequency modulation inter-branch module (FMIM) to modulate the frequency distribution between branches. The two components of SSDiff can perform favorably against the APFM when utilizing a LoRA-like branch-wise alternative fine-tuning method. It refines SSDiff to capture component-discriminating features more sufficiently. Finally, extensive experiments on four commonly used datasets, i.e., WorldView-3, WorldView-2, GaoFen-2, and QuickBird, demonstrate the superiority of SSDiff both visually and quantitatively. The code will be made open source after possible acceptance.
☆ JointViT: Modeling Oxygen Saturation Levels with Joint Supervision on Long-Tailed OCTA
The oxygen saturation level in the blood (SaO2) is crucial for health, particularly in relation to sleep-related breathing disorders. However, continuous monitoring of SaO2 is time-consuming and highly variable depending on patients' conditions. Recently, optical coherence tomography angiography (OCTA) has shown promising development in rapidly and effectively screening eye-related lesions, offering the potential for diagnosing sleep-related disorders. To bridge this gap, our paper presents three key contributions. Firstly, we propose JointViT, a novel model based on the Vision Transformer architecture, incorporating a joint loss function for supervision. Secondly, we introduce a balancing augmentation technique during data preprocessing to improve the model's performance, particularly on the long-tail distribution within the OCTA dataset. Lastly, through comprehensive experiments on the OCTA dataset, our proposed method significantly outperforms other state-of-the-art methods, achieving improvements of up to 12.28% in overall accuracy. This advancement lays the groundwork for the future utilization of OCTA in diagnosing sleep-related disorders. See project website https://steve-zeyu-zhang.github.io/JointViT
☆ Event Cameras Meet SPADs for High-Speed, Low-Bandwidth Imaging
Traditional cameras face a trade-off between low-light performance and high-speed imaging: longer exposure times to capture sufficient light results in motion blur, whereas shorter exposures result in Poisson-corrupted noisy images. While burst photography techniques help mitigate this tradeoff, conventional cameras are fundamentally limited in their sensor noise characteristics. Event cameras and single-photon avalanche diode (SPAD) sensors have emerged as promising alternatives to conventional cameras due to their desirable properties. SPADs are capable of single-photon sensitivity with microsecond temporal resolution, and event cameras can measure brightness changes up to 1 MHz with low bandwidth requirements. We show that these properties are complementary, and can help achieve low-light, high-speed image reconstruction with low bandwidth requirements. We introduce a sensor fusion framework to combine SPADs with event cameras to improves the reconstruction of high-speed, low-light scenes while reducing the high bandwidth cost associated with using every SPAD frame. Our evaluation, on both synthetic and real sensor data, demonstrates significant enhancements ( > 5 dB PSNR) in reconstructing low-light scenes at high temporal resolution (100 kHz) compared to conventional cameras. Event-SPAD fusion shows great promise for real-world applications, such as robotics or medical imaging.
☆ arcjetCV: an open-source software to analyze material ablation
arcjetCV is an open-source Python software designed to automate time-resolved measurements of heatshield material recession and recession rates from arcjet test video footage. This new automated and accessible capability greatly exceeds previous manual extraction methods, enabling rapid and detailed characterization of material recession for any sample with a profile video. arcjetCV automates the video segmentation process using machine learning models, including a one-dimensional (1D) Convolutional Neural Network (CNN) to infer the time-window of interest, a two-dimensional (2D) CNN for image and edge segmentation, and a Local Outlier Factor (LOF) for outlier filtering. A graphical user interface (GUI) simplifies the user experience and an application programming interface (API) allows users to call the core functions from scripts, enabling video batch processing. arcjetCV's capability to measure time-resolved recession in turn enables characterization of non-linear processes (shrinkage, swelling, melt flows, etc.), contributing to higher fidelity validation and improved modeling of heatshield material performance. The source code associated with this article can be found at https://github.com/magnus-haw/arcjetCV.
☆ Multi-resolution Rescored ByteTrack for Video Object Detection on Ultra-low-power Embedded Systems
This paper introduces Multi-Resolution Rescored Byte-Track (MR2-ByteTrack), a novel video object detection framework for ultra-low-power embedded processors. This method reduces the average compute load of an off-the-shelf Deep Neural Network (DNN) based object detector by up to 2.25$\times$ by alternating the processing of high-resolution images (320$\times$320 pixels) with multiple down-sized frames (192$\times$192 pixels). To tackle the accuracy degradation due to the reduced image input size, MR2-ByteTrack correlates the output detections over time using the ByteTrack tracker and corrects potential misclassification using a novel probabilistic Rescore algorithm. By interleaving two down-sized images for every high-resolution one as the input of different state-of-the-art DNN object detectors with our MR2-ByteTrack, we demonstrate an average accuracy increase of 2.16% and a latency reduction of 43% on the GAP9 microcontroller compared to a baseline frame-by-frame inference scheme using exclusively full-resolution images. Code available at: https://github.com/Bomps4/Multi_Resolution_Rescored_ByteTrack
comment: 9 pages, 3 figures Accepted for publication at the Embedded Vision Workshop of the Computer Vision and Pattern Recognition conference, Seattle, 2024
☆ AdaIR: Exploiting Underlying Similarities of Image Restoration Tasks with Adapters
Existing image restoration approaches typically employ extensive networks specifically trained for designated degradations. Despite being effective, such methods inevitably entail considerable storage costs and computational overheads due to the reliance on task-specific networks. In this work, we go beyond this well-established framework and exploit the inherent commonalities among image restoration tasks. The primary objective is to identify components that are shareable across restoration tasks and augment the shared components with modules specifically trained for individual tasks. Towards this goal, we propose AdaIR, a novel framework that enables low storage cost and efficient training without sacrificing performance. Specifically, a generic restoration network is first constructed through self-supervised pre-training using synthetic degradations. Subsequent to the pre-training phase, adapters are trained to adapt the pre-trained network to specific degradations. AdaIR requires solely the training of lightweight, task-specific modules, ensuring a more efficient storage and training regimen. We have conducted extensive experiments to validate the effectiveness of AdaIR and analyze the influence of the pre-training strategy on discovering shareable components. Extensive experimental results show that AdaIR achieves outstanding results on multi-task restoration while utilizing significantly fewer parameters (1.9 MB) and less training time (7 hours) for each restoration task. The source codes and trained models will be released.
☆ Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt IJCAI2024
Artistic style transfer aims to transfer the learned artistic style onto an arbitrary content image, generating artistic stylized images. Existing generative adversarial network-based methods fail to generate highly realistic stylized images and always introduce obvious artifacts and disharmonious patterns. Recently, large-scale pre-trained diffusion models opened up a new way for generating highly realistic artistic stylized images. However, diffusion model-based methods generally fail to preserve the content structure of input content images well, introducing some undesired content structure and style patterns. To address the above problems, we propose a novel pre-trained diffusion-based artistic style transfer method, called LSAST, which can generate highly realistic artistic stylized images while preserving the content structure of input content images well, without bringing obvious artifacts and disharmonious style patterns. Specifically, we introduce a Step-aware and Layer-aware Prompt Space, a set of learnable prompts, which can learn the style information from the collection of artworks and dynamically adjusts the input images' content structure and style pattern. To train our prompt space, we propose a novel inversion method, called Step-ware and Layer-aware Prompt Inversion, which allows the prompt space to learn the style information of the artworks collection. In addition, we inject a pre-trained conditional branch of ControlNet into our LSAST, which further improved our framework's ability to maintain content structure. Extensive experiments demonstrate that our proposed method can generate more highly realistic artistic stylized images than the state-of-the-art artistic style transfer methods.
comment: Accepted by IJCAI2024
☆ Using Game Engines and Machine Learning to Create Synthetic Satellite Imagery for a Tabletop Verification Exercise
Satellite imagery is regarded as a great opportunity for citizen-based monitoring of activities of interest. Relevant imagery may however not be available at sufficiently high resolution, quality, or cadence -- let alone be uniformly accessible to open-source analysts. This limits an assessment of the true long-term potential of citizen-based monitoring of nuclear activities using publicly available satellite imagery. In this article, we demonstrate how modern game engines combined with advanced machine-learning techniques can be used to generate synthetic imagery of sites of interest with the ability to choose relevant parameters upon request; these include time of day, cloud cover, season, or level of activity onsite. At the same time, resolution and off-nadir angle can be adjusted to simulate different characteristics of the satellite. While there are several possible use-cases for synthetic imagery, here we focus on its usefulness to support tabletop exercises in which simple monitoring scenarios can be examined to better understand verification capabilities enabled by new satellite constellations and very short revisit times.
comment: Annual Meeting of the Institute of Nuclear Materials Management (INMM), Vienna
☆ Octopus v3: Technical Report for On-device Sub-billion Multimodal AI Agent
A multimodal AI agent is characterized by its ability to process and learn from various types of data, including natural language, visual, and audio inputs, to inform its actions. Despite advancements in large language models that incorporate visual data, such as GPT-4V, effectively translating image-based data into actionable outcomes for AI agents continues to be challenging. In this paper, we introduce a multimodal model that incorporates the concept of functional token specifically designed for AI agent applications. To ensure compatibility with edge devices, our model is optimized to a compact size of less than 1B parameters. Like GPT-4, our model can process both English and Chinese. We demonstrate that this model is capable of operating efficiently on a wide range of edge devices, including as constrained as a Raspberry Pi.
☆ CarcassFormer: An End-to-end Transformer-based Framework for Simultaneous Localization, Segmentation and Classification of Poultry Carcass Defect
In the food industry, assessing the quality of poultry carcasses during processing is a crucial step. This study proposes an effective approach for automating the assessment of carcass quality without requiring skilled labor or inspector involvement. The proposed system is based on machine learning (ML) and computer vision (CV) techniques, enabling automated defect detection and carcass quality assessment. To this end, an end-to-end framework called CarcassFormer is introduced. It is built upon a Transformer-based architecture designed to effectively extract visual representations while simultaneously detecting, segmenting, and classifying poultry carcass defects. Our proposed framework is capable of analyzing imperfections resulting from production and transport welfare issues, as well as processing plant stunner, scalder, picker, and other equipment malfunctions. To benchmark the framework, a dataset of 7,321 images was initially acquired, which contained both single and multiple carcasses per image. In this study, the performance of the CarcassFormer system is compared with other state-of-the-art (SOTA) approaches for both classification, detection, and segmentation tasks. Through extensive quantitative experiments, our framework consistently outperforms existing methods, demonstrating remarkable improvements across various evaluation metrics such as AP, AP@50, and AP@75. Furthermore, the qualitative results highlight the strengths of CarcassFormer in capturing fine details, including feathers, and accurately localizing and segmenting carcasses with high precision. To facilitate further research and collaboration, the pre-trained model and source code of CarcassFormer is available for research purposes at: \url{https://github.com/UARK-AICV/CarcassFormer}.
comment: Accepted to Poultry Science Journal
☆ Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
Lung diseases remain a critical global health concern, and it's crucial to have accurate and quick ways to diagnose them. This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs. Employing advanced deep learning techniques, we explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer. The research encompasses comprehensive methodologies such as hyperparameter tuning, stratified k-fold cross-validation, and transfer learning with fine-tuning.Remarkably, our findings reveal that the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21\%. This success shows that our methods work well in accurately identifying different lung diseases. The exploration of explainable artificial intelligence (XAI) methodologies further enhances our understanding of the decision-making processes employed by these models, contributing to increased trust in their clinical applications.
☆ SPAMming Labels: Efficient Annotations for the Trackers of Tomorrow
Increasing the annotation efficiency of trajectory annotations from videos has the potential to enable the next generation of data-hungry tracking algorithms to thrive on large-scale datasets. Despite the importance of this task, there are currently very few works exploring how to efficiently label tracking datasets comprehensively. In this work, we introduce SPAM, a tracking data engine that provides high-quality labels with minimal human intervention. SPAM is built around two key insights: i) most tracking scenarios can be easily resolved. To take advantage of this, we utilize a pre-trained model to generate high-quality pseudo-labels, reserving human involvement for a smaller subset of more difficult instances; ii) handling the spatiotemporal dependencies of track annotations across time can be elegantly and efficiently formulated through graphs. Therefore, we use a unified graph formulation to address the annotation of both detections and identity association for tracks across time. Based on these insights, SPAM produces high-quality annotations with a fraction of ground truth labeling cost. We demonstrate that trackers trained on SPAM labels achieve comparable performance to those trained on human annotations while requiring only 3-20% of the human labeling effort. Hence, SPAM paves the way towards highly efficient labeling of large-scale tracking datasets. Our code and models will be available upon acceptance.
☆ SLAIM: Robust Dense Neural SLAM for Online Tracking and Mapping
We present SLAIM - Simultaneous Localization and Implicit Mapping. We propose a novel coarse-to-fine tracking model tailored for Neural Radiance Field SLAM (NeRF-SLAM) to achieve state-of-the-art tracking performance. Notably, existing NeRF-SLAM systems consistently exhibit inferior tracking performance compared to traditional SLAM algorithms. NeRF-SLAM methods solve camera tracking via image alignment and photometric bundle-adjustment. Such optimization processes are difficult to optimize due to the narrow basin of attraction of the optimization loss in image space (local minima) and the lack of initial correspondences. We mitigate these limitations by implementing a Gaussian pyramid filter on top of NeRF, facilitating a coarse-to-fine tracking optimization strategy. Furthermore, NeRF systems encounter challenges in converging to the right geometry with limited input views. While prior approaches use a Signed-Distance Function (SDF)-based NeRF and directly supervise SDF values by approximating ground truth SDF through depth measurements, this often results in suboptimal geometry. In contrast, our method employs a volume density representation and introduces a novel KL regularizer on the ray termination distribution, constraining scene geometry to consist of empty space and opaque surfaces. Our solution implements both local and global bundle-adjustment to produce a robust (coarse-to-fine) and accurate (KL regularizer) SLAM solution. We conduct experiments on multiple datasets (ScanNet, TUM, Replica) showing state-of-the-art results in tracking and in reconstruction accuracy.
☆ Neural Shrödinger Bridge Matching for Pansharpening
Recent diffusion probabilistic models (DPM) in the field of pansharpening have been gradually gaining attention and have achieved state-of-the-art (SOTA) performance. In this paper, we identify shortcomings in directly applying DPMs to the task of pansharpening as an inverse problem: 1) initiating sampling directly from Gaussian noise neglects the low-resolution multispectral image (LRMS) as a prior; 2) low sampling efficiency often necessitates a higher number of sampling steps. We first reformulate pansharpening into the stochastic differential equation (SDE) form of an inverse problem. Building upon this, we propose a Schr\"odinger bridge matching method that addresses both issues. We design an efficient deep neural network architecture tailored for the proposed SB matching. In comparison to the well-established DL-regressive-based framework and the recent DPM framework, our method demonstrates SOTA performance with fewer sampling steps. Moreover, we discuss the relationship between SB matching and other methods based on SDEs and ordinary differential equations (ODEs), as well as its connection with optimal transport. Code will be available.
☆ RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering
We propose RainyScape, an unsupervised framework for reconstructing clean scenes from a collection of multi-view rainy images. RainyScape consists of two main modules: a neural rendering module and a rain-prediction module that incorporates a predictor network and a learnable latent embedding that captures the rain characteristics of the scene. Specifically, based on the spectral bias property of neural networks, we first optimize the neural rendering pipeline to obtain a low-frequency scene representation. Subsequently, we jointly optimize the two modules, driven by the proposed adaptive direction-sensitive gradient-based reconstruction loss, which encourages the network to distinguish between scene details and rain streaks, facilitating the propagation of gradients to the relevant components. Extensive experiments on both the classic neural radiance field and the recently proposed 3D Gaussian splatting demonstrate the superiority of our method in effectively eliminating rain streaks and rendering clean images, achieving state-of-the-art performance. The constructed high-quality dataset and source code will be publicly available.
☆ Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion
Human motion understanding is a fundamental task with diverse practical applications, facilitated by the availability of large-scale motion capture datasets. Recent studies focus on text-motion tasks, such as text-based motion generation, editing and question answering. In this study, we introduce the novel task of text-based human motion grounding (THMG), aimed at precisely localizing temporal segments corresponding to given textual descriptions within untrimmed motion sequences. Capturing global temporal information is crucial for the THMG task. However, transformer-based models that rely on global temporal self-attention face challenges when handling long untrimmed sequences due to the quadratic computational cost. We address these challenges by proposing Text-controlled Motion Mamba (TM-Mamba), a unified model that integrates temporal global context, language query control, and spatial graph topology with only linear memory cost. The core of the model is a text-controlled selection mechanism which dynamically incorporates global temporal information based on text query. The model is further enhanced to be topology-aware through the integration of relational embeddings. For evaluation, we introduce BABEL-Grounding, the first text-motion dataset that provides detailed textual descriptions of human actions along with their corresponding temporal segments. Extensive evaluations demonstrate the effectiveness of TM-Mamba on BABEL-Grounding.
☆ Boosting Medical Image Segmentation Performance with Adaptive Convolution Layer
Medical image segmentation plays a vital role in various clinical applications, enabling accurate delineation and analysis of anatomical structures or pathological regions. Traditional CNNs have achieved remarkable success in this field. However, they often rely on fixed kernel sizes, which can limit their performance and adaptability in medical images where features exhibit diverse scales and configurations due to variability in equipment, target sizes, and expert interpretations. In this paper, we propose an adaptive layer placed ahead of leading deep-learning models such as UCTransNet, which dynamically adjusts the kernel size based on the local context of the input image. By adaptively capturing and fusing features at multiple scales, our approach enhances the network's ability to handle diverse anatomical structures and subtle image details, even for recently performing architectures that internally implement intra-scale modules, such as UCTransnet. Extensive experiments are conducted on benchmark medical image datasets to evaluate the effectiveness of our proposal. It consistently outperforms traditional \glspl{CNN} with fixed kernel sizes with a similar number of parameters, achieving superior segmentation Accuracy, Dice, and IoU in popular datasets such as SegPC2021 and ISIC2018. The model and data are published in the open-source repository, ensuring transparency and reproducibility of our promising results.
☆ DeblurGS: Gaussian Splatting for Camera Motion Blur
Although significant progress has been made in reconstructing sharp 3D scenes from motion-blurred images, a transition to real-world applications remains challenging. The primary obstacle stems from the severe blur which leads to inaccuracies in the acquisition of initial camera poses through Structure-from-Motion, a critical aspect often overlooked by previous approaches. To address this challenge, we propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images, even with the noisy camera pose initialization. We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting. Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings for the optimization process. Furthermore, we propose Gaussian Densification Annealing strategy to prevent the generation of inaccurate Gaussians at erroneous locations during the early training stages when camera motion is still imprecise. Comprehensive experiments demonstrate that our DeblurGS achieves state-of-the-art performance in deblurring and novel view synthesis for real-world and synthetic benchmark datasets, as well as field-captured blurry smartphone videos.
☆ Detector Collapse: Backdooring Object Detection to Catastrophic Overload or Blindness IJCAI-24
Object detection tasks, crucial in safety-critical systems like autonomous driving, focus on pinpointing object locations. These detectors are known to be susceptible to backdoor attacks. However, existing backdoor techniques have primarily been adapted from classification tasks, overlooking deeper vulnerabilities specific to object detection. This paper is dedicated to bridging this gap by introducing Detector Collapse} (DC), a brand-new backdoor attack paradigm tailored for object detection. DC is designed to instantly incapacitate detectors (i.e., severely impairing detector's performance and culminating in a denial-of-service). To this end, we develop two innovative attack schemes: Sponge for triggering widespread misidentifications and Blinding for rendering objects invisible. Remarkably, we introduce a novel poisoning strategy exploiting natural objects, enabling DC to act as a practical backdoor in real-world environments. Our experiments on different detectors across several benchmarks show a significant improvement ($\sim$10\%-60\% absolute and $\sim$2-7$\times$ relative) in attack efficacy over state-of-the-art attacks.
comment: Accepted by IJCAI-24
☆ Consisaug: A Consistency-based Augmentation for Polyp Detection in Endoscopy Image Analysis
Colorectal cancer (CRC), which frequently originates from initially benign polyps, remains a significant contributor to global cancer-related mortality. Early and accurate detection of these polyps via colonoscopy is crucial for CRC prevention. However, traditional colonoscopy methods depend heavily on the operator's experience, leading to suboptimal polyp detection rates. Besides, the public database are limited in polyp size and shape diversity. To enhance the available data for polyp detection, we introduce Consisaug, an innovative and effective methodology to augment data that leverages deep learning. We utilize the constraint that when the image is flipped the class label should be equal and the bonding boxes should be consistent. We implement our Consisaug on five public polyp datasets and at three backbones, and the results show the effectiveness of our method.
comment: MLMI 2023
☆ Best Practices for a Handwritten Text Recognition System
Handwritten text recognition has been developed rapidly in the recent years, following the rise of deep learning and its applications. Though deep learning methods provide notable boost in performance concerning text recognition, non-trivial deviation in performance can be detected even when small pre-processing or architectural/optimization elements are changed. This work follows a ``best practice'' rationale; highlight simple yet effective empirical practices that can further help training and provide well-performing handwritten text recognition systems. Specifically, we considered three basic aspects of a deep HTR system and we proposed simple yet effective solutions: 1) retain the aspect ratio of the images in the preprocessing step, 2) use max-pooling for converting the 3D feature map of CNN output into a sequence of features and 3) assist the training procedure via an additional CTC loss which acts as a shortcut on the max-pooled sequential features. Using these proposed simple modifications, one can attain close to state-of-the-art results, while considering a basic convolutional-recurrent (CNN+LSTM) architecture, for both IAM and RIMES datasets. Code is available at https://github.com/georgeretsi/HTR-best-practices/.
☆ Vision-based control for landing an aerial vehicle on a marine vessel
This work addresses the landing problem of an aerial vehicle, exemplified by a simple quadrotor, on a moving platform using image-based visual servo control. First, the mathematical model of the quadrotor aircraft is introduced, followed by the design of the inner-loop control. At the second stage, the image features on the textured target plane are exploited to derive a vision-based control law. The image of the spherical centroid of a set of landmarks present in the landing target is used as a position measurement, whereas the translational optical flow is used as velocity measurement. The kinematics of the vision-based system is expressed in terms of the observable features, and the proposed control law guarantees convergence without estimating the unknown distance between the vision system and the target, which is also guaranteed to remain strictly positive, avoiding undesired collisions. The performance of the proposed control law is evaluated in MATLAB and 3-D simulation software Gazebo. Simulation results for a quadrotor UAV are provided for different velocity profiles of the moving target, showcasing the robustness of the proposed controller.
☆ SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
☆ Following the Human Thread in Social Navigation
The success of collaboration between humans and robots in shared environments relies on the robot's real-time adaptation to human motion. Specifically, in Social Navigation, the agent should be close enough to assist but ready to back up to let the human move freely, avoiding collisions. Human trajectories emerge as crucial cues in Social Navigation, but they are partially observable from the robot's egocentric view and computationally complex to process. We propose the first Social Dynamics Adaptation model (SDA) based on the robot's state-action history to infer the social dynamics. We propose a two-stage Reinforcement Learning framework: the first learns to encode the human trajectories into social dynamics and learns a motion policy conditioned on this encoded information, the current status, and the previous action. Here, the trajectories are fully visible, i.e., assumed as privileged information. In the second stage, the trained policy operates without direct access to trajectories. Instead, the model infers the social dynamics solely from the history of previous actions and statuses in real-time. Tested on the novel Habitat 3.0 platform, SDA sets a novel state of the art (SoA) performance in finding and following humans.
☆ Single-temporal Supervised Remote Change Detection for Domain Generalization
Change detection is widely applied in remote sensing image analysis. Existing methods require training models separately for each dataset, which leads to poor domain generalization. Moreover, these methods rely heavily on large amounts of high-quality pair-labelled data for training, which is expensive and impractical. In this paper, we propose a multimodal contrastive learning (ChangeCLIP) based on visual-language pre-training for change detection domain generalization. Additionally, we propose a dynamic context optimization for prompt learning. Meanwhile, to address the data dependency issue of existing methods, we introduce a single-temporal and controllable AI-generated training strategy (SAIN). This allows us to train the model using a large number of single-temporal images without image pairs in the real world, achieving excellent generalization. Extensive experiments on series of real change detection datasets validate the superiority and strong generalization of ChangeCLIP, outperforming state-of-the-art change detection methods. Code will be available.
☆ VBR: A Vision Benchmark in Rome ICRA 2024
This paper presents a vision and perception research dataset collected in Rome, featuring RGB data, 3D point clouds, IMU, and GPS data. We introduce a new benchmark targeting visual odometry and SLAM, to advance the research in autonomous robotics and computer vision. This work complements existing datasets by simultaneously addressing several issues, such as environment diversity, motion patterns, and sensor frequency. It uses up-to-date devices and presents effective procedures to accurately calibrate the intrinsic and extrinsic of the sensors while addressing temporal synchronization. During recording, we cover multi-floor buildings, gardens, urban and highway scenarios. Combining handheld and car-based data collections, our setup can simulate any robot (quadrupeds, quadrotors, autonomous vehicles). The dataset includes an accurate 6-dof ground truth based on a novel methodology that refines the RTK-GPS estimate with LiDAR point clouds through Bundle Adjustment. All sequences divided in training and testing are accessible through our website.
comment: Accepted at IEEE ICRA 2024 Website: https://rvp-group.net/datasets/slam.html
☆ Leveraging Fine-Grained Information and Noise Decoupling for Remote Sensing Change Detection
Change detection aims to identify remote sense object changes by analyzing data between bitemporal image pairs. Due to the large temporal and spatial span of data collection in change detection image pairs, there are often a significant amount of task-specific and task-agnostic noise. Previous effort has focused excessively on denoising, with this goes a great deal of loss of fine-grained information. In this paper, we revisit the importance of fine-grained features in change detection and propose a series of operations for fine-grained information compensation and noise decoupling (FINO). First, the context is utilized to compensate for the fine-grained information in the feature space. Next, a shape-aware and a brightness-aware module are designed to improve the capacity for representation learning. The shape-aware module guides the backbone for more precise shape estimation, guiding the backbone network in extracting object shape features. The brightness-aware module learns a overall brightness estimation to improve the model's robustness to task-agnostic noise. Finally, a task-specific noise decoupling structure is designed as a way to improve the model's ability to separate noise interference from feature similarity. With these training schemes, our proposed method achieves new state-of-the-art (SOTA) results in multiple change detection benchmarks. The code will be made available.
☆ Improving Composed Image Retrieval via Contrastive Learning with Scaling Positives and Negatives
The Composed Image Retrieval (CIR) task aims to retrieve target images using a composed query consisting of a reference image and a modified text. Advanced methods often utilize contrastive learning as the optimization objective, which benefits from adequate positive and negative examples. However, the triplet for CIR incurs high manual annotation costs, resulting in limited positive examples. Furthermore, existing methods commonly use in-batch negative sampling, which reduces the negative number available for the model. To address the problem of lack of positives, we propose a data generation method by leveraging a multi-modal large language model to construct triplets for CIR. To introduce more negatives during fine-tuning, we design a two-stage fine-tuning framework for CIR, whose second stage introduces plenty of static representations of negatives to optimize the representation space rapidly. The above two improvements can be effectively stacked and designed to be plug-and-play, easily applied to existing CIR models without changing their original architectures. Extensive experiments and ablation analysis demonstrate that our method effectively scales positives and negatives and achieves state-of-the-art results on both FashionIQ and CIRR datasets. In addition, our methods also perform well in zero-shot composed image retrieval, providing a new CIR solution for the low-resources scenario.
comment: 12 pages, 11 figures
☆ Achieving Rotation Invariance in Convolution Operations: Shifting from Data-Driven to Mechanism-Assured
Achieving rotation invariance in deep neural networks without relying on data has always been a hot research topic. Intrinsic rotation invariance can enhance the model's feature representation capability, enabling better performance in tasks such as multi-orientation object recognition and detection. Based on various types of non-learnable operators, including gradient, sort, local binary pattern, maximum, etc., this paper designs a set of new convolution operations that are natually invariant to arbitrary rotations. Unlike most previous studies, these rotation-invariant convolutions (RIConvs) have the same number of learnable parameters and a similar computational process as conventional convolution operations, allowing them to be interchangeable. Using the MNIST-Rot dataset, we first verify the invariance of these RIConvs under various rotation angles and compare their performance with previous rotation-invariant convolutional neural networks (RI-CNNs). Two types of RIConvs based on gradient operators achieve state-of-the-art results. Subsequently, we combine RIConvs with different types and depths of classic CNN backbones. Using the OuTex_00012, MTARSI, and NWPU-RESISC-45 datasets, we test their performance on texture recognition, aircraft type recognition, and remote sensing image classification tasks. The results show that RIConvs significantly improve the accuracy of these CNN backbones, especially when the training data is limited. Furthermore, we find that even with data augmentation, RIConvs can further enhance model performance.
☆ A Semantic Segmentation-guided Approach for Ground-to-Aerial Image Matching
Nowadays the accurate geo-localization of ground-view images has an important role across domains as diverse as journalism, forensics analysis, transports, and Earth Observation. This work addresses the problem of matching a query ground-view image with the corresponding satellite image without GPS data. This is done by comparing the features from a ground-view image and a satellite one, innovatively leveraging the corresponding latter's segmentation mask through a three-stream Siamese-like network. The proposed method, Semantic Align Net (SAN), focuses on limited Field-of-View (FoV) and ground panorama images (images with a FoV of 360{\deg}). The novelty lies in the fusion of satellite images in combination with their semantic segmentation masks, aimed at ensuring that the model can extract useful features and focus on the significant parts of the images. This work shows how SAN through semantic analysis of images improves the performance on the unlabelled CVUSA dataset for all the tested FoVs.
comment: 6 pages, 2 figures, 2 tables, Submitted to IGARSS 2024
☆ Learning from Unlabelled Data with Transformers: Domain Adaptation for Semantic Segmentation of High Resolution Aerial Images
Data from satellites or aerial vehicles are most of the times unlabelled. Annotating such data accurately is difficult, requires expertise, and is costly in terms of time. Even if Earth Observation (EO) data were correctly labelled, labels might change over time. Learning from unlabelled data within a semi-supervised learning framework for segmentation of aerial images is challenging. In this paper, we develop a new model for semantic segmentation of unlabelled images, the Non-annotated Earth Observation Semantic Segmentation (NEOS) model. NEOS performs domain adaptation as the target domain does not have ground truth semantic segmentation masks. The distribution inconsistencies between the target and source domains are due to differences in acquisition scenes, environment conditions, sensors, and times. Our model aligns the learned representations of the different domains to make them coincide. The evaluation results show that NEOS is successful and outperforms other models for semantic segmentation of unlabelled data.
comment: 6 pages, 7 figures, Submitted to IGARSS 2024
☆ Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption CVPR2024
Existing multi-person human reconstruction approaches mainly focus on recovering accurate poses or avoiding penetration, but overlook the modeling of close interactions. In this work, we tackle the task of reconstructing closely interactive humans from a monocular video. The main challenge of this task comes from insufficient visual information caused by depth ambiguity and severe inter-person occlusion. In view of this, we propose to leverage knowledge from proxemic behavior and physics to compensate the lack of visual information. This is based on the observation that human interaction has specific patterns following the social proxemics. Specifically, we first design a latent representation based on Vector Quantised-Variational AutoEncoder (VQ-VAE) to model human interaction. A proxemics and physics guided diffusion model is then introduced to denoise the initial distribution. We design the diffusion model as dual branch with each branch representing one individual such that the interaction can be modeled via cross attention. With the learned priors of VQ-VAE and physical constraint as the additional information, our proposed approach is capable of estimating accurate poses that are also proxemics and physics plausible. Experimental results on Hi4D, 3DPW, and CHI3D demonstrate that our method outperforms existing approaches. The code is available at \url{https://github.com/boycehbz/HumanInteraction}.
comment: CVPR2024
☆ Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution
Transformer-based models have achieved remarkable results in low-level vision tasks including image super-resolution (SR). However, early Transformer-based approaches that rely on self-attention within non-overlapping windows encounter challenges in acquiring global information. To activate more input pixels globally, hybrid attention models have been proposed. Moreover, training by solely minimizing pixel-wise RGB losses, such as L1, have been found inadequate for capturing essential high-frequency details. This paper presents two contributions: i) We introduce convolutional non-local sparse attention (NLSA) blocks to extend the hybrid transformer architecture in order to further enhance its receptive field. ii) We employ wavelet losses to train Transformer models to improve quantitative and subjective performance. While wavelet losses have been explored previously, showing their power in training Transformer-based SR models is novel. Our experimental results demonstrate that the proposed model provides state-of-the-art PSNR results as well as superior visual performance across various benchmark datasets.
comment: total of 10 pages including references, 5 tables and 5 figures, accepted for NTIRE 2024 Single Image Super Resolution (x4) challenge
☆ Criteria for Uncertainty-based Corner Cases Detection in Instance Segmentation
The operating environment of a highly automated vehicle is subject to change, e.g., weather, illumination, or the scenario containing different objects and other participants in which the highly automated vehicle has to navigate its passengers safely. These situations must be considered when developing and validating highly automated driving functions. This already poses a problem for training and evaluating deep learning models because without the costly labeling of thousands of recordings, not knowing whether the data contains relevant, interesting data for further model training, it is a guess under which conditions and situations the model performs poorly. For this purpose, we present corner case criteria based on the predictive uncertainty. With our corner case criteria, we are able to detect uncertainty-based corner cases of an object instance segmentation model without relying on ground truth (GT) data. We evaluated each corner case criterion using the COCO and the NuImages dataset to analyze the potential of our approach. We also provide a corner case decision function that allows us to distinguish each object into True Positive (TP), localization and/or classification corner case, or False Positive (FP). We also present our first results of an iterative training cycle that outperforms the baseline and where the data added to the training dataset is selected based on the corner case decision function.
☆ The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data ICCV
Recently, backdoor attacks have posed a serious security threat to the training process of deep neural networks (DNNs). The attacked model behaves normally on benign samples but outputs a specific result when the trigger is present. However, compared with the rocketing progress of backdoor attacks, existing defenses are difficult to deal with these threats effectively or require benign samples to work, which may be unavailable in real scenarios. In this paper, we find that the poisoned samples and benign samples can be distinguished with prediction entropy. This inspires us to propose a novel dual-network training framework: The Victim and The Beneficiary (V&B), which exploits a poisoned model to train a clean model without extra benign samples. Firstly, we sacrifice the Victim network to be a powerful poisoned sample detector by training on suspicious samples. Secondly, we train the Beneficiary network on the credible samples selected by the Victim to inhibit backdoor injection. Thirdly, a semi-supervised suppression strategy is adopted for erasing potential backdoors and improving model performance. Furthermore, to better inhibit missed poisoned samples, we propose a strong data augmentation method, AttentionMix, which works well with our proposed V&B framework. Extensive experiments on two widely used datasets against 6 state-of-the-art attacks demonstrate that our framework is effective in preventing backdoor injection and robust to various attacks while maintaining the performance on benign samples. Our code is available at https://github.com/Zixuan-Zhu/VaB.
comment: 13 pages, 6 figures, published to ICCV
☆ MMCBE: Multi-modality Dataset for Crop Biomass Estimation and Beyond
Crop biomass, a critical indicator of plant growth, health, and productivity, is invaluable for crop breeding programs and agronomic research. However, the accurate and scalable quantification of crop biomass remains inaccessible due to limitations in existing measurement methods. One of the obstacles impeding the advancement of current crop biomass prediction methodologies is the scarcity of publicly available datasets. Addressing this gap, we introduce a new dataset in this domain, i.e. Multi-modality dataset for crop biomass estimation (MMCBE). Comprising 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth, MMCBE represents the first multi-modality one in the field. This dataset aims to establish benchmark methods for crop biomass quantification and foster the development of vision-based approaches. We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering. With this publication, we are making our comprehensive dataset available to the broader community.
comment: 10 pages, 10 figures, 3 tables
☆ A Progressive Framework of Vision-language Knowledge Distillation and Alignment for Multilingual Scene
Pre-trained vision-language (V-L) models such as CLIP have shown excellent performance in many downstream cross-modal tasks. However, most of them are only applicable to the English context. Subsequent research has focused on this problem and proposed improved models, such as CN-CLIP and AltCLIP, to facilitate their applicability to Chinese and even other languages. Nevertheless, these models suffer from high latency and a large memory footprint in inference, which limits their further deployment on resource-constrained edge devices. In this work, we propose a conceptually simple yet effective multilingual CLIP Compression framework and train a lightweight multilingual vision-language model, called DC-CLIP, for both Chinese and English context. In this framework, we collect high-quality Chinese and English text-image pairs and design two training stages, including multilingual vision-language feature distillation and alignment. During the first stage, lightweight image/text student models are designed to learn robust visual/multilingual textual feature representation ability from corresponding teacher models, respectively. Subsequently, the multilingual vision-language alignment stage enables effective alignment of visual and multilingual textual features to further improve the model's multilingual performance. Comprehensive experiments in zero-shot image classification, conducted based on the ELEVATER benchmark, showcase that DC-CLIP achieves superior performance in the English context and competitive performance in the Chinese context, even with less training data, when compared to existing models of similar parameter magnitude. The evaluation demonstrates the effectiveness of our designed training mechanism.
☆ Optical Image-to-Image Translation Using Denoising Diffusion Models: Heterogeneous Change Detection as a Use Case
We introduce an innovative deep learning-based method that uses a denoising diffusion-based model to translate low-resolution images to high-resolution ones from different optical sensors while preserving the contents and avoiding undesired artifacts. The proposed method is trained and tested on a large and diverse data set of paired Sentinel-II and Planet Dove images. We show that it can solve serious image generation issues observed when the popular classifier-free guided Denoising Diffusion Implicit Model (DDIM) framework is used in the task of Image-to-Image Translation of multi-sensor optical remote sensing images and that it can generate large images with highly consistent patches, both in colors and in features. Moreover, we demonstrate how our method improves heterogeneous change detection results in two urban areas: Beirut, Lebanon, and Austin, USA. Our contributions are: i) a new training and testing algorithm based on denoising diffusion models for optical image translation; ii) a comprehensive image quality evaluation and ablation study; iii) a comparison with the classifier-free guided DDIM framework; and iv) change detection experiments on heterogeneous data.
☆ ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset
Nowadays, state-of-the-art AI-based generative models represent a viable solution to overcome privacy issues and biases in the collection of datasets containing personal information, such as faces. Following this intuition, in this paper we introduce ONOT, a synthetic dataset specifically focused on the generation of high-quality faces in adherence to the requirements of the ISO/IEC 39794-5 standards that, following the guidelines of the International Civil Aviation Organization (ICAO), defines the interchange formats of face images in electronic Machine-Readable Travel Documents (eMRTD). The strictly controlled and varied mugshot images included in ONOT are useful in research fields related to the analysis of face images in eMRTD, such as Morphing Attack Detection and Face Quality Assessment. The dataset is publicly released, in combination with the generation procedure details in order to improve the reproducibility and enable future extensions.
comment: Paper accepted in IEEE FG 2024
☆ Energy-Efficient Uncertainty-Aware Biomass Composition Prediction at the Edge CVPR 2024
Clover fixates nitrogen from the atmosphere to the ground, making grass-clover mixtures highly desirable to reduce external nitrogen fertilization. Herbage containing clover additionally promotes higher food intake, resulting in higher milk production. Herbage probing however remains largely unused as it requires a time-intensive manual laboratory analysis. Without this information, farmers are unable to perform localized clover sowing or take targeted fertilization decisions. Deep learning algorithms have been proposed with the goal to estimate the dry biomass composition from images of the grass directly in the fields. The energy-intensive nature of deep learning however limits deployment to practical edge devices such as smartphones. This paper proposes to fill this gap by applying filter pruning to reduce the energy requirement of existing deep learning solutions. We report that although pruned networks are accurate on controlled, high-quality images of the grass, they struggle to generalize to real-world smartphone images that are blurry or taken from challenging angles. We address this challenge by training filter-pruned models using a variance attenuation loss so they can predict the uncertainty of their predictions. When the uncertainty exceeds a threshold, we re-infer using a more accurate unpruned model. This hybrid approach allows us to reduce energy consumption while retaining a high accuracy. We evaluate our algorithm on two datasets: the GrassClover and the Irish clover using an NVIDIA Jetson Nano edge device. We find that we reduce energy reduction with respect to state-of-the-art solutions by 50% on average with only 4% accuracy loss.
comment: The paper has been accepted to CVPR 2024 5th Workshop on Vision for Agriculture
☆ Simple In-place Data Augmentation for Surveillance Object Detection CVPR
Motivated by the need to improve model performance in traffic monitoring tasks with limited labeled samples, we propose a straightforward augmentation technique tailored for object detection datasets, specifically designed for stationary camera-based applications. Our approach focuses on placing objects in the same positions as the originals to ensure its effectiveness. By applying in-place augmentation on objects from the same camera input image, we address the challenge of overlapping with original and previously selected objects. Through extensive testing on two traffic monitoring datasets, we illustrate the efficacy of our augmentation strategy in improving model performance, particularly in scenarios with limited labeled samples and imbalanced class distributions. Notably, our method achieves comparable performance to models trained on the entire dataset while utilizing only 8.5 percent of the original data. Moreover, we report significant improvements, with mAP@.5 increasing from 0.4798 to 0.5025, and the mAP@.5:.95 rising from 0.29 to 0.3138 on the FishEye8K dataset. These results highlight the potential of our augmentation approach in enhancing object detection models for traffic monitoring applications.
comment: CVPR Workshop 2024
☆ Feature Corrective Transfer Learning: End-to-End Solutions to Object Detection in Non-Ideal Visual Conditions CVPR
A significant challenge in the field of object detection lies in the system's performance under non-ideal imaging conditions, such as rain, fog, low illumination, or raw Bayer images that lack ISP processing. Our study introduces "Feature Corrective Transfer Learning", a novel approach that leverages transfer learning and a bespoke loss function to facilitate the end-to-end detection of objects in these challenging scenarios without the need to convert non-ideal images into their RGB counterparts. In our methodology, we initially train a comprehensive model on a pristine RGB image dataset. Subsequently, non-ideal images are processed by comparing their feature maps against those from the initial ideal RGB model. This comparison employs the Extended Area Novel Structural Discrepancy Loss (EANSDL), a novel loss function designed to quantify similarities and integrate them into the detection loss. This approach refines the model's ability to perform object detection across varying conditions through direct feature map correction, encapsulating the essence of Feature Corrective Transfer Learning. Experimental validation on variants of the KITTI dataset demonstrates a significant improvement in mean Average Precision (mAP), resulting in a 3.8-8.1% relative enhancement in detection under non-ideal conditions compared to the baseline model, and a less marginal performance difference within 1.3% of the mAP@[0.5:0.95] achieved under ideal conditions by the standard Faster RCNN algorithm.
comment: 10 pages, 3 figures, accepted by 2024 CVPR UG2 Workshop
Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.
comment: Accepted by IEEE Conference on Multimedia Expo 2024
☆ Exploring the Transferability of Visual Prompting for Multimodal Large Language Models CVPR 2024
Although Multimodal Large Language Models (MLLMs) have demonstrated promising versatile capabilities, their performance is still inferior to specialized models on downstream tasks, which makes adaptation necessary to enhance their utility. However, fine-tuning methods require independent training for every model, leading to huge computation and memory overheads. In this paper, we propose a novel setting where we aim to improve the performance of diverse MLLMs with a group of shared parameters optimized for a downstream task. To achieve this, we propose Transferable Visual Prompting (TVP), a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model. We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts, including 1) Feature Consistency Alignment: which imposes constraints to the prompted feature changes to maintain task-agnostic knowledge; 2) Task Semantics Enrichment: which encourages the prompted images to contain richer task-specific semantics with language guidance. We validate the effectiveness of TVP through extensive experiments with 6 modern MLLMs on a wide variety of tasks ranging from object recognition and counting to multimodal reasoning and hallucination correction.
comment: Accepted in CVPR 2024 as Poster (Highlight)
☆ Kathakali Hand Gesture Recognition With Minimal Data
The Indian classical dance-drama Kathakali has a set of hand gestures called Mudras, which form the fundamental units of all its dance moves and postures. Recognizing the depicted mudra becomes one of the first steps in its digital processing. The work treats the problem as a 24-class classification task and proposes a vector-similarity-based approach using pose estimation, eliminating the need for further training or fine-tuning. This approach overcomes the challenge of data scarcity that limits the application of AI in similar domains. The method attains 92% accuracy which is a similar or better performance as other model-training-based works existing in the domain, with the added advantage that the method can still work with data sizes as small as 1 or 5 samples with a slightly reduced performance. Working with images, videos, and even real-time streams is possible. The system can work with hand-cropped or full-body images alike. We have developed and made public a dataset for the Kathakali Mudra Recognition as part of this work.
☆ GhostNetV3: Exploring the Training Strategies for Compact Models
Compact neural networks are specially designed for applications on edge devices with faster inference speed yet modest performance. However, training strategies of compact models are borrowed from that of conventional models at present, which ignores their difference in model capacity and thus may impede the performance of compact models. In this paper, by systematically investigating the impact of different training ingredients, we introduce a strong training strategy for compact models. We find that the appropriate designs of re-parameterization and knowledge distillation are crucial for training high-performance compact models, while some commonly used data augmentations for training conventional models, such as Mixup and CutMix, lead to worse performance. Our experiments on ImageNet-1K dataset demonstrate that our specialized training strategy for compact models is applicable to various architectures, including GhostNetV2, MobileNetV2 and ShuffleNetV2. Specifically, equipped with our strategy, GhostNetV3 1.3$\times$ achieves a top-1 accuracy of 79.1% with only 269M FLOPs and a latency of 14.46ms on mobile devices, surpassing its ordinarily trained counterpart by a large margin. Moreover, our observation can also be extended to object detection scenarios. PyTorch code and checkpoints can be found at https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv3_pytorch.
☆ Pre-processing matters: A segment search method for WSI classification
Pre-processing for whole slide images can affect classification performance both in the training and inference stages. Our study analyzes the impact of pre-processing parameters on inference and training across single- and multiple-domain datasets. However, searching for an optimal parameter set is time-consuming. To overcome this, we propose a novel Similarity-based Simulated Annealing approach for fast parameter tuning to enhance inference performance on single-domain data. Our method demonstrates significant performance improvements in accuracy, which raise accuracy from 0.512 to 0.847 in a single domain. We further extend our insight into training performance in multi-domain data by employing a novel Bayesian optimization to search optimal pre-processing parameters, resulting in a high AUC of 0.967. We highlight that better pre-processing for WSI can contribute to further accuracy improvement in the histology area.
☆ Deep Portrait Quality Assessment. A NTIRE 2024 Challenge Survey CVPR
This paper reviews the NTIRE 2024 Portrait Quality Assessment Challenge, highlighting the proposed solutions and results. This challenge aims to obtain an efficient deep neural network capable of estimating the perceptual quality of real portrait photos. The methods must generalize to diverse scenes and diverse lighting conditions (indoor, outdoor, low-light), movement, blur, and other challenging conditions. In the challenge, 140 participants registered, and 35 submitted results during the challenge period. The performance of the top 5 submissions is reviewed and provided here as a gauge for the current state-of-the-art in Portrait Quality Assessment.
comment: CVPRW - NTIRE 2024
☆ Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform CVPR 2024
Establishing accurate 3D correspondences between shapes stands as a pivotal challenge with profound implications for computer vision and robotics. However, existing self-supervised methods for this problem assume perfect input shape alignment, restricting their real-world applicability. In this work, we introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST, that learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations. Specifically, RIST learns to dynamically formulate an SO(3)-invariant local shape transform for each point, which maps the SO(3)-equivariant global shape descriptor of the input shape to a local shape descriptor. These local shape descriptors are provided as inputs to our decoder to facilitate point cloud self- and cross-reconstruction. Our proposed self-supervised training pipeline encourages semantically corresponding points from different shapes to be mapped to similar local shape descriptors, enabling RIST to establish dense point-wise correspondences. RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs, outperforming existing methods by significant margins.
comment: Accepted to CVPR 2024
☆ HybriMap: Hybrid Clues Utilization for Effective Vectorized HD Map Construction
Constructing vectorized high-definition maps from surround-view cameras has garnered significant attention in recent years. However, the commonly employed multi-stage sequential workflow in prevailing approaches often leads to the loss of early-stage information, particularly in perspective-view features. Usually, such loss is observed as an instance missing or shape mismatching in the final birds-eye-view predictions. To address this concern, we propose a novel approach, namely \textbf{HybriMap}, which effectively exploits clues from hybrid features to ensure the delivery of valuable information. Specifically, we design the Dual Enhancement Module, to enable both explicit integration and implicit modification under the guidance of hybrid features. Additionally, the perspective keypoints are utilized as supervision, further directing the feature enhancement process. Extensive experiments conducted on existing benchmarks have demonstrated the state-of-the-art performance of our proposed approach.
☆ Multi-target and multi-stage liver lesion segmentation and detection in multi-phase computed tomography scans
Multi-phase computed tomography (CT) scans use contrast agents to highlight different anatomical structures within the body to improve the probability of identifying and detecting anatomical structures of interest and abnormalities such as liver lesions. Yet, detecting these lesions remains a challenging task as these lesions vary significantly in their size, shape, texture, and contrast with respect to surrounding tissue. Therefore, radiologists need to have an extensive experience to be able to identify and detect these lesions. Segmentation-based neural networks can assist radiologists with this task. Current state-of-the-art lesion segmentation networks use the encoder-decoder design paradigm based on the UNet architecture where the multi-phase CT scan volume is fed to the network as a multi-channel input. Although this approach utilizes information from all the phases and outperform single-phase segmentation networks, we demonstrate that their performance is not optimal and can be further improved by incorporating the learning from models trained on each single-phase individually. Our approach comprises three stages. The first stage identifies the regions within the liver where there might be lesions at three different scales (4, 8, and 16 mm). The second stage includes the main segmentation model trained using all the phases as well as a segmentation model trained on each of the phases individually. The third stage uses the multi-phase CT volumes together with the predictions from each of the segmentation models to generate the final segmentation map. Overall, our approach improves relative liver lesion segmentation performance by 1.6% while reducing performance variability across subjects by 8% when compared to the current state-of-the-art models.
☆ REACTO: Reconstructing Articulated Objects from a Single Video
In this paper, we address the challenge of reconstructing general articulated 3D objects from a single video. Existing works employing dynamic neural radiance fields have advanced the modeling of articulated objects like humans and animals from videos, but face challenges with piece-wise rigid general articulated objects due to limitations in their deformation models. To tackle this, we propose Quasi-Rigid Blend Skinning, a novel deformation model that enhances the rigidity of each part while maintaining flexible deformation of the joints. Our primary insight combines three distinct approaches: 1) an enhanced bone rigging system for improved component modeling, 2) the use of quasi-sparse skinning weights to boost part rigidity and reconstruction fidelity, and 3) the application of geodesic point assignment for precise motion and seamless deformation. Our method outperforms previous works in producing higher-fidelity 3D reconstructions of general articulated objects, as demonstrated on both real and synthetic datasets. Project page: https://chaoyuesong.github.io/REACTO.
☆ GeoReF: Geometric Alignment Across Shape Variation for Category-level Object Pose Refinement
Object pose refinement is essential for robust object pose estimation. Previous work has made significant progress towards instance-level object pose refinement. Yet, category-level pose refinement is a more challenging problem due to large shape variations within a category and the discrepancies between the target object and the shape prior. To address these challenges, we introduce a novel architecture for category-level object pose refinement. Our approach integrates an HS-layer and learnable affine transformations, which aims to enhance the extraction and alignment of geometric information. Additionally, we introduce a cross-cloud transformation mechanism that efficiently merges diverse data sources. Finally, we push the limits of our model by incorporating the shape prior information for translation and size error prediction. We conducted extensive experiments to demonstrate the effectiveness of the proposed framework. Through extensive quantitative experiments, we demonstrate significant improvement over the baseline method by a large margin across all metrics.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024
☆ Fact :Teaching MLLMs with Faithful, Concise and Transferable Rationales
The remarkable performance of Multimodal Large Language Models (MLLMs) has unequivocally demonstrated their proficient understanding capabilities in handling a wide array of visual tasks. Nevertheless, the opaque nature of their black-box reasoning processes persists as an enigma, rendering them uninterpretable and struggling with hallucination. Their ability to execute intricate compositional reasoning tasks is also constrained, culminating in a stagnation of learning progression for these models. In this work, we introduce Fact, a novel paradigm designed to generate multimodal rationales that are faithful, concise, and transferable for teaching MLLMs. This paradigm utilizes verifiable visual programming to generate executable code guaranteeing faithfulness and precision. Subsequently, through a series of operations including pruning, merging, and bridging, the rationale enhances its conciseness. Furthermore, we filter rationales that can be transferred to end-to-end paradigms from programming paradigms to guarantee transferability. Empirical evidence from experiments demonstrates the superiority of our method across models of varying parameter sizes, significantly enhancing their compositional reasoning and generalization ability. Our approach also reduces hallucinations owing to its high correlation between images and text.
☆ D-Aug: Enhancing Data Augmentation for Dynamic LiDAR Scenes
Creating large LiDAR datasets with pixel-level labeling poses significant challenges. While numerous data augmentation methods have been developed to reduce the reliance on manual labeling, these methods predominantly focus on static scenes and they overlook the importance of data augmentation for dynamic scenes, which is critical for autonomous driving. To address this issue, we propose D-Aug, a LiDAR data augmentation method tailored for augmenting dynamic scenes. D-Aug extracts objects and inserts them into dynamic scenes, considering the continuity of these objects across consecutive frames. For seamless insertion into dynamic scenes, we propose a reference-guided method that involves dynamic collision detection and rotation alignment. Additionally, we present a pixel-level road identification strategy to efficiently determine suitable insertion positions. We validated our method using the nuScenes dataset with various 3D detection and tracking methods. Comparative experiments demonstrate the superiority of D-Aug.
comment: 4pages, 4 figures
☆ TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing CVPR
Despite many attempts to leverage pre-trained text-to-image models (T2I) like Stable Diffusion (SD) for controllable image editing, producing good predictable results remains a challenge. Previous approaches have focused on either fine-tuning pre-trained T2I models on specific datasets to generate certain kinds of images (e.g., with a specific object or person), or on optimizing the weights, text prompts, and/or learning features for each input image in an attempt to coax the image generator to produce the desired result. However, these approaches all have shortcomings and fail to produce good results in a predictable and controllable manner. To address this problem, we present TiNO-Edit, an SD-based method that focuses on optimizing the noise patterns and diffusion timesteps during editing, something previously unexplored in the literature. With this simple change, we are able to generate results that both better align with the original images and reflect the desired result. Furthermore, we propose a set of new loss functions that operate in the latent domain of SD, greatly speeding up the optimization when compared to prior approaches, which operate in the pixel domain. Our method can be easily applied to variations of SD including Textual Inversion and DreamBooth that encode new concepts and incorporate them into the edited results. We present a host of image-editing capabilities enabled by our approach. Our code is publicly available at https://github.com/SherryXTChen/TiNO-Edit.
comment: Conference on Computer Vision and Pattern Recognition (CVPR) 2024
☆ MHLR: Moving Haar Learning Rate Scheduler for Large-scale Face Recognition Training with One GPU
Face recognition (FR) has seen significant advancements due to the utilization of large-scale datasets. Training deep FR models on large-scale datasets with multiple GPUs is now a common practice. In fact, computing power has evolved into a foundational and indispensable resource in the area of deep learning. It is nearly impossible to train a deep FR model without holding adequate hardware resources. Recognizing this challenge, some FR approaches have started exploring ways to reduce the time complexity of the fully-connected layer in FR models. Unlike other approaches, this paper introduces a simple yet highly effective approach, Moving Haar Learning Rate (MHLR) scheduler, for scheduling the learning rate promptly and accurately in the training process. MHLR supports large-scale FR training with only one GPU, which is able to accelerate the model to 1/4 of its original training time without sacrificing more than 1% accuracy. More specifically, MHLR only needs $30$ hours to train the model ResNet100 on the dataset WebFace12M containing more than 12M face images with 0.6M identities. Extensive experiments validate the efficiency and effectiveness of MHLR.
☆ CorrNet+: Sign Language Recognition and Translation via Spatial-Temporal Correlation
In sign language, the conveyance of human body trajectories predominantly relies upon the coordinated movements of hands and facial expressions across successive frames. Despite the recent advancements of sign language understanding methods, they often solely focus on individual frames, inevitably overlooking the inter-frame correlations that are essential for effectively modeling human body trajectories. To address this limitation, this paper introduces a spatial-temporal correlation network, denoted as CorrNet+, which explicitly identifies body trajectories across multiple frames. In specific, CorrNet+ employs a correlation module and an identification module to build human body trajectories. Afterwards, a temporal attention module is followed to adaptively evaluate the contributions of different frames. The resultant features offer a holistic perspective on human body movements, facilitating a deeper understanding of sign language. As a unified model, CorrNet+ achieves new state-of-the-art performance on two extensive sign language understanding tasks, including continuous sign language recognition (CSLR) and sign language translation (SLT). Especially, CorrNet+ surpasses previous methods equipped with resource-intensive pose-estimation networks or pre-extracted heatmaps for hand and facial feature extraction. Compared with CorrNet, CorrNet+ achieves a significant performance boost across all benchmarks while halving the computational overhead. A comprehensive comparison with previous spatial-temporal reasoning methods verifies the superiority of CorrNet+. Code is available at https://github.com/hulianyuyy/CorrNet_Plus.
comment: arXiv admin note: substantial text overlap with arXiv:2303.03202
☆ LADDER: An Efficient Framework for Video Frame Interpolation
Video Frame Interpolation (VFI) is a crucial technique in various applications such as slow-motion generation, frame rate conversion, video frame restoration etc. This paper introduces an efficient video frame interpolation framework that aims to strike a favorable balance between efficiency and quality. Our framework follows a general paradigm consisting of a flow estimator and a refinement module, while incorporating carefully designed components. First of all, we adopt depth-wise convolution with large kernels in the flow estimator that simultaneously reduces the parameters and enhances the receptive field for encoding rich context and handling complex motion. Secondly, diverging from a common design for the refinement module with a UNet-structure (encoder-decoder structure), which we find redundant, our decoder-only refinement module directly enhances the result from coarse to fine features, offering a more efficient process. In addition, to address the challenge of handling high-definition frames, we also introduce an innovative HD-aware augmentation strategy during training, leading to consistent enhancement on HD images. Extensive experiments are conducted on diverse datasets, Vimeo90K, UCF101, Xiph and SNU-FILM. The results demonstrate that our approach achieves state-of-the-art performance with clear improvement while requiring much less FLOPs and parameters, reaching to a better spot for balancing efficiency and quality.
☆ Object Remover Performance Evaluation Methods using Class-wise Object Removal Images
Object removal refers to the process of erasing designated objects from an image while preserving the overall appearance, and it is one area where image inpainting is widely used in real-world applications. The performance of an object remover is quantitatively evaluated by measuring the quality of object removal results, similar to how the performance of an image inpainter is gauged. Current works reporting quantitative performance evaluations utilize original images as references. In this letter, to validate the current evaluation methods cannot properly evaluate the performance of an object remover, we create a dataset with object removal ground truth and compare the evaluations made by the current methods using original images to those utilizing object removal ground truth images. The disparities between two evaluation sets validate that the current methods are not suitable for measuring the performance of an object remover. Additionally, we propose new evaluation methods tailored to gauge the performance of an object remover. The proposed methods evaluate the performance through class-wise object removal results and utilize images without the target class objects as a comparison set. We confirm that the proposed methods can make judgments consistent with human evaluators in the COCO dataset, and that they can produce measurements aligning with those using object removal ground truth in the self-acquired dataset.
☆ Synthesizing Realistic Data for Table Recognition ICDAR 2024
To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells.
comment: ICDAR 2024
☆ LAPTOP-Diff: Layer Pruning and Normalized Distillation for Compressing Diffusion Models
In the era of AIGC, the demand for low-budget or even on-device applications of diffusion models emerged. In terms of compressing the Stable Diffusion models (SDMs), several approaches have been proposed, and most of them leveraged the handcrafted layer removal methods to obtain smaller U-Nets, along with knowledge distillation to recover the network performance. However, such a handcrafting manner of layer removal is inefficient and lacks scalability and generalization, and the feature distillation employed in the retraining phase faces an imbalance issue that a few numerically significant feature loss terms dominate over others throughout the retraining process. To this end, we proposed the layer pruning and normalized distillation for compressing diffusion models (LAPTOP-Diff). We, 1) introduced the layer pruning method to compress SDM's U-Net automatically and proposed an effective one-shot pruning criterion whose one-shot performance is guaranteed by its good additivity property, surpassing other layer pruning and handcrafted layer removal methods, 2) proposed the normalized feature distillation for retraining, alleviated the imbalance issue. Using the proposed LAPTOP-Diff, we compressed the U-Nets of SDXL and SDM-v1.5 for the most advanced performance, achieving a minimal 4.0% decline in PickScore at a pruning ratio of 50% while the comparative methods' minimal PickScore decline is 8.2%. We will release our code.
☆ Sky-GVIO: an enhanced GNSS/INS/Vision navigation with FCN-based sky-segmentation in urban canyon
Accurate, continuous, and reliable positioning is a critical component of achieving autonomous driving. However, in complex urban canyon environments, the vulnerability of a stand-alone sensor and non-line-of-sight (NLOS) caused by high buildings, trees, and elevated structures seriously affect positioning results. To address these challenges, a sky-view images segmentation algorithm based on Fully Convolutional Network (FCN) is proposed for GNSS NLOS detection. Building upon this, a novel NLOS detection and mitigation algorithm (named S-NDM) is extended to the tightly coupled Global Navigation Satellite Systems (GNSS), Inertial Measurement Units (IMU), and visual feature system which is called Sky-GVIO, with the aim of achieving continuous and accurate positioning in urban canyon environments. Furthermore, the system harmonizes Single Point Positioning (SPP) with Real-Time Kinematic (RTK) methodologies to bolster its operational versatility and resilience. In urban canyon environments, the positioning performance of S-NDM algorithm proposed in this paper is evaluated under different tightly coupled SPP-related and RTK-related models. The results exhibit that Sky-GVIO system achieves meter-level accuracy under SPP mode and sub-decimeter precision with RTK, surpassing the performance of GNSS/INS/Vision frameworks devoid of S-NDM. Additionally, the sky-view image dataset, inclusive of training and evaluation subsets, has been made publicly accessible for scholarly exploration at https://github.com/whuwangjr/sky-view-images .
☆ Rethinking 3D Dense Caption and Visual Grounding in A Unified Framework through Prompt-based Localization
3D Visual Grounding (3DVG) and 3D Dense Captioning (3DDC) are two crucial tasks in various 3D applications, which require both shared and complementary information in localization and visual-language relationships. Therefore, existing approaches adopt the two-stage "detect-then-describe/discriminate" pipeline, which relies heavily on the performance of the detector, resulting in suboptimal performance. Inspired by DETR, we propose a unified framework, 3DGCTR, to jointly solve these two distinct but closely related tasks in an end-to-end fashion. The key idea is to reconsider the prompt-based localization ability of the 3DVG model. In this way, the 3DVG model with a well-designed prompt as input can assist the 3DDC task by extracting localization information from the prompt. In terms of implementation, we integrate a Lightweight Caption Head into the existing 3DVG network with a Caption Text Prompt as a connection, effectively harnessing the existing 3DVG model's inherent localization capacity, thereby boosting 3DDC capability. This integration facilitates simultaneous multi-task training on both tasks, mutually enhancing their performance. Extensive experimental results demonstrate the effectiveness of this approach. Specifically, on the ScanRefer dataset, 3DGCTR surpasses the state-of-the-art 3DDC method by 4.3% in CIDEr@0.5IoU in MLE training and improves upon the SOTA 3DVG method by 3.16% in Acc@0.25IoU.
☆ Multilateral Temporal-view Pyramid Transformer for Video Inpainting Detection
The task of video inpainting detection is to expose the pixel-level inpainted regions within a video sequence. Existing methods usually focus on leveraging spatial and temporal inconsistencies. However, these methods typically employ fixed operations to combine spatial and temporal clues, limiting their applicability in different scenarios. In this paper, we introduce a novel Multilateral Temporal-view Pyramid Transformer ({\em MumPy}) that collaborates spatial-temporal clues flexibly. Our method utilizes a newly designed multilateral temporal-view encoder to extract various collaborations of spatial-temporal clues and introduces a deformable window-based temporal-view interaction module to enhance the diversity of these collaborations. Subsequently, we develop a multi-pyramid decoder to aggregate the various types of features and generate detection maps. By adjusting the contribution strength of spatial and temporal clues, our method can effectively identify inpainted regions. We validate our method on existing datasets and also introduce a new challenging and large-scale Video Inpainting dataset based on the YouTube-VOS dataset, which employs several more recent inpainting methods. The results demonstrate the superiority of our method in both in-domain and cross-domain evaluation scenarios.
☆ Supervised Contrastive Vision Transformer for Breast Histopathological Image Classification
Invasive ductal carcinoma (IDC) is the most prevalent form of breast cancer. Breast tissue histopathological examination is critical in diagnosing and classifying breast cancer. Although existing methods have shown promising results, there is still room for improvement in the classification accuracy and generalization of IDC using histopathology images. We present a novel approach, Supervised Contrastive Vision Transformer (SupCon-ViT), for improving the classification of invasive ductal carcinoma in terms of accuracy and generalization by leveraging the inherent strengths and advantages of both transfer learning, i.e., pre-trained vision transformer, and supervised contrastive learning. Our results on a benchmark breast cancer dataset demonstrate that SupCon-Vit achieves state-of-the-art performance in IDC classification, with an F1-score of 0.8188, precision of 0.7692, and specificity of 0.8971, outperforming existing methods. In addition, the proposed model demonstrates resilience in scenarios with minimal labeled data, making it highly efficient in real-world clinical settings where labelled data is limited. Our findings suggest that supervised contrastive learning in conjunction with pre-trained vision transformers appears to be a viable strategy for an accurate classification of IDC, thus paving the way for a more efficient and reliable diagnosis of breast cancer through histopathological image analysis.
comment: 8 pages, 7 figures
☆ WPS-Dataset: A benchmark for wood plate segmentation in bark removal processing
Using deep learning methods is a promising approach to improving bark removal efficiency and enhancing the quality of wood products. However, the lack of publicly available datasets for wood plate segmentation in bark removal processing poses challenges for researchers in this field. To address this issue, a benchmark for wood plate segmentation in bark removal processing named WPS-dataset is proposed in this study, which consists of 4863 images. We designed an image acquisition device and assembled it on a bark removal equipment to capture images in real industrial settings. We evaluated the WPS-dataset using six typical segmentation models. The models effectively learn and understand the WPS-dataset characteristics during training, resulting in high performance and accuracy in wood plate segmentation tasks. We believe that our dataset can lay a solid foundation for future research in bark removal processing and contribute to advancements in this field.
☆ Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model
Federated learning aims to tackle the ``isolated data island" problem, where it trains a collective model from physically isolated clients while safeguarding the privacy of users' data. However, supervised federated learning necessitates that each client labels their data for training, which can be both time-consuming and resource-intensive, and may even be impractical for edge devices. Moreover, the training and transmission of deep models present challenges to the computation and communication capabilities of the clients. To address these two inherent challenges in supervised federated learning, we propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication by harnessing pretrained vision-language models, such as CLIP. By capitalizing on the zero-shot prediction capability and the well-trained image encoder of the pre-trained CLIP model, we have carefully crafted an efficient and resilient self-training approach. This method refines the initial zero-shot predicted pseudo-labels of unlabeled instances through the sole training of a linear classifier on top of the fixed image encoder. Additionally, to address data heterogeneity within each client, we propose a class-balanced text feature sampling strategy for generating synthetic instances in the feature space to support local training. Experiments are conducted on multiple benchmark datasets. The experimental results demonstrate that our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods given limited computational and communication overhead.
☆ TaCOS: Task-Specific Camera Optimization with Simulation
The performance of robots in their applications heavily depends on the quality of sensory input. However, designing sensor payloads and their parameters for specific robotic tasks is an expensive process that requires well-established sensor knowledge and extensive experiments with physical hardware. With cameras playing a pivotal role in robotic perception, we introduce a novel end-to-end optimization approach for co-designing a camera with specific robotic tasks by combining derivative-free and gradient-based optimizers. The proposed method leverages recent computer graphics techniques and physical camera characteristics to prototype the camera in software, simulate operational environments and tasks for robots, and optimize the camera design based on the desired tasks in a cost-effective way. We validate the accuracy of our camera simulation by comparing it with physical cameras, and demonstrate the design of cameras with stronger performance than common off-the-shelf alternatives. Our approach supports the optimization of both continuous and discrete camera parameters, manufacturing constraints, and can be generalized to a broad range of camera design scenarios including multiple cameras and unconventional cameras. This work advances the fully automated design of cameras for specific robotics tasks.
☆ Spatial-Aware Image Retrieval: A Hyperdimensional Computing Approach for Efficient Similarity Hashing
In the face of burgeoning image data, efficiently retrieving similar images poses a formidable challenge. Past research has focused on refining hash functions to distill images into compact indicators of resemblance. Initial attempts used shallow models, evolving to attention mechanism-based architectures from Convolutional Neural Networks (CNNs) to advanced models. Recognizing limitations in gradient-based models for spatial information embedding, we propose an innovative image hashing method, NeuroHash leveraging Hyperdimensional Computing (HDC). HDC symbolically encodes spatial information into high-dimensional vectors, reshaping image representation. Our approach combines pre-trained large vision models with HDC operations, enabling spatially encoded feature representations. Hashing with locality-sensitive hashing (LSH) ensures swift and efficient image retrieval. Notably, our framework allows dynamic hash manipulation for conditional image retrieval. Our work introduces a transformative image hashing framework enabling spatial-aware conditional retrieval. By seamlessly combining DNN-based neural and HDC-based symbolic models, our methodology breaks from traditional training, offering flexible and conditional image retrieval. Performance evaluations signify a paradigm shift in image-hashing methodologies, demonstrating enhanced retrieval accuracy.
☆ MaeFuse: Transferring Omni Features with Pretrained Masked Autoencoders for Infrared and Visible Image Fusion via Guided Training
In this research, we introduce MaeFuse, a novel autoencoder model designed for infrared and visible image fusion (IVIF). The existing approaches for image fusion often rely on training combined with downstream tasks to obtain high-level visual information, which is effective in emphasizing target objects and delivering impressive results in visual quality and task-specific applications. MaeFuse, however, deviates from the norm. Instead of being driven by downstream tasks, our model utilizes a pretrained encoder from Masked Autoencoders (MAE), which facilities the omni features extraction for low-level reconstruction and high-level vision tasks, to obtain perception friendly features with a low cost. In order to eliminate the domain gap of different modal features and the block effect caused by the MAE encoder, we further develop a guided training strategy. This strategy is meticulously crafted to ensure that the fusion layer seamlessly adjusts to the feature space of the encoder, gradually enhancing the fusion effect. It facilitates the comprehensive integration of feature vectors from both infrared and visible modalities, preserving the rich details inherent in each. MaeFuse not only introduces a novel perspective in the realm of fusion techniques but also stands out with impressive performance across various public datasets.
☆ AKGNet: Attribute Knowledge-Guided Unsupervised Lung-Infected Area Segmentation
Lung-infected area segmentation is crucial for assessing the severity of lung diseases. However, existing image-text multi-modal methods typically rely on labour-intensive annotations for model training, posing challenges regarding time and expertise. To address this issue, we propose a novel attribute knowledge-guided framework for unsupervised lung-infected area segmentation (AKGNet), which achieves segmentation solely based on image-text data without any mask annotation. AKGNet facilitates text attribute knowledge learning, attribute-image cross-attention fusion, and high-confidence-based pseudo-label exploration simultaneously. It can learn statistical information and capture spatial correlations between image and text attributes in the embedding space, iteratively refining the mask to enhance segmentation. Specifically, we introduce a text attribute knowledge learning module by extracting attribute knowledge and incorporating it into feature representations, enabling the model to learn statistical information and adapt to different attributes. Moreover, we devise an attribute-image cross-attention module by calculating the correlation between attributes and images in the embedding space to capture spatial dependency information, thus selectively focusing on relevant regions while filtering irrelevant areas. Finally, a self-training mask improvement process is employed by generating pseudo-labels using high-confidence predictions to iteratively enhance the mask and segmentation. Experimental results on a benchmark medical image dataset demonstrate the superior performance of our method compared to state-of-the-art segmentation techniques in unsupervised scenarios.
☆ InfoMatch: Entropy Neural Estimation for Semi-Supervised Image Classification IJCAI 2024
Semi-supervised image classification, leveraging pseudo supervision and consistency regularization, has demonstrated remarkable success. However, the ongoing challenge lies in fully exploiting the potential of unlabeled data. To address this, we employ information entropy neural estimation to harness the potential of unlabeled samples. Inspired by contrastive learning, the entropy is estimated by maximizing a lower bound on mutual information across different augmented views. Moreover, we theoretically analyze that the information entropy of the posterior of an image classifier is approximated by maximizing the likelihood function of the softmax predictions. Guided by these insights, we optimize our model from both perspectives to ensure that the predicted probability distribution closely aligns with the ground-truth distribution. Given the theoretical connection to information entropy, we name our method \textit{InfoMatch}. Through extensive experiments, we show its superior performance.
comment: IJCAI 2024
☆ How to deal with glare for improved perception of Autonomous Vehicles
Vision sensors are versatile and can capture a wide range of visual cues, such as color, texture, shape, and depth. This versatility, along with the relatively inexpensive availability of machine vision cameras, played an important role in adopting vision-based environment perception systems in autonomous vehicles (AVs). However, vision-based perception systems can be easily affected by glare in the presence of a bright source of light, such as the sun or the headlights of the oncoming vehicle at night or simply by light reflecting off snow or ice-covered surfaces; scenarios encountered frequently during driving. In this paper, we investigate various glare reduction techniques, including the proposed saturated pixel-aware glare reduction technique for improved performance of the computer vision (CV) tasks employed by the perception layer of AVs. We evaluate these glare reduction methods based on various performance metrics of the CV algorithms used by the perception layer. Specifically, we considered object detection, object recognition, object tracking, depth estimation, and lane detection which are crucial for autonomous driving. The experimental findings validate the efficacy of the proposed glare reduction approach, showcasing enhanced performance across diverse perception tasks and remarkable resilience against varying levels of glare.
comment: 14 pages, 9 figures, Accepted IEEE TIV
☆ FairSSD: Understanding Bias in Synthetic Speech Detectors CVPR 2024
Methods that can generate synthetic speech which is perceptually indistinguishable from speech recorded by a human speaker, are easily available. Several incidents report misuse of synthetic speech generated from these methods to commit fraud. To counter such misuse, many methods have been proposed to detect synthetic speech. Some of these detectors are more interpretable, can generalize to detect synthetic speech in the wild and are robust to noise. However, limited work has been done on understanding bias in these detectors. In this work, we examine bias in existing synthetic speech detectors to determine if they will unfairly target a particular gender, age and accent group. We also inspect whether these detectors will have a higher misclassification rate for bona fide speech from speech-impaired speakers w.r.t fluent speakers. Extensive experiments on 6 existing synthetic speech detectors using more than 0.9 million speech signals demonstrate that most detectors are gender, age and accent biased, and future work is needed to ensure fairness. To support future research, we release our evaluation dataset, models used in our study and source code at https://gitlab.com/viper-purdue/fairssd.
comment: Accepted at CVPR 2024 (WMF)
☆ Pixel-Wise Symbol Spotting via Progressive Points Location for Parsing CAD Images
Parsing Computer-Aided Design (CAD) drawings is a fundamental step for CAD revision, semantic-based management, and the generation of 3D prototypes in both the architecture and engineering industries. Labeling symbols from a CAD drawing is a challenging yet notorious task from a practical point of view. In this work, we propose to label and spot symbols from CAD images that are converted from CAD drawings. The advantage of spotting symbols from CAD images lies in the low requirement of labelers and the low-cost annotation. However, pixel-wise spotting symbols from CAD images is challenging work. We propose a pixel-wise point location via Progressive Gaussian Kernels (PGK) to balance between training efficiency and location accuracy. Besides, we introduce a local offset to the heatmap-based point location method. Based on the keypoints detection, we propose a symbol grouping method to redraw the rectangle symbols in CAD images. We have released a dataset containing CAD images of equipment rooms from telecommunication industrial CAD drawings. Extensive experiments on this real-world dataset show that the proposed method has good generalization ability.
comment: 10 pages, 10 figures,6 tables
☆ Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty ICLR 2024
Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/Hugo101/HyperEvidentialNN.
comment: In Proceedings of The Twelfth International Conference on Learning Representations, ICLR 2024
☆ Leveraging 3D LiDAR Sensors to Enable Enhanced Urban Safety and Public Health: Pedestrian Monitoring and Abnormal Activity Detection
The integration of Light Detection and Ranging (LiDAR) and Internet of Things (IoT) technologies offers transformative opportunities for public health informatics in urban safety and pedestrian well-being. This paper proposes a novel framework utilizing these technologies for enhanced 3D object detection and activity classification in urban traffic scenarios. By employing elevated LiDAR, we obtain detailed 3D point cloud data, enabling precise pedestrian activity monitoring. To overcome urban data scarcity, we create a specialized dataset through simulated traffic environments in Blender, facilitating targeted model training. Our approach employs a modified Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) for robust 3D detection and PointNet for classifying pedestrian activities, significantly benefiting urban traffic management and public health by offering insights into pedestrian behavior and promoting safer urban environments. Our dual-model approach not only enhances urban traffic management but also contributes significantly to public health by providing insights into pedestrian behavior and promoting safer urban environment.
☆ Domain-Specific Block Selection and Paired-View Pseudo-Labeling for Online Test-Time Adaptation CVPR 2024
Test-time adaptation (TTA) aims to adapt a pre-trained model to a new test domain without access to source data after deployment. Existing approaches typically rely on self-training with pseudo-labels since ground-truth cannot be obtained from test data. Although the quality of pseudo labels is important for stable and accurate long-term adaptation, it has not been previously addressed. In this work, we propose DPLOT, a simple yet effective TTA framework that consists of two components: (1) domain-specific block selection and (2) pseudo-label generation using paired-view images. Specifically, we select blocks that involve domain-specific feature extraction and train these blocks by entropy minimization. After blocks are adjusted for current test domain, we generate pseudo-labels by averaging given test images and corresponding flipped counterparts. By simply using flip augmentation, we prevent a decrease in the quality of the pseudo-labels, which can be caused by the domain gap resulting from strong augmentation. Our experimental results demonstrate that DPLOT outperforms previous TTA methods in CIFAR10-C, CIFAR100-C, and ImageNet-C benchmarks, reducing error by up to 5.4%, 9.1%, and 2.9%, respectively. Also, we provide an extensive analysis to demonstrate effectiveness of our framework. Code is available at https://github.com/gist-ailab/domain-specific-block-selection-and-paired-view-pseudo-labeling-for-online-TTA.
comment: Accepted at CVPR 2024
♻ ☆ VehicleGAN: Pair-flexible Pose Guided Image Synthesis for Vehicle Re-identification
Vehicle Re-identification (Re-ID) has been broadly studied in the last decade; however, the different camera view angle leading to confused discrimination in the feature subspace for the vehicles of various poses, is still challenging for the Vehicle Re-ID models in the real world. To promote the Vehicle Re-ID models, this paper proposes to synthesize a large number of vehicle images in the target pose, whose idea is to project the vehicles of diverse poses into the unified target pose so as to enhance feature discrimination. Considering that the paired data of the same vehicles in different traffic surveillance cameras might be not available in the real world, we propose the first Pair-flexible Pose Guided Image Synthesis method for Vehicle Re-ID, named as VehicleGAN in this paper, which works for both supervised and unsupervised settings without the knowledge of geometric 3D models. Because of the feature distribution difference between real and synthetic data, simply training a traditional metric learning based Re-ID model with data-level fusion (i.e., data augmentation) is not satisfactory, therefore we propose a new Joint Metric Learning (JML) via effective feature-level fusion from both real and synthetic data. Intensive experimental results on the public VeRi-776 and VehicleID datasets prove the accuracy and effectiveness of our proposed VehicleGAN and JML.
♻ ☆ The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients
Registration of longitudinal brain MRI scans containing pathologies is challenging due to dramatic changes in tissue appearance. Although there has been progress in developing general-purpose medical image registration techniques, they have not yet attained the requisite precision and reliability for this task, highlighting its inherent complexity. Here we describe the Brain Tumor Sequence Registration (BraTS-Reg) challenge, as the first public benchmark environment for deformable registration algorithms focusing on estimating correspondences between pre-operative and follow-up scans of the same patient diagnosed with a diffuse brain glioma. The BraTS-Reg data comprise de-identified multi-institutional multi-parametric MRI (mpMRI) scans, curated for size and resolution according to a canonical anatomical template, and divided into training, validation, and testing sets. Clinical experts annotated ground truth (GT) landmark points of anatomical locations distinct across the temporal domain. Quantitative evaluation and ranking were based on the Median Euclidean Error (MEE), Robustness, and the determinant of the Jacobian of the displacement field. The top-ranked methodologies yielded similar performance across all evaluation metrics and shared several methodological commonalities, including pre-alignment, deep neural networks, inverse consistency analysis, and test-time instance optimization per-case basis as a post-processing step. The top-ranked method attained the MEE at or below that of the inter-rater variability for approximately 60% of the evaluated landmarks, underscoring the scope for further accuracy and robustness improvements, especially relative to human experts. The aim of BraTS-Reg is to continue to serve as an active resource for research, with the data and online evaluation tools accessible at https://bratsreg.github.io/.
♻ ☆ Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis
Neural Radiance Fields (NeRFs) have shown remarkable novel view synthesis capabilities even in large-scale, unbounded scenes, albeit requiring hundreds of views or introducing artifacts in sparser settings. Their optimization suffers from shape-radiance ambiguities wherever only a small visual overlap is available. This leads to erroneous scene geometry and artifacts. In this paper, we propose Re-Nerfing, a simple and general multi-stage data augmentation approach that leverages NeRF's own view synthesis ability to address these limitations. With Re-Nerfing, we enhance the geometric consistency of novel views as follows: First, we train a NeRF with the available views. Then, we use the optimized NeRF to synthesize pseudo-views around the original ones with a view selection strategy to improve coverage and preserve view quality. Finally, we train a second NeRF with both the original images and the pseudo views masking out uncertain regions. Extensive experiments applying Re-Nerfing on various pipelines on the mip-NeRF 360 dataset, including Gaussian Splatting, provide valuable insights into the improvements achievable without external data or supervision, on denser and sparser input scenarios. Project page: https://renerfing.github.io
comment: Code will be released upon acceptance
♻ ☆ Segmenting the motion components of a video: A long-term unsupervised model
Human beings have the ability to continuously analyze a video and immediately extract the motion components. We want to adopt this paradigm to provide a coherent and stable motion segmentation over the video sequence. In this perspective, we propose a novel long-term spatio-temporal model operating in a totally unsupervised way. It takes as input the volume of consecutive optical flow (OF) fields, and delivers a volume of segments of coherent motion over the video. More specifically, we have designed a transformer-based network, where we leverage a mathematically well-founded framework, the Evidence Lower Bound (ELBO), to derive the loss function. The loss function combines a flow reconstruction term involving spatio-temporal parametric motion models combining, in a novel way, polynomial (quadratic) motion models for the spatial dimensions and B-splines for the time dimension of the video sequence, and a regularization term enforcing temporal consistency on the segments. We report experiments on four VOS benchmarks, demonstrating competitive quantitative results, while performing motion segmentation on a whole sequence in one go. We also highlight through visual results the key contributions on temporal consistency brought by our method.
♻ ☆ TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks
Spiking Neural Networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatio-temporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits potential to deliver energy-efficient and high-performance computing paradigms. We present a novel Temporal-Channel Joint Attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) We employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently. 2) We introduce the Cross Convolutional Fusion (CCF) layer as a novel approach to model the inter-dependencies between the temporal and channel scopes. This layer breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms SOTA by up to 15.7% accuracy on standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for image classification and generation tasks. Notably, our approach has achieved SOTA performance in both domains, establishing a significant advancement in the field. Codes are available at https://github.com/ridgerchu/TCJA.
comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems
♻ ☆ ShapeFormer: Shape Prior Visible-to-Amodal Transformer-based Amodal Instance Segmentation IJCNN2024
Amodal Instance Segmentation (AIS) presents a challenging task as it involves predicting both visible and occluded parts of objects within images. Existing AIS methods rely on a bidirectional approach, encompassing both the transition from amodal features to visible features (amodal-to-visible) and from visible features to amodal features (visible-to-amodal). Our observation shows that the utilization of amodal features through the amodal-to-visible can confuse the visible features due to the extra information of occluded/hidden segments not presented in visible display. Consequently, this compromised quality of visible features during the subsequent visible-to-amodal transition. To tackle this issue, we introduce ShapeFormer, a decoupled Transformer-based model with a visible-to-amodal transition. It facilitates the explicit relationship between output segmentations and avoids the need for amodal-to-visible transitions. ShapeFormer comprises three key modules: (i) Visible-Occluding Mask Head for predicting visible segmentation with occlusion awareness, (ii) Shape-Prior Amodal Mask Head for predicting amodal and occluded masks, and (iii) Category-Specific Shape Prior Retriever aims to provide shape prior knowledge. Comprehensive experiments and extensive ablation studies across various AIS benchmarks demonstrate the effectiveness of our ShapeFormer. The code is available at: \url{https://github.com/UARK-AICV/ShapeFormer}
comment: Accepted to IJCNN2024
♻ ☆ Hybrid Functional Maps for Crease-Aware Non-Isometric Shape Matching CVPR 2024
Non-isometric shape correspondence remains a fundamental challenge in computer vision. Traditional methods using Laplace-Beltrami operator (LBO) eigenmodes face limitations in characterizing high-frequency extrinsic shape changes like bending and creases. We propose a novel approach of combining the non-orthogonal extrinsic basis of eigenfunctions of the elastic thin-shell hessian with the intrinsic ones of the LBO, creating a hybrid spectral space in which we construct functional maps. To this end, we present a theoretical framework to effectively integrate non-orthogonal basis functions into descriptor- and learning-based functional map methods. Our approach can be incorporated easily into existing functional map pipelines across varying applications and is able to handle complex deformations beyond isometries. We show extensive evaluations across various supervised and unsupervised settings and demonstrate significant improvements. Notably, our approach achieves up to 15% better mean geodesic error for non-isometric correspondence settings and up to 45% improvement in scenarios with topological noise.
comment: CVPR 2024
♻ ☆ SuperPrimitive: Scene Reconstruction at a Primitive Level CVPR2024
Joint camera pose and dense geometry estimation from a set of images or a monocular video remains a challenging problem due to its computational complexity and inherent visual ambiguities. Most dense incremental reconstruction systems operate directly on image pixels and solve for their 3D positions using multi-view geometry cues. Such pixel-level approaches suffer from ambiguities or violations of multi-view consistency (e.g. caused by textureless or specular surfaces). We address this issue with a new image representation which we call a SuperPrimitive. SuperPrimitives are obtained by splitting images into semantically correlated local regions and enhancing them with estimated surface normal directions, both of which are predicted by state-of-the-art single image neural networks. This provides a local geometry estimate per SuperPrimitive, while their relative positions are adjusted based on multi-view observations. We demonstrate the versatility of our new representation by addressing three 3D reconstruction tasks: depth completion, few-view structure from motion, and monocular dense visual odometry.
comment: CVPR2024. Project Page: https://makezur.github.io/SuperPrimitive/
♻ ☆ Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology
Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. Current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. In response, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based medical image retrieval. By benchmarking these models on a comprehensive dataset of 1.6 million 2D radiological images spanning four modalities and 161 pathologies, we identify weakly-supervised models as superior, achieving a P@1 of up to 0.594. This performance not only competes with a specialized model but does so without the need for fine-tuning. Our analysis further explores the challenges in retrieving pathological versus anatomical structures, indicating that accurate retrieval of pathological features presents greater difficulty. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning.
♻ ☆ Influencer Backdoor Attack on Semantic Segmentation
When a small number of poisoned samples are injected into the training dataset of a deep neural network, the network can be induced to exhibit malicious behavior during inferences, which poses potential threats to real-world applications. While they have been intensively studied in classification, backdoor attacks on semantic segmentation have been largely overlooked. Unlike classification, semantic segmentation aims to classify every pixel within a given image. In this work, we explore backdoor attacks on segmentation models to misclassify all pixels of a victim class by injecting a specific trigger on non-victim pixels during inferences, which is dubbed Influencer Backdoor Attack (IBA). IBA is expected to maintain the classification accuracy of non-victim pixels and mislead classifications of all victim pixels in every single inference and could be easily applied to real-world scenes. Based on the context aggregation ability of segmentation models, we proposed a simple, yet effective, Nearest-Neighbor trigger injection strategy. We also introduce an innovative Pixel Random Labeling strategy which maintains optimal performance even when the trigger is placed far from the victim pixels. Our extensive experiments reveal that current segmentation models do suffer from backdoor attacks, demonstrate IBA real-world applicability, and show that our proposed techniques can further increase attack performance.
♻ ☆ The LuViRA Dataset: Measurement Description ICRA 2024
We present a dataset to evaluate localization algorithms, which utilizes vision, audio, and radio sensors: the Lund University Vision, Radio, and Audio (LuViRA) Dataset. The dataset includes RGB images, corresponding depth maps, IMU readings, channel response between a massive MIMO channel sounder and a user equipment, audio recorded by 12 microphones, and 0.5 mm accurate 6DoF pose ground truth. We synchronize these sensors to make sure that all data are recorded simultaneously. A camera, speaker, and transmit antenna are placed on top of a slowly moving service robot and 88 trajectories are recorded. Each trajectory includes 20 to 50 seconds of recorded sensor data and ground truth labels. The data from different sensors can be used separately or jointly to conduct localization tasks and a motion capture system is used to verify the results obtained by the localization algorithms. The main aim of this dataset is to enable research on fusing the most commonly used sensors for localization tasks. However, the full dataset or some parts of it can also be used for other research areas such as channel estimation, image classification, etc. Fusing sensor data can lead to increased localization accuracy and reliability, as well as decreased latency and power consumption. The created dataset will be made public at a later date.
comment: 7 pages, 7 figures, Accepted to ICRA 2024
♻ ☆ ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs
The integration of Computer-Aided Diagnosis (CAD) with Large Language Models (LLMs) presents a promising frontier in clinical applications, notably in automating diagnostic processes akin to those performed by radiologists and providing consultations similar to a virtual family doctor. Despite the promising potential of this integration, current works face at least two limitations: (1) From the perspective of a radiologist, existing studies typically have a restricted scope of applicable imaging domains, failing to meet the diagnostic needs of different patients. Also, the insufficient diagnostic capability of LLMs further undermine the quality and reliability of the generated medical reports. (2) Current LLMs lack the requisite depth in medical expertise, rendering them less effective as virtual family doctors due to the potential unreliability of the advice provided during patient consultations. To address these limitations, we introduce ChatCAD+, to be universal and reliable. Specifically, it is featured by two main modules: (1) Reliable Report Generation and (2) Reliable Interaction. The Reliable Report Generation module is capable of interpreting medical images from diverse domains and generate high-quality medical reports via our proposed hierarchical in-context learning. Concurrently, the interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice. Together, these designed modules synergize to closely align with the expertise of human medical professionals, offering enhanced consistency and reliability for interpretation and advice. The source code is available at https://github.com/zhaozh10/ChatCAD.
comment: Authors Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu contributed equally to this work and should be considered co-first authors
♻ ☆ ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation CVPR
In the absence of parallax cues, a learning-based single image depth estimation (SIDE) model relies heavily on shading and contextual cues in the image. While this simplicity is attractive, it is necessary to train such models on large and varied datasets, which are difficult to capture. It has been shown that using embeddings from pre-trained foundational models, such as CLIP, improves zero shot transfer in several applications. Taking inspiration from this, in our paper we explore the use of global image priors generated from a pre-trained ViT model to provide more detailed contextual information. We argue that the embedding vector from a ViT model, pre-trained on a large dataset, captures greater relevant information for SIDE than the usual route of generating pseudo image captions, followed by CLIP based text embeddings. Based on this idea, we propose a new SIDE model using a diffusion backbone which is conditioned on ViT embeddings. Our proposed design establishes a new state-of-the-art (SOTA) for SIDE on NYUv2 dataset, achieving Abs Rel error of 0.059 (14% improvement) compared to 0.069 by the current SOTA (VPD). And on KITTI dataset, achieving Sq Rel error of 0.139 (2% improvement) compared to 0.142 by the current SOTA (GEDepth). For zero-shot transfer with a model trained on NYUv2, we report mean relative improvement of (20%, 23%, 81%, 25%) over NeWCRFs on (Sun-RGBD, iBims1, DIODE, HyperSim) datasets, compared to (16%, 18%, 45%, 9%) by ZoeDepth. The project page is available at https://ecodepth-iitd.github.io
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
♻ ☆ Distance and Collision Probability Estimation from Gaussian Surface Models
This paper describes continuous-space methodologies to estimate the collision probability, Euclidean distance and gradient between an ellipsoidal robot model and an environment surface modeled as a set of Gaussian distributions. Continuous-space collision probability estimation is critical for uncertainty-aware motion planning. Most collision detection and avoidance approaches assume the robot is modeled as a sphere, but ellipsoidal representations provide tighter approximations and enable navigation in cluttered and narrow spaces. State-of-the-art methods derive the Euclidean distance and gradient by processing raw point clouds, which is computationally expensive for large workspaces. Recent advances in Gaussian surface modeling (e.g. mixture models, splatting) enable compressed and high-fidelity surface representations. Few methods exist to estimate continuous-space occupancy from such models. They require Gaussians to model free space and are unable to estimate the collision probability, Euclidean distance and gradient for an ellipsoidal robot. The proposed methods bridge this gap by extending prior work in ellipsoid-to-ellipsoid Euclidean distance and collision probability estimation to Gaussian surface models. A geometric blending approach is also proposed to improve collision probability estimation. The approaches are evaluated with numerical 2D and 3D experiments using real-world point cloud data. Methods for efficient calculation of these quantities are demonstrated to execute within a few microseconds per ellipsoid pair using a single-thread on low-power CPUs of modern embedded computers
♻ ☆ MISC: Ultra-low Bitrate Image Semantic Compression Driven by Large Multimodal Model
With the evolution of storage and communication protocols, ultra-low bitrate image compression has become a highly demanding topic. However, existing compression algorithms must sacrifice either consistency with the ground truth or perceptual quality at ultra-low bitrate. In recent years, the rapid development of the Large Multimodal Model (LMM) has made it possible to balance these two goals. To solve this problem, this paper proposes a method called Multimodal Image Semantic Compression (MISC), which consists of an LMM encoder for extracting the semantic information of the image, a map encoder to locate the region corresponding to the semantic, an image encoder generates an extremely compressed bitstream, and a decoder reconstructs the image based on the above information. Experimental results show that our proposed MISC is suitable for compressing both traditional Natural Sense Images (NSIs) and emerging AI-Generated Images (AIGIs) content. It can achieve optimal consistency and perception results while saving 50% bitrate, which has strong potential applications in the next generation of storage and communication. The code will be released on https://github.com/lcysyzxdxc/MISC.
comment: 13 page, 11 figures, 4 tables
♻ ☆ EgoPlan-Bench: Benchmarking Egocentric Embodied Planning with Multimodal Large Language Models
Multimodal Large Language Models, combining the remarkable reasoning and generalization capabilities of Large Language Models (LLMs) with the ability to comprehend visual inputs, have opened up new avenues for embodied task planning. Given diverse environmental inputs, including real-time task progress, visual observations, and open-form language instructions, a proficient task planner is expected to predict feasible actions, which is a feat inherently achievable by Multimodal Large Language Models (MLLMs). In this paper, we aim to quantitatively investigate the potential of MLLMs as embodied task planners in real-world scenarios by introducing a benchmark with human annotations named EgoPlan-Bench. Our benchmark is distinguished by realistic tasks derived from real-world videos, a diverse set of actions involving interactions with hundreds of different objects, and complex visual observations from varied scenes. We evaluate a wide range of MLLMs, revealing that these models have not yet evolved into embodied planning generalists (even GPT-4V). We further construct an instruction-tuning dataset EgoPlan-IT from videos with human-object interactions, to facilitate the learning of high-level task planning in intricate real-world situations. The experiment results demonstrate that the model tuned on EgoPlan-IT not only significantly improves performance on our benchmark, but can also be applied as a task planner for guiding embodied agents in simulations.
comment: Project released at: https://github.com/ChenYi99/EgoPlan
♻ ☆ Deepfake detection by exploiting surface anomalies: the SurFake approach
The ever-increasing use of synthetically generated content in different sectors of our everyday life, one for all media information, poses a strong need for deepfake detection tools in order to avoid the proliferation of altered messages. The process to identify manipulated content, in particular images and videos, is basically performed by looking for the presence of some inconsistencies and/or anomalies specifically due to the fake generation process. Different techniques exist in the scientific literature that exploit diverse ad-hoc features in order to highlight possible modifications. In this paper, we propose to investigate how deepfake creation can impact on the characteristics that the whole scene had at the time of the acquisition. In particular, when an image (video) is captured the overall geometry of the scene (e.g. surfaces) and the acquisition process (e.g. illumination) determine a univocal environment that is directly represented by the image pixel values; all these intrinsic relations are possibly changed by the deepfake generation process. By resorting to the analysis of the characteristics of the surfaces depicted in the image it is possible to obtain a descriptor usable to train a CNN for deepfake detection: we refer to such an approach as SurFake. Experimental results carried out on the FF++ dataset for different kinds of deepfake forgeries and diverse deep learning models confirm that such a feature can be adopted to discriminate between pristine and altered images; furthermore, experiments witness that it can also be combined with visual data to provide a certain improvement in terms of detection accuracy.
♻ ☆ High-throughput Visual Nano-drone to Nano-drone Relative Localization using Onboard Fully Convolutional Networks ICRA 2024
Relative drone-to-drone localization is a fundamental building block for any swarm operations. We address this task in the context of miniaturized nano-drones, i.e., 10cm in diameter, which show an ever-growing interest due to novel use cases enabled by their reduced form factor. The price for their versatility comes with limited onboard resources, i.e., sensors, processing units, and memory, which limits the complexity of the onboard algorithms. A traditional solution to overcome these limitations is represented by lightweight deep learning models directly deployed aboard nano-drones. This work tackles the challenging relative pose estimation between nano-drones using only a gray-scale low-resolution camera and an ultra-low-power System-on-Chip (SoC) hosted onboard. We present a vertically integrated system based on a novel vision-based fully convolutional neural network (FCNN), which runs at 39Hz within 101mW onboard a Crazyflie nano-drone extended with the GWT GAP8 SoC. We compare our FCNN against three State-of-the-Art (SoA) systems. Considering the best-performing SoA approach, our model results in an R-squared improvement from 32 to 47% on the horizontal image coordinate and from 18 to 55% on the vertical image coordinate, on a real-world dataset of 30k images. Finally, our in-field tests show a reduction of the average tracking error of 37% compared to a previous SoA work and an endurance performance up to the entire battery lifetime of 4 minutes.
comment: ICRA 2024, IEEE Conference
♻ ☆ Exploring Missing Modality in Multimodal Egocentric Datasets
Multimodal video understanding is crucial for analyzing egocentric videos, where integrating multiple sensory signals significantly enhances action recognition and moment localization. However, practical applications often grapple with incomplete modalities due to factors like privacy concerns, efficiency demands, or hardware malfunctions. Addressing this, our study delves into the impact of missing modalities on egocentric action recognition, particularly within transformer-based models. We introduce a novel concept -Missing Modality Token (MMT)-to maintain performance even when modalities are absent, a strategy that proves effective in the Ego4D, Epic-Kitchens, and Epic-Sounds datasets. Our method mitigates the performance loss, reducing it from its original $\sim 30\%$ drop to only $\sim 10\%$ when half of the test set is modal-incomplete. Through extensive experimentation, we demonstrate the adaptability of MMT to different training scenarios and its superiority in handling missing modalities compared to current methods. Our research contributes a comprehensive analysis and an innovative approach, opening avenues for more resilient multimodal systems in real-world settings.
♻ ☆ Video shutter angle estimation using optical flow and linear blur
We present a method for estimating the shutter angle, a.k.a. exposure fraction - the ratio of the exposure time and the reciprocal of frame rate - of videoclips containing motion. The approach exploits the relation of the exposure fraction, optical flow, and linear motion blur. Robustness is achieved by selecting image patches where both the optical flow and blur estimates are reliable, checking their consistency. The method was evaluated on the publicly available Beam-Splitter Dataset with a range of exposure fractions from 0.015 to 0.36. The best achieved mean absolute error of estimates was 0.039. We successfully test the suitability of the method for a forensic application of detection of video tampering by frame removal or insertion
♻ ☆ D$^2$ST-Adapter: Disentangled-and-Deformable Spatio-Temporal Adapter for Few-shot Action Recognition
Adapting large pre-trained image models to few-shot action recognition has proven to be an effective and efficient strategy for learning robust feature extractors, which is essential for few-shot learning. Typical fine-tuning based adaptation paradigm is prone to overfitting in the few-shot learning scenarios and offers little modeling flexibility for learning temporal features in video data. In this work we present the Disentangled-and-Deformable Spatio-Temporal Adapter (D$^2$ST-Adapter), which is a novel adapter tuning framework well-suited for few-shot action recognition due to lightweight design and low parameter-learning overhead. It is designed in a dual-pathway architecture to encode spatial and temporal features in a disentangled manner. In particular, we devise the anisotropic Deformable Spatio-Temporal Attention module as the core component of D$^2$ST-Adapter, which can be tailored with anisotropic sampling densities along spatial and temporal domains to learn spatial and temporal features specifically in corresponding pathways, allowing our D$^2$ST-Adapter to encode features in a global view in 3D spatio-temporal space while maintaining a lightweight design. Extensive experiments with instantiations of our method on both pre-trained ResNet and ViT demonstrate the superiority of our method over state-of-the-art methods for few-shot action recognition. Our method is particularly well-suited to challenging scenarios where temporal dynamics are critical for action recognition.
♻ ☆ Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data while maintaining performance on seen categories from labeled data. The central challenge is the substantial learning gap between seen and novel categories, as the model learns the former faster due to accurate supervisory information. Moreover, capturing the semantics of unlabeled novel category samples is also challenging due to the missing label information. To address the above issues, we introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together in the output space. Extensive experiments on benchmark datasets demonstrate that previous approaches may significantly hinder novel class learning, whereas our method strikingly balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset. Importantly, we find that fine-tuning the self-supervised pre-trained model significantly boosts the performance, which is overlooked in prior literature. Our code is available at https://github.com/yebo0216best/LPS-main.
♻ ☆ Do Counterfactual Examples Complicate Adversarial Training? CVPR'24
We leverage diffusion models to study the robustness-performance tradeoff of robust classifiers. Our approach introduces a simple, pretrained diffusion method to generate low-norm counterfactual examples (CEs): semantically altered data which results in different true class membership. We report that the confidence and accuracy of robust models on their clean training data are associated with the proximity of the data to their CEs. Moreover, robust models perform very poorly when evaluated on the CEs directly, as they become increasingly invariant to the low-norm, semantic changes brought by CEs. The results indicate a significant overlap between non-robust and semantic features, countering the common assumption that non-robust features are not interpretable.
comment: Accepted as a short paper to the GCV Workshop at CVPR'24
♻ ☆ ODM: A Text-Image Further Alignment Pre-training Approach for Scene Text Detection and Spotting CVPR2024
In recent years, text-image joint pre-training techniques have shown promising results in various tasks. However, in Optical Character Recognition (OCR) tasks, aligning text instances with their corresponding text regions in images poses a challenge, as it requires effective alignment between text and OCR-Text (referring to the text in images as OCR-Text to distinguish from the text in natural language) rather than a holistic understanding of the overall image content. In this paper, we propose a new pre-training method called OCR-Text Destylization Modeling (ODM) that transfers diverse styles of text found in images to a uniform style based on the text prompt. With ODM, we achieve better alignment between text and OCR-Text and enable pre-trained models to adapt to the complex and diverse styles of scene text detection and spotting tasks. Additionally, we have designed a new labeling generation method specifically for ODM and combined it with our proposed Text-Controller module to address the challenge of annotation costs in OCR tasks, allowing a larger amount of unlabeled data to participate in pre-training. Extensive experiments on multiple public datasets demonstrate that our method significantly improves performance and outperforms current pre-training methods in scene text detection and spotting tasks. Code is available at https://github.com/PriNing/ODM.
comment: Accepted by CVPR2024
♻ ☆ ICSVR: Investigating Compositional and Syntactic Understanding in Video Retrieval Models
Video retrieval (VR) involves retrieving the ground truth video from the video database given a text caption or vice-versa. The two important components of compositionality: objects & attributes and actions are joined using correct syntax to form a proper text query. These components (objects & attributes, actions and syntax) each play an important role to help distinguish among videos and retrieve the correct ground truth video. However, it is unclear what is the effect of these components on the video retrieval performance. We therefore, conduct a systematic study to evaluate the compositional and syntactic understanding of video retrieval models on standard benchmarks such as MSRVTT, MSVD and DIDEMO. The study is performed on two categories of video retrieval models: (i) which are pre-trained on video-text pairs and fine-tuned on downstream video retrieval datasets (Eg. Frozen-in-Time, Violet, MCQ etc.) (ii) which adapt pre-trained image-text representations like CLIP for video retrieval (Eg. CLIP4Clip, XCLIP, CLIP2Video etc.). Our experiments reveal that actions and syntax play a minor role compared to objects & attributes in video understanding. Moreover, video retrieval models that use pre-trained image-text representations (CLIP) have better syntactic and compositional understanding as compared to models pre-trained on video-text data. The code is available at https://github.com/IntelLabs/multimodal_cognitive_ai/tree/main/ICSVR
♻ ☆ PE-MVCNet: Multi-view and Cross-modal Fusion Network for Pulmonary Embolism Prediction
The early detection of a pulmonary embolism (PE) is critical for enhancing patient survival rates. Both image-based and non-image-based features are of utmost importance in medical classification tasks. In a clinical setting, physicians tend to rely on the contextual information provided by Electronic Medical Records (EMR) to interpret medical imaging. However, very few models effectively integrate clinical information with imaging data. To address this shortcoming, we suggest a multimodal fusion methodology, termed PE-MVCNet, which capitalizes on Computed Tomography Pulmonary Angiography imaging and EMR data. This method comprises the Image-only module with an integrated multi-view block, the EMR-only module, and the Cross-modal Attention Fusion (CMAF) module. These modules cooperate to extract comprehensive features that subsequently generate predictions for PE. We conducted experiments using the publicly accessible Stanford University Medical Center dataset, achieving an AUROC of 94.1%, an accuracy rate of 90.2%, and an F1 score of 90.6%. Our proposed model outperforms existing methodologies, corroborating that our multimodal fusion model excels compared to models that use a single data modality. Our source code is available at https://github.com/LeavingStarW/PE-MVCNET.
♻ ☆ One-Prompt to Segment All Medical Images
Large foundation models, known for their strong zero-shot generalization, have excelled in visual and language applications. However, applying them to medical image segmentation, a domain with diverse imaging types and target labels, remains an open challenge. Current approaches, such as adapting interactive segmentation models like Segment Anything Model (SAM), require user prompts for each sample during inference. Alternatively, transfer learning methods like few/one-shot models demand labeled samples, leading to high costs. This paper introduces a new paradigm toward the universal medical image segmentation, termed 'One-Prompt Segmentation.' One-Prompt Segmentation combines the strengths of one-shot and interactive methods. In the inference stage, with just \textbf{one prompted sample}, it can adeptly handle the unseen task in a single forward pass. We train One-Prompt Model on 64 open-source medical datasets, accompanied by the collection of over 3,000 clinician-labeled prompts. Tested on 14 previously unseen datasets, the One-Prompt Model showcases superior zero-shot segmentation capabilities, outperforming a wide range of related methods. The code and data is released as https://github.com/KidsWithTokens/one-prompt.
comment: arXiv admin note: text overlap with arXiv:2304.12620
♻ ☆ AsymFormer: Asymmetrical Cross-Modal Representation Learning for Mobile Platform Real-Time RGB-D Semantic Segmentation
Understanding indoor scenes is crucial for urban studies. Considering the dynamic nature of indoor environments, effective semantic segmentation requires both real-time operation and high accuracy.To address this, we propose AsymFormer, a novel network that improves real-time semantic segmentation accuracy using RGB-D multi-modal information without substantially increasing network complexity. AsymFormer uses an asymmetrical backbone for multimodal feature extraction, reducing redundant parameters by optimizing computational resource distribution. To fuse asymmetric multimodal features, a Local Attention-Guided Feature Selection (LAFS) module is used to selectively fuse features from different modalities by leveraging their dependencies. Subsequently, a Cross-Modal Attention-Guided Feature Correlation Embedding (CMA) module is introduced to further extract cross-modal representations. The AsymFormer demonstrates competitive results with 54.1% mIoU on NYUv2 and 49.1% mIoU on SUNRGBD. Notably, AsymFormer achieves an inference speed of 65 FPS (79 FPS after implementing mixed precision quantization) on RTX3090, demonstrating that AsymFormer can strike a balance between high accuracy and efficiency.
♻ ☆ A2XP: Towards Private Domain Generalization CVPR 2024
Deep Neural Networks (DNNs) have become pivotal in various fields, especially in computer vision, outperforming previous methodologies. A critical challenge in their deployment is the bias inherent in data across different domains, such as image style and environmental conditions, leading to domain gaps. This necessitates techniques for learning general representations from biased training data, known as domain generalization. This paper presents Attend to eXpert Prompts (A2XP), a novel approach for domain generalization that preserves the privacy and integrity of the network architecture. A2XP consists of two phases: Expert Adaptation and Domain Generalization. In the first phase, prompts for each source domain are optimized to guide the model towards the optimal direction. In the second phase, two embedder networks are trained to effectively amalgamate these expert prompts, aiming for an optimal output. Our extensive experiments demonstrate that A2XP achieves state-of-the-art results over existing non-private domain generalization methods. The experimental results validate that the proposed approach not only tackles the domain generalization challenge in DNNs but also offers a privacy-preserving, efficient solution to the broader field of computer vision.
comment: Accepted to CVPR 2024. Our code is available at https://github.com/AIRLABkhu/A2XP
♻ ☆ T$^3$Bench: Benchmarking Current Progress in Text-to-3D Generation
Recent methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF. Notably, these methods are able to produce high-quality 3D scenes without training on 3D data. Due to the open-ended nature of the task, most studies evaluate their results with subjective case studies and user experiments, thereby presenting a challenge in quantitatively addressing the question: How has current progress in Text-to-3D gone so far? In this paper, we introduce T$^3$Bench, the first comprehensive text-to-3D benchmark containing diverse text prompts of three increasing complexity levels that are specially designed for 3D generation. To assess both the subjective quality and the text alignment, we propose two automatic metrics based on multi-view images produced by the 3D contents. The quality metric combines multi-view text-image scores and regional convolution to detect quality and view inconsistency. The alignment metric uses multi-view captioning and GPT-4 evaluation to measure text-3D consistency. Both metrics closely correlate with different dimensions of human judgments, providing a paradigm for efficiently evaluating text-to-3D models. The benchmarking results, shown in Fig. 1, reveal performance differences among an extensive 10 prevalent text-to-3D methods. Our analysis further highlights the common struggles for current methods on generating surroundings and multi-object scenes, as well as the bottleneck of leveraging 2D guidance for 3D generation. Our project page is available at: https://t3bench.com.
comment: Under review
♻ ☆ MV-CLIP: Multi-View CLIP for Zero-shot 3D Shape Recognition
Large-scale pre-trained models have demonstrated impressive performance in vision and language tasks within open-world scenarios. Due to the lack of comparable pre-trained models for 3D shapes, recent methods utilize language-image pre-training to realize zero-shot 3D shape recognition. However, due to the modality gap, pretrained language-image models are not confident enough in the generalization to 3D shape recognition. Consequently, this paper aims to improve the confidence with view selection and hierarchical prompts. Leveraging the CLIP model as an example, we employ view selection on the vision side by identifying views with high prediction confidence from multiple rendered views of a 3D shape. On the textual side, the strategy of hierarchical prompts is proposed for the first time. The first layer prompts several classification candidates with traditional class-level descriptions, while the second layer refines the prediction based on function-level descriptions or further distinctions between the candidates. Remarkably, without the need for additional training, our proposed method achieves impressive zero-shot 3D classification accuracies of 84.44%, 91.51%, and 66.17% on ModelNet40, ModelNet10, and ShapeNet Core55, respectively. Furthermore, we will make the code publicly available to facilitate reproducibility and further research in this area.
♻ ☆ Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
♻ ☆ 3D Face Reconstruction with the Geometric Guidance of Facial Part Segmentation CVPR2024
3D Morphable Models (3DMMs) provide promising 3D face reconstructions in various applications. However, existing methods struggle to reconstruct faces with extreme expressions due to deficiencies in supervisory signals, such as sparse or inaccurate landmarks. Segmentation information contains effective geometric contexts for face reconstruction. Certain attempts intuitively depend on differentiable renderers to compare the rendered silhouettes of reconstruction with segmentation, which is prone to issues like local optima and gradient instability. In this paper, we fully utilize the facial part segmentation geometry by introducing Part Re-projection Distance Loss (PRDL). Specifically, PRDL transforms facial part segmentation into 2D points and re-projects the reconstruction onto the image plane. Subsequently, by introducing grid anchors and computing different statistical distances from these anchors to the point sets, PRDL establishes geometry descriptors to optimize the distribution of the point sets for face reconstruction. PRDL exhibits a clear gradient compared to the renderer-based methods and presents state-of-the-art reconstruction performance in extensive quantitative and qualitative experiments. Our project is available at https://github.com/wang-zidu/3DDFA-V3 .
comment: CVPR2024 (Highlight)
♻ ☆ KDAS: Knowledge Distillation via Attention Supervision Framework for Polyp Segmentation
Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. While current state-of-the-art techniques yield impressive results, the size and computational cost of these models create challenges for practical industry applications. To address this challenge, we present KDAS, a Knowledge Distillation framework that incorporates attention supervision, and our proposed Symmetrical Guiding Module. This framework is designed to facilitate a compact student model with fewer parameters, allowing it to learn the strengths of the teacher model and mitigate the inconsistency between teacher features and student features, a common challenge in Knowledge Distillation, via the Symmetrical Guiding Module. Through extensive experiments, our compact models demonstrate their strength by achieving competitive results with state-of-the-art methods, offering a promising approach to creating compact models with high accuracy for polyp segmentation and in the medical imaging field. The implementation is available on https://github.com/huyquoctrinh/KDAS.
♻ ☆ ConsistencyDet: A Robust Object Detector with a Denoising Paradigm of Consistency Model
Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on the perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a "one-step denoising" mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics. Our code is available at https://github.com/Tankowa/ConsistencyDet.
♻ ☆ Weight Copy and Low-Rank Adaptation for Few-Shot Distillation of Vision Transformers
Few-shot knowledge distillation recently emerged as a viable approach to harness the knowledge of large-scale pre-trained models, using limited data and computational resources. In this paper, we propose a novel few-shot feature distillation approach for vision transformers. Our approach is based on two key steps. Leveraging the fact that vision transformers have a consistent depth-wise structure, we first copy the weights from intermittent layers of existing pre-trained vision transformers (teachers) into shallower architectures (students), where the intermittence factor controls the complexity of the student transformer with respect to its teacher. Next, we employ an enhanced version of Low-Rank Adaptation (LoRA) to distill knowledge into the student in a few-shot scenario, aiming to recover the information processing carried out by the skipped teacher layers. We present comprehensive experiments with supervised and self-supervised transformers as teachers, on five data sets from various domains, including natural, medical and satellite images. The empirical results confirm the superiority of our approach over competitive baselines. Moreover, the ablation results demonstrate the usefulness of each component of the proposed pipeline.
♻ ☆ Low-light Image Enhancement via CLIP-Fourier Guided Wavelet Diffusion
Low-light image enhancement techniques have significantly progressed, but unstable image quality recovery and unsatisfactory visual perception are still significant challenges. To solve these problems, we propose a novel and robust low-light image enhancement method via CLIP-Fourier Guided Wavelet Diffusion, abbreviated as CFWD. Specifically, CFWD leverages multimodal visual-language information in the frequency domain space created by multiple wavelet transforms to guide the enhancement process. Multi-scale supervision across different modalities facilitates the alignment of image features with semantic features during the wavelet diffusion process, effectively bridging the gap between degraded and normal domains. Moreover, to further promote the effective recovery of the image details, we combine the Fourier transform based on the wavelet transform and construct a Hybrid High Frequency Perception Module (HFPM) with a significant perception of the detailed features. This module avoids the diversity confusion of the wavelet diffusion process by guiding the fine-grained structure recovery of the enhancement results to achieve favourable metric and perceptually oriented enhancement. Extensive quantitative and qualitative experiments on publicly available real-world benchmarks show that our approach outperforms existing state-of-the-art methods, achieving significant progress in image quality and noise suppression. The project code is available at https://github.com/hejh8/CFWD.
♻ ☆ Diffusion Models Meet Remote Sensing: Principles, Methods, and Perspectives
As a newly emerging advance in deep generative models, diffusion models have achieved state-of-the-art results in many fields, including computer vision, natural language processing, and molecule design. The remote sensing community has also noticed the powerful ability of diffusion models and quickly applied them to a variety of tasks for image processing. Given the rapid increase in research on diffusion models in the field of remote sensing, it is necessary to conduct a comprehensive review of existing diffusion model-based remote sensing papers, to help researchers recognize the potential of diffusion models and provide some directions for further exploration. Specifically, this paper first introduces the theoretical background of diffusion models, and then systematically reviews the applications of diffusion models in remote sensing, including image generation, enhancement, and interpretation. Finally, the limitations of existing remote sensing diffusion models and worthy research directions for further exploration are discussed and summarized.
♻ ☆ Representation Alignment Contrastive Regularization for Multi-Object Tracking
Achieving high-performance in multi-object tracking algorithms heavily relies on modeling spatio-temporal relationships during the data association stage. Mainstream approaches encompass rule-based and deep learning-based methods for spatio-temporal relationship modeling. While the former relies on physical motion laws, offering wider applicability but yielding suboptimal results for complex object movements, the latter, though achieving high-performance, lacks interpretability and involves complex module designs. This work aims to simplify deep learning-based spatio-temporal relationship models and introduce interpretability into features for data association. Specifically, a lightweight single-layer transformer encoder is utilized to model spatio-temporal relationships. To make features more interpretative, two contrastive regularization losses based on representation alignment are proposed, derived from spatio-temporal consistency rules. By applying weighted summation to affinity matrices, the aligned features can seamlessly integrate into the data association stage of the original tracking workflow. Experimental results showcase that our model enhances the majority of existing tracking networks' performance without excessive complexity, with minimal increase in training overhead and nearly negligible computational and storage costs.
♻ ☆ OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model
Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.
♻ ☆ Retina : Low-Power Eye Tracking with Event Camera and Spiking Hardware
This paper introduces a neuromorphic methodology for eye tracking, harnessing pure event data captured by a Dynamic Vision Sensor (DVS) camera. The framework integrates a directly trained Spiking Neuron Network (SNN) regression model and leverages a state-of-the-art low power edge neuromorphic processor - Speck, collectively aiming to advance the precision and efficiency of eye-tracking systems. First, we introduce a representative event-based eye-tracking dataset, "Ini-30", which was collected with two glass-mounted DVS cameras from thirty volunteers. Then,a SNN model, based on Integrate And Fire (IAF) neurons, named "Retina", is described , featuring only 64k parameters (6.63x fewer than the latest) and achieving pupil tracking error of only 3.24 pixels in a 64x64 DVS input. The continous regression output is obtained by means of convolution using a non-spiking temporal 1D filter slided across the output spiking layer. Finally, we evaluate Retina on the neuromorphic processor, showing an end-to-end power between 2.89-4.8 mW and a latency of 5.57-8.01 mS dependent on the time window. We also benchmark our model against the latest event-based eye-tracking method, "3ET", which was built upon event frames. Results show that Retina achieves superior precision with 1.24px less pupil centroid error and reduced computational complexity with 35 times fewer MAC operations. We hope this work will open avenues for further investigation of close-loop neuromorphic solutions and true event-based training pursuing edge performance.
♻ ☆ Digging into contrastive learning for robust depth estimation with diffusion models
Recently, diffusion-based depth estimation methods have drawn widespread attention due to their elegant denoising patterns and promising performance. However, they are typically unreliable under adverse conditions prevalent in real-world scenarios, such as rainy, snowy, etc. In this paper, we propose a novel robust depth estimation method called D4RD, featuring a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments. Concretely, we integrate the strength of knowledge distillation into contrastive learning, building the `trinity' contrastive scheme. This scheme utilizes the sampled noise of the forward diffusion process as a natural reference, guiding the predicted noise in diverse scenes toward a more stable and precise optimum. Moreover, we extend noise-level trinity to encompass more generic feature and image levels, establishing a multi-level contrast to distribute the burden of robust perception across the overall network. Before addressing complex scenarios, we enhance the stability of the baseline diffusion model with three straightforward yet effective improvements, which facilitate convergence and remove depth outliers. Extensive experiments demonstrate that D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions. The code for D4RD will be made available for further exploration and adoption.
comment: 8 pages,6 figures
♻ ☆ The All-Seeing Project V2: Towards General Relation Comprehension of the Open World
We present the All-Seeing Project V2: a new model and dataset designed for understanding object relations in images. Specifically, we propose the All-Seeing Model V2 (ASMv2) that integrates the formulation of text generation, object localization, and relation comprehension into a relation conversation (ReC) task. Leveraging this unified task, our model excels not only in perceiving and recognizing all objects within the image but also in grasping the intricate relation graph between them, diminishing the relation hallucination often encountered by Multi-modal Large Language Models (MLLMs). To facilitate training and evaluation of MLLMs in relation understanding, we created the first high-quality ReC dataset ({AS-V2) which is aligned with the format of standard instruction tuning data. In addition, we design a new benchmark, termed Circular-based Relation Probing Evaluation (CRPE) for comprehensively evaluating the relation comprehension capabilities of MLLMs. Notably, our ASMv2 achieves an overall accuracy of 52.04 on this relation-aware benchmark, surpassing the 43.14 of LLaVA-1.5 by a large margin. We hope that our work can inspire more future research and contribute to the evolution towards artificial general intelligence. Our project is released at https://github.com/OpenGVLab/all-seeing.
comment: Technical Report
♻ ☆ MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes CVPR 2024
Recent advancements in post-hoc and inherently interpretable methods have markedly enhanced the explanations of black box classifier models. These methods operate either through post-analysis or by integrating concept learning during model training. Although being effective in bridging the semantic gap between a model's latent space and human interpretation, these explanation methods only partially reveal the model's decision-making process. The outcome is typically limited to high-level semantics derived from the last feature map. We argue that the explanations lacking insights into the decision processes at low and mid-level features are neither fully faithful nor useful. Addressing this gap, we introduce the Multi-Level Concept Prototypes Classifier (MCPNet), an inherently interpretable model. MCPNet autonomously learns meaningful concept prototypes across multiple feature map levels using Centered Kernel Alignment (CKA) loss and an energy-based weighted PCA mechanism, and it does so without reliance on predefined concept labels. Further, we propose a novel classifier paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss. Our experiments reveal that our proposed MCPNet while being adaptable to various model architectures, offers comprehensive multi-level explanations while maintaining classification accuracy. Additionally, its concept distribution-based classification approach shows improved generalization capabilities in few-shot classification scenarios.
comment: Accepted by CVPR 2024
♻ ☆ Efficient Anomaly Detection with Budget Annotation Using Semi-Supervised Residual Transformer
Anomaly Detection is challenging as usually only the normal samples are seen during training and the detector needs to discover anomalies on-the-fly. The recently proposed deep-learning-based approaches could somehow alleviate the problem but there is still a long way to go in obtaining an industrial-class anomaly detector for real-world applications. On the other hand, in some particular AD tasks, a few anomalous samples are labeled manually for achieving higher accuracy. However, this performance gain is at the cost of considerable annotation efforts, which can be intractable in many practical scenarios. In this work, the above two problems are addressed in a unified framework. Firstly, inspired by the success of the patch-matching-based AD algorithms, we train a sliding vision transformer over the residuals generated by a novel position-constrained patch-matching. Secondly, the conventional pixel-wise segmentation problem is cast into a block-wise classification problem. Thus the sliding transformer can attain even higher accuracy with much less annotation labor. Thirdly, to further reduce the labeling cost, we propose to label the anomalous regions using only bounding boxes. The unlabeled regions caused by the weak labels are effectively exploited using a highly-customized semi-supervised learning scheme equipped with two novel data augmentation methods. The proposed method outperforms all the state-of-the-art approaches using all the evaluation metrics in both the unsupervised and supervised scenarios. On the popular MVTec-AD dataset, our SemiREST algorithm obtains the Average Precision (AP) of 81.2% in the unsupervised condition and 84.4% AP for supervised anomaly detection. Surprisingly, with the bounding-box-based semi-supervisions, SemiREST still outperforms the SOTA methods with full supervision (83.8% AP) on MVTec-AD.
comment: 20 pages,6 figures
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ GBSD: Generative Bokeh with Stage Diffusion ICASSP
The bokeh effect is an artistic technique that blurs out-of-focus areas in a photograph and has gained interest due to recent developments in text-to-image synthesis and the ubiquity of smart-phone cameras and photo-sharing apps. Prior work on rendering bokeh effects have focused on post hoc image manipulation to produce similar blurring effects in existing photographs using classical computer graphics or neural rendering techniques, but have either depth discontinuity artifacts or are restricted to reproducing bokeh effects that are present in the training data. More recent diffusion based models can synthesize images with an artistic style, but either require the generation of high-dimensional masks, expensive fine-tuning, or affect global image characteristics. In this paper, we present GBSD, the first generative text-to-image model that synthesizes photorealistic images with a bokeh style. Motivated by how image synthesis occurs progressively in diffusion models, our approach combines latent diffusion models with a 2-stage conditioning algorithm to render bokeh effects on semantically defined objects. Since we can focus the effect on objects, this semantic bokeh effect is more versatile than classical rendering techniques. We evaluate GBSD both quantitatively and qualitatively and demonstrate its ability to be applied in both text-to-image and image-to-image settings.
comment: Short Version is accepted by International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2024
♻ ☆ RoboFusion: Towards Robust Multi-Modal 3D Object Detection via SAM
Multi-modal 3D object detectors are dedicated to exploring secure and reliable perception systems for autonomous driving (AD). However, while achieving state-of-the-art (SOTA) performance on clean benchmark datasets, they tend to overlook the complexity and harsh conditions of real-world environments. Meanwhile, with the emergence of visual foundation models (VFMs), opportunities and challenges are presented for improving the robustness and generalization of multi-modal 3D object detection in autonomous driving. Therefore, we propose RoboFusion, a robust framework that leverages VFMs like SAM to tackle out-of-distribution (OOD) noise scenarios. We first adapt the original SAM for autonomous driving scenarios named SAM-AD. To align SAM or SAM-AD with multi-modal methods, we then introduce AD-FPN for upsampling the image features extracted by SAM. We employ wavelet decomposition to denoise the depth-guided images for further noise reduction and weather interference. Lastly, we employ self-attention mechanisms to adaptively reweight the fused features, enhancing informative features while suppressing excess noise. In summary, our RoboFusion gradually reduces noise by leveraging the generalization and robustness of VFMs, thereby enhancing the resilience of multi-modal 3D object detection. Consequently, our RoboFusion achieves state-of-the-art performance in noisy scenarios, as demonstrated by the KITTI-C and nuScenes-C benchmarks.
♻ ☆ Transformer-based Multimodal Change Detection with Multitask Consistency Constraints
Change detection plays a fundamental role in Earth observation for analyzing temporal iterations over time. However, recent studies have largely neglected the utilization of multimodal data that presents significant practical and technical advantages compared to single-modal approaches. This research focuses on leveraging {pre-event} digital surface model (DSM) data and {post-event} digital aerial images captured at different times for detecting change beyond 2D. We observe that the current change detection methods struggle with the multitask conflicts between semantic and height change detection tasks. To address this challenge, we propose an efficient Transformer-based network that learns shared representation between cross-dimensional inputs through cross-attention. {It adopts a consistency constraint to establish the multimodal relationship. Initially, pseudo-changes are derived by employing height change thresholding. Subsequently, the $L2$ distance between semantic and pseudo-changes within their overlapping regions is minimized. This explicitly endows the height change detection (regression task) and semantic change detection (classification task) with representation consistency.} A DSM-to-image multimodal dataset encompassing three cities in the Netherlands was constructed. It lays a new foundation for beyond-2D change detection from cross-dimensional inputs. Compared to five state-of-the-art change detection methods, our model demonstrates consistent multitask superiority in terms of semantic and height change detection. Furthermore, the consistency strategy can be seamlessly adapted to the other methods, yielding promising improvements.
♻ ☆ SDXS: Real-Time One-Step Latent Diffusion Models with Image Conditions
Recent advancements in diffusion models have positioned them at the forefront of image generation. Despite their superior performance, diffusion models are not without drawbacks; they are characterized by complex architectures and substantial computational demands, resulting in significant latency due to their iterative sampling process. To mitigate these limitations, we introduce a dual approach involving model miniaturization and a reduction in sampling steps, aimed at significantly decreasing model latency. Our methodology leverages knowledge distillation to streamline the U-Net and image decoder architectures, and introduces an innovative one-step DM training technique that utilizes feature matching and score distillation. We present two models, SDXS-512 and SDXS-1024, achieving inference speeds of approximately 100 FPS (30x faster than SD v1.5) and 30 FPS (60x faster than SDXL) on a single GPU, respectively. Moreover, our training approach offers promising applications in image-conditioned control, facilitating efficient image-to-image translation.
♻ ☆ Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, play a foundational role in various cross-modal applications. To fully leverage VLMs' potential in adapting to downstream tasks, context optimization methods like Prompt Tuning are essential. However, one key limitation is the lack of diversity in prompt templates, whether they are hand-crafted or learned through additional modules. This limitation restricts the capabilities of pretrained VLMs and can result in incorrect predictions in downstream tasks. To address this challenge, we propose Context Optimization with Multi-Knowledge Representation (CoKnow), a framework that enhances Prompt Learning for VLMs with rich contextual knowledge. To facilitate CoKnow during inference, we trained lightweight semantic knowledge mappers, which are capable of generating Multi-Knowledge Representation for an input image without requiring additional priors. Experimentally, We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods. We will make all resources open-source: https://github.com/EMZucas/CoKnow.
♻ ☆ Kinematics Modeling Network for Video-based Human Pose Estimation
Estimating human poses from videos is critical in human-computer interaction. Joints cooperate rather than move independently during human movement. There are both spatial and temporal correlations between joints. Despite the positive results of previous approaches, most focus on modeling the spatial correlation between joints while only straightforwardly integrating features along the temporal dimension, ignoring the temporal correlation between joints. In this work, we propose a plug-and-play kinematics modeling module (KMM) to explicitly model temporal correlations between joints across different frames by calculating their temporal similarity. In this way, KMM can capture motion cues of the current joint relative to all joints in different time. Besides, we formulate video-based human pose estimation as a Markov Decision Process and design a novel kinematics modeling network (KIMNet) to simulate the Markov Chain, allowing KIMNet to locate joints recursively. Our approach achieves state-of-the-art results on two challenging benchmarks. In particular, KIMNet shows robustness to the occlusion. The code will be released at https://github.com/YHDang/KIMNet.
♻ ☆ Full-dose Whole-body PET Synthesis from Low-dose PET Using High-efficiency Denoising Diffusion Probabilistic Model: PET Consistency Model
Objective: Positron Emission Tomography (PET) has been a commonly used imaging modality in broad clinical applications. One of the most important tradeoffs in PET imaging is between image quality and radiation dose: high image quality comes with high radiation exposure. Improving image quality is desirable for all clinical applications while minimizing radiation exposure is needed to reduce risk to patients. Approach: We introduce PET Consistency Model (PET-CM), an efficient diffusion-based method for generating high-quality full-dose PET images from low-dose PET images. It employs a two-step process, adding Gaussian noise to full-dose PET images in the forward diffusion, and then denoising them using a PET Shifted-window Vision Transformer (PET-VIT) network in the reverse diffusion. The PET-VIT network learns a consistency function that enables direct denoising of Gaussian noise into clean full-dose PET images. PET-CM achieves state-of-the-art image quality while requiring significantly less computation time than other methods. Results: In experiments comparing eighth-dose to full-dose images, PET-CM demonstrated impressive performance with NMAE of 1.278+/-0.122%, PSNR of 33.783+/-0.824dB, SSIM of 0.964+/-0.009, NCC of 0.968+/-0.011, HRS of 4.543, and SUV Error of 0.255+/-0.318%, with an average generation time of 62 seconds per patient. This is a significant improvement compared to the state-of-the-art diffusion-based model with PET-CM reaching this result 12x faster. Similarly, in the quarter-dose to full-dose image experiments, PET-CM delivered competitive outcomes, achieving an NMAE of 0.973+/-0.066%, PSNR of 36.172+/-0.801dB, SSIM of 0.984+/-0.004, NCC of 0.990+/-0.005, HRS of 4.428, and SUV Error of 0.151+/-0.192% using the same generation process, which underlining its high quantitative and clinical precision in both denoising scenario.
♻ ☆ Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD)
Recent advancements in sequence prediction have significantly improved the accuracy of video data interpretation; however, existing models often overlook the potential of attention-based mechanisms for next-frame prediction. This study introduces the Vision Augmentation Prediction Autoencoder with Attention Design (VAPAAD), an innovative approach that integrates attention mechanisms into sequence prediction, enabling nuanced analysis and understanding of temporal dynamics in video sequences. Utilizing the Moving MNIST dataset, we demonstrate VAPAAD's robust performance and superior handling of complex temporal data compared to traditional methods. VAPAAD combines data augmentation, ConvLSTM2D layers, and a custom-built self-attention mechanism to effectively focus on salient features within a sequence, enhancing predictive accuracy and context-aware analysis. This methodology not only adheres to human cognitive processes during video interpretation but also addresses limitations in conventional models, which often struggle with the variability inherent in video sequences. The experimental results confirm that VAPAAD outperforms existing models, especially in integrating attention mechanisms, which significantly improve predictive performance.
comment: 12 pages, 4 figures
♻ ☆ Alpha Invariance: On Inverse Scaling Between Distance and Volume Density in Neural Radiance Fields CVPR 2024
Scale-ambiguity in 3D scene dimensions leads to magnitude-ambiguity of volumetric densities in neural radiance fields, i.e., the densities double when scene size is halved, and vice versa. We call this property alpha invariance. For NeRFs to better maintain alpha invariance, we recommend 1) parameterizing both distance and volume densities in log space, and 2) a discretization-agnostic initialization strategy to guarantee high ray transmittance. We revisit a few popular radiance field models and find that these systems use various heuristics to deal with issues arising from scene scaling. We test their behaviors and show our recipe to be more robust.
comment: CVPR 2024. project page https://pals.ttic.edu/p/alpha-invariance
♻ ☆ Iterated Learning Improves Compositionality in Large Vision-Language Models CVPR 2024
A fundamental characteristic common to both human vision and natural language is their compositional nature. Yet, despite the performance gains contributed by large vision and language pretraining, recent investigations find that most-if not all-our state-of-the-art vision-language models struggle at compositionality. They are unable to distinguish between images of " a girl in white facing a man in black" and "a girl in black facing a man in white". Moreover, prior work suggests that compositionality doesn't arise with scale: larger model sizes or training data don't help. This paper develops a new iterated training algorithm that incentivizes compositionality. We draw on decades of cognitive science research that identifies cultural transmission-the need to teach a new generation-as a necessary inductive prior that incentivizes humans to develop compositional languages. Specifically, we reframe vision-language contrastive learning as the Lewis Signaling Game between a vision agent and a language agent, and operationalize cultural transmission by iteratively resetting one of the agent's weights during training. After every iteration, this training paradigm induces representations that become "easier to learn", a property of compositional languages: e.g. our model trained on CC3M and CC12M improves standard CLIP by 4.7%, 4.0% respectfully in the SugarCrepe benchmark.
comment: CVPR 2024
♻ ☆ Learning to Score Sign Language with Two-stage Method
Human action recognition and performance assessment have been hot research topics in recent years. Recognition problems have mature solutions in the field of sign language, but past research in performance analysis has focused on competitive sports and medical training, overlooking the scoring assessment ,which is an important part of sign language teaching digitalization. In this paper, we analyze the existing technologies for performance assessment and adopt methods that perform well in human pose reconstruction tasks combined with motion rotation embedded expressions, proposing a two-stage sign language performance evaluation pipeline. Our analysis shows that choosing reconstruction tasks in the first stage can provide more expressive features, and using smoothing methods can provide an effective reference for assessment. Experiments show that our method provides good score feedback mechanisms and high consistency with professional assessments compared to end-to-end evaluations.
comment: 9 pages, 7 figures
♻ ☆ Runner re-identification from single-view running video in the open-world setting
In many sports, player re-identification is crucial for automatic video processing and analysis. However, most of the current studies on player re-identification in multi- or single-view sports videos focus on re-identification in the closed-world setting using labeled image dataset, and player re-identification in the open-world setting for automatic video analysis is not well developed. In this paper, we propose a runner re-identification system that directly processes single-view video to address the open-world setting. In the open-world setting, we cannot use labeled dataset and have to process video directly. The proposed system automatically processes raw video as input to identify runners, and it can identify runners even when they are framed out multiple times. For the automatic processing, we first detect the runners in the video using the pre-trained YOLOv8 and the fine-tuned EfficientNet. We then track the runners using ByteTrack and detect their shoes with the fine-tuned YOLOv8. Finally, we extract the image features of the runners using an unsupervised method with the gated recurrent unit autoencoder and global and local features mixing. To improve the accuracy of runner re-identification, we use shoe images as local image features and dynamic features of running sequence images. We evaluated the system on a running practice video dataset and showed that the proposed method identified runners with higher accuracy than some state-of-the-art models in unsupervised re-identification. We also showed that our proposed local image feature and running dynamic feature were effective for runner re-identification. Our runner re-identification system can be useful for the automatic analysis of running videos.
comment: 20 pages, 7 figures
♻ ☆ Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement
One of the main motivations of MTL is to develop neural networks capable of inferring multiple tasks simultaneously. While countless methods have been proposed in the past decade investigating robust model architectures and efficient training algorithms, there is still lack of understanding of these methods when applied on smaller feature extraction backbones, the generalizability of the commonly used fast approximation technique of replacing parameter-level gradients with feature level gradients, and lack of comprehensive understanding of MTL challenges and how one can efficiently and effectively identify the challenges. In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods. We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground. We also compare the existing methods with and without using the fast gradient surrogate and empirically study the generalizability of this technique. Lastly, we propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL, and propose Ranking Similarity score as an evaluation metric for different identifiers to prove the faithfulness of our method.
Information Retrieval 17
☆ Disentangled Cascaded Graph Convolution Networks for Multi-Behavior Recommendation
Multi-behavioral recommender systems have emerged as a solution to address data sparsity and cold-start issues by incorporating auxiliary behaviors alongside target behaviors. However, existing models struggle to accurately capture varying user preferences across different behaviors and fail to account for diverse item preferences within behaviors. Various user preference factors (such as price or quality) entangled in the behavior may lead to sub-optimization problems. Furthermore, these models overlook the personalized nature of user behavioral preferences by employing uniform transformation networks for all users and items. To tackle these challenges, we propose the Disentangled Cascaded Graph Convolutional Network (Disen-CGCN), a novel multi-behavior recommendation model. Disen-CGCN employs disentangled representation techniques to effectively separate factors within user and item representations, ensuring their independence. In addition, it incorporates a multi-behavioral meta-network, enabling personalized feature transformation across user and item behaviors. Furthermore, an attention mechanism captures user preferences for different item factors within each behavior. By leveraging attention weights, we aggregate user and item embeddings separately for each behavior, computing preference scores that predict overall user preferences for items. Our evaluation on benchmark datasets demonstrates the superiority of Disen-CGCN over state-of-the-art models, showcasing an average performance improvement of 7.07% and 9.00% on respective datasets. These results highlight Disen-CGCN's ability to effectively leverage multi-behavioral data, leading to more accurate recommendations.
☆ Unifying Bias and Unfairness in Information Retrieval: A Survey of Challenges and Opportunities with Large Language Models
With the rapid advancement of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.
☆ Deep Pattern Network for Click-Through Rate Prediction SIGIR2024
Click-through rate (CTR) prediction tasks play a pivotal role in real-world applications, particularly in recommendation systems and online advertising. A significant research branch in this domain focuses on user behavior modeling. Current research predominantly centers on modeling co-occurrence relationships between the target item and items previously interacted with by users in their historical data. However, this focus neglects the intricate modeling of user behavior patterns. In reality, the abundance of user interaction records encompasses diverse behavior patterns, indicative of a spectrum of habitual paradigms. These patterns harbor substantial potential to significantly enhance CTR prediction performance. To harness the informational potential within user behavior patterns, we extend Target Attention (TA) to Target Pattern Attention (TPA) to model pattern-level dependencies. Furthermore, three critical challenges demand attention: the inclusion of unrelated items within behavior patterns, data sparsity in behavior patterns, and computational complexity arising from numerous patterns. To address these challenges, we introduce the Deep Pattern Network (DPN), designed to comprehensively leverage information from user behavior patterns. DPN efficiently retrieves target-related user behavior patterns using a target-aware attention mechanism. Additionally, it contributes to refining user behavior patterns through a pre-training paradigm based on self-supervised learning while promoting dependency learning within sparse patterns. Our comprehensive experiments, conducted across three public datasets, substantiate the superior performance and broad compatibility of DPN.
comment: 12 pages, 10 figures, accepted by SIGIR2024
☆ Large Language Models meet Collaborative Filtering: An Efficient All-round LLM-based Recommender System
Collaborative filtering recommender systems (CF-RecSys) have shown successive results in enhancing the user experience on social media and e-commerce platforms. However, as CF-RecSys struggles under cold scenarios with sparse user-item interactions, recent strategies have focused on leveraging modality information of user/items (e.g., text or images) based on pre-trained modality encoders and Large Language Models (LLMs). Despite their effectiveness under cold scenarios, we observe that they underperform simple traditional collaborative filtering models under warm scenarios due to the lack of collaborative knowledge. In this work, we propose an efficient All-round LLM-based Recommender system, called A-LLMRec, that excels not only in the cold scenario but also in the warm scenario. Our main idea is to enable an LLM to directly leverage the collaborative knowledge contained in a pre-trained state-of-the-art CF-RecSys so that the emergent ability of the LLM as well as the high-quality user/item embeddings that are already trained by the state-of-the-art CF-RecSys can be jointly exploited. This approach yields two advantages: (1) model-agnostic, allowing for integration with various existing CF-RecSys, and (2) efficiency, eliminating the extensive fine-tuning typically required for LLM-based recommenders. Our extensive experiments on various real-world datasets demonstrate the superiority of A-LLMRec in various scenarios, including cold/warm, few-shot, cold user, and cross-domain scenarios. Beyond the recommendation task, we also show the potential of A-LLMRec in generating natural language outputs based on the understanding of the collaborative knowledge by performing a favorite genre prediction task. Our code is available at https://github.com/ghdtjr/A-LLMRec .
comment: Under review
☆ Causal Deconfounding via Confounder Disentanglement for Dual-Target Cross-Domain Recommendation
In recent years, dual-target Cross-Domain Recommendation (CDR) has been proposed to capture comprehensive user preferences in order to ultimately enhance the recommendation accuracy in both data-richer and data-sparser domains simultaneously. However, in addition to users' true preferences, the user-item interactions might also be affected by confounders (e.g., free shipping, sales promotion). As a result, dual-target CDR has to meet two challenges: (1) how to effectively decouple observed confounders, including single-domain confounders and cross-domain confounders, and (2) how to preserve the positive effects of observed confounders on predicted interactions, while eliminating their negative effects on capturing comprehensive user preferences. To address the above two challenges, we propose a Causal Deconfounding framework via Confounder Disentanglement for dual-target Cross-Domain Recommendation, called CD2CDR. In CD2CDR, we first propose a confounder disentanglement module to effectively decouple observed single-domain and cross-domain confounders. We then propose a causal deconfounding module to preserve the positive effects of such observed confounders and eliminate their negative effects via backdoor adjustment, thereby enhancing the recommendation accuracy in each domain. Extensive experiments conducted on five real-world datasets demonstrate that CD2CDR significantly outperforms the state-of-the-art methods.
☆ DRepMRec: A Dual Representation Learning Framework for Multimodal Recommendation
Multimodal Recommendation focuses mainly on how to effectively integrate behavior and multimodal information in the recommendation task. Previous works suffer from two major issues. Firstly, the training process tightly couples the behavior module and multimodal module by jointly optimizing them using the sharing model parameters, which leads to suboptimal performance since behavior signals and modality signals often provide opposite guidance for the parameters updates. Secondly, previous approaches fail to take into account the significant distribution differences between behavior and modality when they attempt to fuse behavior and modality information. This resulted in a misalignment between the representations of behavior and modality. To address these challenges, in this paper, we propose a novel Dual Representation learning framework for Multimodal Recommendation called DRepMRec, which introduce separate dual lines for coupling problem and Behavior-Modal Alignment (BMA) for misalignment problem. Specifically, DRepMRec leverages two independent lines of representation learning to calculate behavior and modal representations. After obtaining separate behavior and modal representations, we design a Behavior-Modal Alignment Module (BMA) to align and fuse the dual representations to solve the misalignment problem. Furthermore, we integrate the BMA into other recommendation models, resulting in consistent performance improvements. To ensure dual representations maintain their semantic independence during alignment, we introduce Similarity-Supervised Signal (SSS) for representation learning. We conduct extensive experiments on three public datasets and our method achieves state-of-the-art (SOTA) results. The source code will be available upon acceptance.
comment: 8 pages, 9 figures
☆ A Survey on Retrieval-Augmented Text Generation for Large Language Models
Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.
comment: Ongoing work
♻ ☆ Gradient Flow of Energy: A General and Efficient Approach for Entity Alignment Decoding
Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to maximize graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively generalizes adjacency matrices to multi-views matrices:entity-to-entity, entity-to-relation, relation-to-entity, and relation-to-triple. The gradient flow through generalized matrices enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse public datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.
♻ ☆ Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology
Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. Current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. In response, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based medical image retrieval. By benchmarking these models on a comprehensive dataset of 1.6 million 2D radiological images spanning four modalities and 161 pathologies, we identify weakly-supervised models as superior, achieving a P@1 of up to 0.594. This performance not only competes with a specialized model but does so without the need for fine-tuning. Our analysis further explores the challenges in retrieving pathological versus anatomical structures, indicating that accurate retrieval of pathological features presents greater difficulty. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning.
♻ ☆ Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation
Sequential recommendation methods play a pivotal role in modern recommendation systems. A key challenge lies in accurately modeling user preferences in the face of data sparsity. To tackle this challenge, recent methods leverage contrastive learning (CL) to derive self-supervision signals by maximizing the mutual information of two augmented views of the original user behavior sequence. Despite their effectiveness, CL-based methods encounter a limitation in fully exploiting self-supervision signals for users with limited behavior data, as users with extensive behaviors naturally offer more information. To address this problem, we introduce a novel learning paradigm, named Online Self-Supervised Self-distillation for Sequential Recommendation ($S^4$Rec), effectively bridging the gap between self-supervised learning and self-distillation methods. Specifically, we employ online clustering to proficiently group users by their distinct latent intents. Additionally, an adversarial learning strategy is utilized to ensure that the clustering procedure is not affected by the behavior length factor. Subsequently, we employ self-distillation to facilitate the transfer of knowledge from users with extensive behaviors (teachers) to users with limited behaviors (students). Experiments conducted on four real-world datasets validate the effectiveness of the proposed method.
♻ ☆ GOLF: Goal-Oriented Long-term liFe tasks supported by human-AI collaboration
The advent of ChatGPT and similar large language models (LLMs) has revolutionized the human-AI interaction and information-seeking process. Leveraging LLMs as an alternative to search engines, users can now access summarized information tailored to their queries, significantly reducing the cognitive load associated with navigating vast information resources. This shift underscores the potential of LLMs in redefining information access paradigms. Drawing on the foundation of task-focused information retrieval and LLMs' task planning ability, this research extends the scope of LLM capabilities beyond routine task automation to support users in navigating long-term and significant life tasks. It introduces the GOLF framework (Goal-Oriented Long-term liFe tasks), which focuses on enhancing LLMs' ability to assist in significant life decisions through goal orientation and long-term planning. The methodology encompasses a comprehensive simulation study to test the framework's efficacy, followed by model and human evaluations to develop a dataset benchmark for long-term life tasks, and experiments across different models and settings. By shifting the focus from short-term tasks to the broader spectrum of long-term life goals, this research underscores the transformative potential of LLMs in enhancing human decision-making processes and task management, marking a significant step forward in the evolution of human-AI collaboration.
♻ ☆ The Elephant in the Room: Rethinking the Usage of Pre-trained Language Model in Sequential Recommendation
Sequential recommendation (SR) has seen significant advancements with the help of Pre-trained Language Models (PLMs). Some PLM-based SR models directly use PLM to encode user historical behavior's text sequences to learn user representations, while there is seldom an in-depth exploration of the capability and suitability of PLM in behavior sequence modeling. In this work, we first conduct extensive model analyses between PLMs and PLM-based SR models, discovering great underutilization and parameter redundancy of PLMs in behavior sequence modeling. Inspired by this, we explore different lightweight usages of PLMs in SR, aiming to maximally stimulate the ability of PLMs for SR while satisfying the efficiency and usability demands of practical systems. We discover that adopting behavior-tuned PLMs for item initializations of conventional ID-based SR models is the most economical framework of PLM-based SR, which would not bring in any additional inference cost but could achieve a dramatic performance boost compared with the original version. Extensive experiments on five datasets show that our simple and universal framework leads to significant improvement compared to classical SR and SOTA PLM-based SR models without additional inference costs.
comment: 10 pages
♻ ☆ UMAIR-FPS: User-aware Multi-modal Animation Illustration Recommendation Fusion with Painting Style DASFAA 2024
The rapid advancement of high-quality image generation models based on AI has generated a deluge of anime illustrations. Recommending illustrations to users within massive data has become a challenging and popular task. However, existing anime recommendation systems have focused on text features but still need to integrate image features. In addition, most multi-modal recommendation research is constrained by tightly coupled datasets, limiting its applicability to anime illustrations. We propose the User-aware Multi-modal Animation Illustration Recommendation Fusion with Painting Style (UMAIR-FPS) to tackle these gaps. In the feature extract phase, for image features, we are the first to combine image painting style features with semantic features to construct a dual-output image encoder for enhancing representation. For text features, we obtain text embeddings based on fine-tuning Sentence-Transformers by incorporating domain knowledge that composes a variety of domain text pairs from multilingual mappings, entity relationships, and term explanation perspectives, respectively. In the multi-modal fusion phase, we novelly propose a user-aware multi-modal contribution measurement mechanism to weight multi-modal features dynamically according to user features at the interaction level and employ the DCN-V2 module to model bounded-degree multi-modal crosses effectively. UMAIR-FPS surpasses the stat-of-the-art baselines on large real-world datasets, demonstrating substantial performance enhancements.
comment: Accepted by DASFAA 2024 Research track
♻ ☆ Causal Intervention for Fairness in Multi-behavior Recommendation
Recommender systems usually learn user interests from various user behaviors, including clicks and post-click behaviors (e.g., like and favorite). However, these behaviors inevitably exhibit popularity bias, leading to some unfairness issues: 1) for items with similar quality, more popular ones get more exposure; and 2) even worse the popular items with lower popularity might receive more exposure. Existing work on mitigating popularity bias blindly eliminates the bias and usually ignores the effect of item quality. We argue that the relationships between different user behaviors (e.g., conversion rate) actually reflect the item quality. Therefore, to handle the unfairness issues, we propose to mitigate the popularity bias by considering multiple user behaviors. In this work, we examine causal relationships behind the interaction generation procedure in multi-behavior recommendation. Specifically, we find that: 1) item popularity is a confounder between the exposed items and users' post-click interactions, leading to the first unfairness; and 2) some hidden confounders (e.g., the reputation of item producers) affect both item popularity and quality, resulting in the second unfairness. To alleviate these confounding issues, we propose a causal framework to estimate the causal effect, which leverages backdoor adjustment to block the backdoor paths caused by the confounders. In the inference stage, we remove the negative effect of popularity and utilize the good effect of quality for recommendation. Experiments on two real-world datasets validate the effectiveness of our proposed framework, which enhances fairness without sacrificing recommendation accuracy.
comment: This paper is accepted by IEEE Transactions on Computational Social Systems
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ Use of a Structured Knowledge Base Enhances Metadata Curation by Large Language Models
Metadata play a crucial role in ensuring the findability, accessibility, interoperability, and reusability of datasets. This paper investigates the potential of large language models (LLMs), specifically GPT-4, to improve adherence to metadata standards. We conducted experiments on 200 random data records describing human samples relating to lung cancer from the NCBI BioSample repository, evaluating GPT-4's ability to suggest edits for adherence to metadata standards. We computed the adherence accuracy of field name-field value pairs through a peer review process, and we observed a marginal average improvement in adherence to the standard data dictionary from 79% to 80% (p<0.01). We then prompted GPT-4 with domain information in the form of the textual descriptions of CEDAR templates and recorded a significant improvement to 97% from 79% (p<0.01). These results indicate that, while LLMs may not be able to correct legacy metadata to ensure satisfactory adherence to standards when unaided, they do show promise for use in automated metadata curation when integrated with a structured knowledge base.
♻ ☆ GenSERP: Large Language Models for Whole Page Presentation
The advent of large language models (LLMs) brings an opportunity to minimize the effort in search engine result page (SERP) organization. In this paper, we propose GenSERP, a framework that leverages LLMs with vision in a few-shot setting to dynamically organize intermediate search results, including generated chat answers, website snippets, multimedia data, knowledge panels into a coherent SERP layout based on a user's query. Our approach has three main stages: (1) An information gathering phase where the LLM continuously orchestrates API tools to retrieve different types of items, and proposes candidate layouts based on the retrieved items, until it's confident enough to generate the final result. (2) An answer generation phase where the LLM populates the layouts with the retrieved content. In this phase, the LLM adaptively optimize the ranking of items and UX configurations of the SERP. Consequently, it assigns a location on the page to each item, along with the UX display details. (3) A scoring phase where an LLM with vision scores all the generated SERPs based on how likely it can satisfy the user. It then send the one with highest score to rendering. GenSERP features two generation paradigms. First, coarse-to-fine, which allow it to approach optimal layout in a more manageable way, (2) beam search, which give it a better chance to hit the optimal solution compared to greedy decoding. Offline experimental results on real-world data demonstrate how LLMs can contextually organize heterogeneous search results on-the-fly and provide a promising user experience.
comment: Microsoft corp policy
Machine Learning 139
☆ Learning to Solve the Constrained Most Probable Explanation Task in Probabilistic Graphical Models AISTATS 2024
We propose a self-supervised learning approach for solving the following constrained optimization task in log-linear models or Markov networks. Let $f$ and $g$ be two log-linear models defined over the sets $\mathbf{X}$ and $\mathbf{Y}$ of random variables respectively. Given an assignment $\mathbf{x}$ to all variables in $\mathbf{X}$ (evidence) and a real number $q$, the constrained most-probable explanation (CMPE) task seeks to find an assignment $\mathbf{y}$ to all variables in $\mathbf{Y}$ such that $f(\mathbf{x}, \mathbf{y})$ is maximized and $g(\mathbf{x}, \mathbf{y})\leq q$. In our proposed self-supervised approach, given assignments $\mathbf{x}$ to $\mathbf{X}$ (data), we train a deep neural network that learns to output near-optimal solutions to the CMPE problem without requiring access to any pre-computed solutions. The key idea in our approach is to use first principles and approximate inference methods for CMPE to derive novel loss functions that seek to push infeasible solutions towards feasible ones and feasible solutions towards optimal ones. We analyze the properties of our proposed method and experimentally demonstrate its efficacy on several benchmark problems.
comment: Will appear in AISTATS 2024
☆ Variational Bayesian Last Layers ICLR
We introduce a deterministic variational formulation for training Bayesian last layer neural networks. This yields a sampling-free, single-pass model and loss that effectively improves uncertainty estimation. Our variational Bayesian last layer (VBLL) can be trained and evaluated with only quadratic complexity in last layer width, and is thus (nearly) computationally free to add to standard architectures. We experimentally investigate VBLLs, and show that they improve predictive accuracy, calibration, and out of distribution detection over baselines across both regression and classification. Finally, we investigate combining VBLL layers with variational Bayesian feature learning, yielding a lower variance collapsed variational inference method for Bayesian neural networks.
comment: International Conference on Learning Representations (ICLR) 2024
☆ Explainable Artificial Intelligence Techniques for Accurate Fault Detection and Diagnosis: A Review
As the manufacturing industry advances with sensor integration and automation, the opaque nature of deep learning models in machine learning poses a significant challenge for fault detection and diagnosis. And despite the related predictive insights Artificial Intelligence (AI) can deliver, advanced machine learning engines often remain a black box. This paper reviews the eXplainable AI (XAI) tools and techniques in this context. We explore various XAI methodologies, focusing on their role in making AI decision-making transparent, particularly in critical scenarios where humans are involved. We also discuss current limitations and potential future research that aims to balance explainability with model performance while improving trustworthiness in the context of AI applications for critical industrial use cases.
Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding WWW 2024
The rapid evolution of text-to-image diffusion models has opened the door of generative AI, enabling the translation of textual descriptions into visually compelling images with remarkable quality. However, a persistent challenge within this domain is the optimization of prompts to effectively convey abstract concepts into concrete objects. For example, text encoders can hardly express "peace", while can easily illustrate olive branches and white doves. This paper introduces a novel approach named Prompt Optimizer for Abstract Concepts (POAC) specifically designed to enhance the performance of text-to-image diffusion models in interpreting and generating images from abstract concepts. We propose a Prompt Language Model (PLM), which is initialized from a pre-trained language model, and then fine-tuned with a curated dataset of abstract concept prompts. The dataset is created with GPT-4 to extend the abstract concept to a scene and concrete objects. Our framework employs a Reinforcement Learning (RL)-based optimization strategy, focusing on the alignment between the generated images by a stable diffusion model and optimized prompts. Through extensive experiments, we demonstrate that our proposed POAC significantly improves the accuracy and aesthetic quality of generated images, particularly in the description of abstract concepts and alignment with optimized prompts. We also present a comprehensive analysis of our model's performance across diffusion models under different settings, showcasing its versatility and effectiveness in enhancing abstract concept representation.
comment: WWW 2024 Companion
☆ Deep Policy Optimization with Temporal Logic Constraints
Temporal logics, such as linear temporal logic (LTL), offer a precise means of specifying tasks for (deep) reinforcement learning (RL) agents. In our work, we consider the setting where the task is specified by an LTL objective and there is an additional scalar reward that we need to optimize. Previous works focus either on learning a LTL task-satisfying policy alone or are restricted to finite state spaces. We make two contributions: First, we introduce an RL-friendly approach to this setting by formulating this problem as a single optimization objective. Our formulation guarantees that an optimal policy will be reward-maximal from the set of policies that maximize the likelihood of satisfying the LTL specification. Second, we address a sparsity issue that often arises for LTL-guided Deep RL policies by introducing Cycle Experience Replay (CyclER), a technique that automatically guides RL agents towards the satisfaction of an LTL specification. Our experiments demonstrate the efficacy of CyclER in finding performant deep RL policies in both continuous and discrete experimental domains.
comment: preprint, 8 pages
☆ Towards Reliable Empirical Machine Unlearning Evaluation: A Game-Theoretic View
Machine unlearning is the process of updating machine learning models to remove the information of specific training data samples, in order to comply with data protection regulations that allow individuals to request the removal of their personal data. Despite the recent development of numerous unlearning algorithms, reliable evaluation of these algorithms remains an open research question. In this work, we focus on membership inference attack (MIA) based evaluation, one of the most common approaches for evaluating unlearning algorithms, and address various pitfalls of existing evaluation metrics that lack reliability. Specifically, we propose a game-theoretic framework that formalizes the evaluation process as a game between unlearning algorithms and MIA adversaries, measuring the data removal efficacy of unlearning algorithms by the capability of the MIA adversaries. Through careful design of the game, we demonstrate that the natural evaluation metric induced from the game enjoys provable guarantees that the existing evaluation metrics fail to satisfy. Furthermore, we propose a practical and efficient algorithm to estimate the evaluation metric induced from the game, and demonstrate its effectiveness through both theoretical analysis and empirical experiments. This work presents a novel and reliable approach to empirically evaluating unlearning algorithms, paving the way for the development of more effective unlearning techniques.
☆ Simple Image Signal Processing using Global Context Guidance
In modern smartphone cameras, the Image Signal Processor (ISP) is the core element that converts the RAW readings from the sensor into perceptually pleasant RGB images for the end users. The ISP is typically proprietary and handcrafted and consists of several blocks such as white balance, color correction, and tone mapping. Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks. However, most learned ISPs are trained using patches (small regions) due to computational limitations. Such methods lack global context, which limits their efficacy on full-resolution images and harms their ability to capture global properties such as color constancy or illumination. First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images. Second, we propose an efficient and simple neural ISP that utilizes our proposed module. Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
comment: Preprint under review
☆ On the Scalability of GNNs for Molecular Graphs
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have observed a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 38 tasks, outclassing previous large models. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.
☆ Quantifying Multilingual Performance of Large Language Models Across Languages
The training process of Large Language Models (LLMs) requires extensive text corpus. However, these data are often unevenly distributed in different languages. As a result, LLMs perform well on common languages, such as English, German, and French, but perform poorly on low-resource languages. However, currently there is no work to quantitatively measure the performance of LLMs in low-resource languages. To fill this gap, we proposed the Language Ranker that aims to benchmark and rank different languages according to the performance of LLMs on those languages. We employ the LLM's performance on the English corpus as a baseline to compare the performances of different languages and English. We have the following three findings: 1. The performance rankings of different LLMs in all languages are roughly the same. 2. LLMs with different sizes have the same partial order of performance. 3. There is a strong correlation between LlaMa2's performance in different languages and the proportion of the pre-training corpus. These findings illustrate that the Language Ranker can be used as an indicator to measure the language performance of LLMs.
☆ GenFighter: A Generative and Evolutive Textual Attack Removal
Adversarial attacks pose significant challenges to deep neural networks (DNNs) such as Transformer models in natural language processing (NLP). This paper introduces a novel defense strategy, called GenFighter, which enhances adversarial robustness by learning and reasoning on the training classification distribution. GenFighter identifies potentially malicious instances deviating from the distribution, transforms them into semantically equivalent instances aligned with the training data, and employs ensemble techniques for a unified and robust response. By conducting extensive experiments, we show that GenFighter outperforms state-of-the-art defenses in accuracy under attack and attack success rate metrics. Additionally, it requires a high number of queries per attack, making the attack more challenging in real scenarios. The ablation study shows that our approach integrates transfer learning, a generative/evolutive procedure, and an ensemble method, providing an effective defense against NLP adversarial attacks.
☆ FedPFT: Federated Proxy Fine-Tuning of Foundation Models IJCAI'24
Adapting Foundation Models (FMs) for downstream tasks through Federated Learning (FL) emerges a promising strategy for protecting data privacy and valuable FMs. Existing methods fine-tune FM by allocating sub-FM to clients in FL, however, leading to suboptimal performance due to insufficient tuning and inevitable error accumulations of gradients. In this paper, we propose Federated Proxy Fine-Tuning (FedPFT), a novel method enhancing FMs adaptation in downstream tasks through FL by two key modules. First, the sub-FM construction module employs a layer-wise compression approach, facilitating comprehensive FM fine-tuning across all layers by emphasizing those crucial neurons. Second, the sub-FM alignment module conducts a two-step distillations-layer-level and neuron-level-before and during FL fine-tuning respectively, to reduce error of gradient by accurately aligning sub-FM with FM under theoretical guarantees. Experimental results on seven commonly used datasets (i.e., four text and three vision) demonstrate the superiority of FedPFT.
comment: Accepted by IJCAI'24
☆ Decomposing and Editing Predictions by Modeling Model Computation
How does the internal computation of a machine learning model transform inputs into predictions? In this paper, we introduce a task called component modeling that aims to address this question. The goal of component modeling is to decompose an ML model's prediction in terms of its components -- simple functions (e.g., convolution filters, attention heads) that are the "building blocks" of model computation. We focus on a special case of this task, component attribution, where the goal is to estimate the counterfactual impact of individual components on a given prediction. We then present COAR, a scalable algorithm for estimating component attributions; we demonstrate its effectiveness across models, datasets, and modalities. Finally, we show that component attributions estimated with COAR directly enable model editing across five tasks, namely: fixing model errors, ``forgetting'' specific classes, boosting subpopulation robustness, localizing backdoor attacks, and improving robustness to typographic attacks. We provide code for COAR at https://github.com/MadryLab/modelcomponents .
☆ A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process
We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely used in finance, physics, and biology. Parameter estimation of the OU process is a challenging problem. Thus, we review traditional tracking methods and compare them with novel applications of deep learning to estimate the parameters of the OU process. We use a multi-layer perceptron to estimate the parameters of the OU process and compare its performance with traditional parameter estimation methods, such as the Kalman filter and maximum likelihood estimation. We find that the multi-layer perceptron can accurately estimate the parameters of the OU process given a large dataset of observed trajectories; however, traditional parameter estimation methods may be more suitable for smaller datasets.
☆ VC Theory for Inventory Policies
Advances in computational power and AI have increased interest in reinforcement learning approaches to inventory management. This paper provides a theoretical foundation for these approaches and investigates the benefits of restricting to policy structures that are well-established by decades of inventory theory. In particular, we prove generalization guarantees for learning several well-known classes of inventory policies, including base-stock and (s, S) policies, by leveraging the celebrated Vapnik-Chervonenkis (VC) theory. We apply the concepts of the Pseudo-dimension and Fat-shattering dimension from VC theory to determine the generalizability of inventory policies, that is, the difference between an inventory policy's performance on training data and its expected performance on unseen data. We focus on a classical setting without contexts, but allow for an arbitrary distribution over demand sequences and do not make any assumptions such as independence over time. We corroborate our supervised learning results using numerical simulations. Managerially, our theory and simulations translate to the following insights. First, there is a principle of "learning less is more" in inventory management: depending on the amount of data available, it may be beneficial to restrict oneself to a simpler, albeit suboptimal, class of inventory policies to minimize overfitting errors. Second, the number of parameters in a policy class may not be the correct measure of overfitting error: in fact, the class of policies defined by T time-varying base-stock levels exhibits a generalization error comparable to that of the two-parameter (s, S) policy class. Finally, our research suggests situations in which it could be beneficial to incorporate the concepts of base-stock and inventory position into black-box learning machines, instead of having these machines directly learn the order quantity actions.
☆ arcjetCV: an open-source software to analyze material ablation
arcjetCV is an open-source Python software designed to automate time-resolved measurements of heatshield material recession and recession rates from arcjet test video footage. This new automated and accessible capability greatly exceeds previous manual extraction methods, enabling rapid and detailed characterization of material recession for any sample with a profile video. arcjetCV automates the video segmentation process using machine learning models, including a one-dimensional (1D) Convolutional Neural Network (CNN) to infer the time-window of interest, a two-dimensional (2D) CNN for image and edge segmentation, and a Local Outlier Factor (LOF) for outlier filtering. A graphical user interface (GUI) simplifies the user experience and an application programming interface (API) allows users to call the core functions from scripts, enabling video batch processing. arcjetCV's capability to measure time-resolved recession in turn enables characterization of non-linear processes (shrinkage, swelling, melt flows, etc.), contributing to higher fidelity validation and improved modeling of heatshield material performance. The source code associated with this article can be found at https://github.com/magnus-haw/arcjetCV.
☆ AgentKit: Flow Engineering with Graphs, not Coding
We propose an intuitive LLM prompting framework (AgentKit) for multifunctional agents. AgentKit offers a unified framework for explicitly constructing a complex "thought process" from simple natural language prompts. The basic building block in AgentKit is a node, containing a natural language prompt for a specific subtask. The user then puts together chains of nodes, like stacking LEGO pieces. The chains of nodes can be designed to explicitly enforce a naturally structured "thought process". For example, for the task of writing a paper, one may start with the thought process of 1) identify a core message, 2) identify prior research gaps, etc. The nodes in AgentKit can be designed and combined in different ways to implement multiple advanced capabilities including on-the-fly hierarchical planning, reflection, and learning from interactions. In addition, due to the modular nature and the intuitive design to simulate explicit human thought process, a basic agent could be implemented as simple as a list of prompts for the subtasks and therefore could be designed and tuned by someone without any programming experience. Quantitatively, we show that agents designed through AgentKit achieve SOTA performance on WebShop and Crafter. These advances underscore AgentKit's potential in making LLM agents effective and accessible for a wider range of applications. https://github.com/holmeswww/AgentKit
☆ Discovering Nuclear Models from Symbolic Machine Learning
Numerous phenomenological nuclear models have been proposed to describe specific observables within different regions of the nuclear chart. However, developing a unified model that describes the complex behavior of all nuclei remains an open challenge. Here, we explore whether novel symbolic Machine Learning (ML) can rediscover traditional nuclear physics models or identify alternatives with improved simplicity, fidelity, and predictive power. To address this challenge, we developed a Multi-objective Iterated Symbolic Regression approach that handles symbolic regressions over multiple target observables, accounts for experimental uncertainties and is robust against high-dimensional problems. As a proof of principle, we applied this method to describe the nuclear binding energies and charge radii of light and medium mass nuclei. Our approach identified simple analytical relationships based on the number of protons and neutrons, providing interpretable models with precision comparable to state-of-the-art nuclear models. Additionally, we integrated this ML-discovered model with an existing complementary model to estimate the limits of nuclear stability. These results highlight the potential of symbolic ML to develop accurate nuclear models and guide our description of complex many-body problems.
☆ Taxonomy to Regulation: A (Geo)Political Taxonomy for AI Risks and Regulatory Measures in the EU AI Act
Technological innovations have shown remarkable capabilities to benefit and harm society alike. AI constitutes a democratized sophisticated technology accessible to large parts of society, including malicious actors. This work proposes a taxonomy focusing on on (geo)political risks associated with AI. It identifies 12 risks in total divided into four categories: (1) Geopolitical Pressures, (2) Malicious Usage, (3) Environmental, Social, and Ethical Risks, and (4) Privacy and Trust Violations. Incorporating a regulatory side, this paper conducts a policy assessment of the EU AI Act. Adopted in March 2023, the landmark regulation has the potential to have a positive top-down impact concerning AI risk reduction but needs regulatory adjustments to mitigate risks more comprehensively. Regulatory exceptions for open-source models, excessively high parameters for the classification of GPAI models as a systemic risk, and the exclusion of systems designed exclusively for military purposes from the regulation's obligations leave room for future action.
☆ A Federated Learning Approach to Privacy Preserving Offensive Language Identification LREC
The spread of various forms of offensive speech online is an important concern in social media. While platforms have been investing heavily in ways of coping with this problem, the question of privacy remains largely unaddressed. Models trained to detect offensive language on social media are trained and/or fine-tuned using large amounts of data often stored in centralized servers. Since most social media data originates from end users, we propose a privacy preserving decentralized architecture for identifying offensive language online by introducing Federated Learning (FL) in the context of offensive language identification. FL is a decentralized architecture that allows multiple models to be trained locally without the need for data sharing hence preserving users' privacy. We propose a model fusion approach to perform FL. We trained multiple deep learning models on four publicly available English benchmark datasets (AHSD, HASOC, HateXplain, OLID) and evaluated their performance in detail. We also present initial cross-lingual experiments in English and Spanish. We show that the proposed model fusion approach outperforms baselines in all the datasets while preserving privacy.
comment: Accepted to TRAC 2024 (Fourth Workshop on Threat, Aggression and Cyberbullying) at LREC-COLING 2024 (The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation)
☆ Using Game Engines and Machine Learning to Create Synthetic Satellite Imagery for a Tabletop Verification Exercise
Satellite imagery is regarded as a great opportunity for citizen-based monitoring of activities of interest. Relevant imagery may however not be available at sufficiently high resolution, quality, or cadence -- let alone be uniformly accessible to open-source analysts. This limits an assessment of the true long-term potential of citizen-based monitoring of nuclear activities using publicly available satellite imagery. In this article, we demonstrate how modern game engines combined with advanced machine-learning techniques can be used to generate synthetic imagery of sites of interest with the ability to choose relevant parameters upon request; these include time of day, cloud cover, season, or level of activity onsite. At the same time, resolution and off-nadir angle can be adjusted to simulate different characteristics of the satellite. While there are several possible use-cases for synthetic imagery, here we focus on its usefulness to support tabletop exercises in which simple monitoring scenarios can be examined to better understand verification capabilities enabled by new satellite constellations and very short revisit times.
comment: Annual Meeting of the Institute of Nuclear Materials Management (INMM), Vienna
☆ AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts
Cognitive Behavioral Therapy (CBT) is an effective technique for addressing the irrational thoughts stemming from mental illnesses, but it necessitates precise identification of cognitive pathways to be successfully implemented in patient care. In current society, individuals frequently express negative emotions on social media on specific topics, often exhibiting cognitive distortions, including suicidal behaviors in extreme cases. Yet, there is a notable absence of methodologies for analyzing cognitive pathways that could aid psychotherapists in conducting effective interventions online. In this study, we gathered data from social media and established the task of extracting cognitive pathways, annotating the data based on a cognitive theoretical framework. We initially categorized the task of extracting cognitive pathways as a hierarchical text classification with four main categories and nineteen subcategories. Following this, we structured a text summarization task to help psychotherapists quickly grasp the essential information. Our experiments evaluate the performance of deep learning and large language models (LLMs) on these tasks. The results demonstrate that our deep learning method achieved a micro-F1 score of 62.34% in the hierarchical text classification task. Meanwhile, in the text summarization task, GPT-4 attained a Rouge-1 score of 54.92 and a Rouge-2 score of 30.86, surpassing the experimental deep learning model's performance. However, it may suffer from an issue of hallucination. We have made all models and codes publicly available to support further research in this field.
☆ Explainable Lung Disease Classification from Chest X-Ray Images Utilizing Deep Learning and XAI
Lung diseases remain a critical global health concern, and it's crucial to have accurate and quick ways to diagnose them. This work focuses on classifying different lung diseases into five groups: viral pneumonia, bacterial pneumonia, COVID, tuberculosis, and normal lungs. Employing advanced deep learning techniques, we explore a diverse range of models including CNN, hybrid models, ensembles, transformers, and Big Transfer. The research encompasses comprehensive methodologies such as hyperparameter tuning, stratified k-fold cross-validation, and transfer learning with fine-tuning.Remarkably, our findings reveal that the Xception model, fine-tuned through 5-fold cross-validation, achieves the highest accuracy of 96.21\%. This success shows that our methods work well in accurately identifying different lung diseases. The exploration of explainable artificial intelligence (XAI) methodologies further enhances our understanding of the decision-making processes employed by these models, contributing to increased trust in their clinical applications.
☆ Short-term wind speed forecasting model based on an attention-gated recurrent neural network and error correction strategy
The accurate wind speed series forecast is very pivotal to security of grid dispatching and the application of wind power. Nevertheless, on account of their nonlinear and non-stationary nature, their short-term forecast is extremely challenging. Therefore, this dissertation raises one short-term wind speed forecast pattern on the foundation of attention with an improved gated recurrent neural network (AtGRU) and a tactic of error correction. That model uses the AtGRU model as the preliminary predictor and the GRU model as the error corrector. At the beginning, SSA (singular spectrum analysis) is employed in previous wind speed series for lessening the noise. Subsequently, historical wind speed series is going to be used for the predictor training. During this process, the prediction can have certain errors. The sequence of these errors processed by variational modal decomposition (VMD) is used to train the corrector of error. The eventual forecast consequence is just the sum of predictor forecast and error corrector. The proposed SSA-AtGRU-VMD-GRU model outperforms the compared models in three case studies on Woodburn, St. Thomas, and Santa Cruz. It is indicated that the model evidently enhances the correction of the wind speed forecast.
comment: 23 pages, 11 figures, 6 tables, Technical Report
☆ Exploring Key Point Analysis with Pairwise Generation and Graph Partitioning NAACL 2024
Key Point Analysis (KPA), the summarization of multiple arguments into a concise collection of key points, continues to be a significant and unresolved issue within the field of argument mining. Existing models adapt a two-stage pipeline of clustering arguments or generating key points for argument clusters. This approach rely on semantic similarity instead of measuring the existence of shared key points among arguments. Additionally, it only models the intra-cluster relationship among arguments, disregarding the inter-cluster relationship between arguments that do not share key points. To address these limitations, we propose a novel approach for KPA with pairwise generation and graph partitioning. Our objective is to train a generative model that can simultaneously provide a score indicating the presence of shared key point between a pair of arguments and generate the shared key point. Subsequently, to map generated redundant key points to a concise set of key points, we proceed to construct an arguments graph by considering the arguments as vertices, the generated key points as edges, and the scores as edge weights. We then propose a graph partitioning algorithm to partition all arguments sharing the same key points to the same subgraph. Notably, our experimental findings demonstrate that our proposed model surpasses previous models when evaluated on both the ArgKP and QAM datasets.
comment: 11 pages, 4 figures, 4 tables. Accepted to NAACL 2024
☆ Tensor Factorisation for Polypharmacy Side Effect Prediction
Adverse reactions caused by drug combinations are an increasingly common phenomenon, making their accurate prediction an important challenge in modern medicine. However, the polynomial nature of this problem renders lab-based identification of adverse reactions insufficient. Dozens of computational approaches have therefore been proposed for the task in recent years, with varying degrees of success. One group of methods that has seemingly been under-utilised in this area is tensor factorisation, despite their clear applicability to this type of data. In this work, we apply three such models to a benchmark dataset in order to compare them against established techniques. We find, in contrast to previous reports, that for this task tensor factorisation models are competitive with state-of-the-art graph neural network models and we recommend that future work in this field considers cheaper methods with linear complexity before running costly deep learning processes.
☆ Distributed Fractional Bayesian Learning for Adaptive Optimization
This paper considers a distributed adaptive optimization problem, where all agents only have access to their local cost functions with a common unknown parameter, whereas they mean to collaboratively estimate the true parameter and find the optimal solution over a connected network. A general mathematical framework for such a problem has not been studied yet. We aim to provide valuable insights for addressing parameter uncertainty in distributed optimization problems and simultaneously find the optimal solution. Thus, we propose a novel Prediction while Optimization scheme, which utilizes distributed fractional Bayesian learning through weighted averaging on the log-beliefs to update the beliefs of unknown parameters, and distributed gradient descent for renewing the estimation of the optimal solution. Then under suitable assumptions, we prove that all agents' beliefs and decision variables converge almost surely to the true parameter and the optimal solution under the true parameter, respectively. We further establish a sublinear convergence rate for the belief sequence. Finally, numerical experiments are implemented to corroborate the theoretical analysis.
comment: 16 pages, 6 figures
☆ Calibrating Bayesian Learning via Regularization, Confidence Minimization, and Selective Inference
The application of artificial intelligence (AI) models in fields such as engineering is limited by the known difficulty of quantifying the reliability of an AI's decision. A well-calibrated AI model must correctly report its accuracy on in-distribution (ID) inputs, while also enabling the detection of out-of-distribution (OOD) inputs. A conventional approach to improve calibration is the application of Bayesian ensembling. However, owing to computational limitations and model misspecification, practical ensembling strategies do not necessarily enhance calibration. This paper proposes an extension of variational inference (VI)-based Bayesian learning that integrates calibration regularization for improved ID performance, confidence minimization for OOD detection, and selective calibration to ensure a synergistic use of calibration regularization and confidence minimization. The scheme is constructed successively by first introducing calibration-regularized Bayesian learning (CBNN), then incorporating out-of-distribution confidence minimization (OCM) to yield CBNN-OCM, and finally integrating also selective calibration to produce selective CBNN-OCM (SCBNN-OCM). Selective calibration rejects inputs for which the calibration performance is expected to be insufficient. Numerical results illustrate the trade-offs between ID accuracy, ID calibration, and OOD calibration attained by both frequentist and Bayesian learning methods. Among the main conclusions, SCBNN-OCM is seen to achieve best ID and OOD performance as compared to existing state-of-the-art approaches at the cost of rejecting a sufficiently large number of inputs.
comment: Under review
☆ The Causal Chambers: Real Physical Systems as a Testbed for AI Methodology
In some fields of AI, machine learning and statistics, the validation of new methods and algorithms is often hindered by the scarcity of suitable real-world datasets. Researchers must often turn to simulated data, which yields limited information about the applicability of the proposed methods to real problems. As a step forward, we have constructed two devices that allow us to quickly and inexpensively produce large datasets from non-trivial but well-understood physical systems. The devices, which we call causal chambers, are computer-controlled laboratories that allow us to manipulate and measure an array of variables from these physical systems, providing a rich testbed for algorithms from a variety of fields. We illustrate potential applications through a series of case studies in fields such as causal discovery, out-of-distribution generalization, change point detection, independent component analysis, and symbolic regression. For applications to causal inference, the chambers allow us to carefully perform interventions. We also provide and empirically validate a causal model of each chamber, which can be used as ground truth for different tasks. All hardware and software is made open source, and the datasets are publicly available at causalchamber.org or through the Python package causalchamber.
comment: 38 pages, 17 figures
☆ SoccerNet Game State Reconstruction: End-to-End Athlete Tracking and Identification on a Minimap
Tracking and identifying athletes on the pitch holds a central role in collecting essential insights from the game, such as estimating the total distance covered by players or understanding team tactics. This tracking and identification process is crucial for reconstructing the game state, defined by the athletes' positions and identities on a 2D top-view of the pitch, (i.e. a minimap). However, reconstructing the game state from videos captured by a single camera is challenging. It requires understanding the position of the athletes and the viewpoint of the camera to localize and identify players within the field. In this work, we formalize the task of Game State Reconstruction and introduce SoccerNet-GSR, a novel Game State Reconstruction dataset focusing on football videos. SoccerNet-GSR is composed of 200 video sequences of 30 seconds, annotated with 9.37 million line points for pitch localization and camera calibration, as well as over 2.36 million athlete positions on the pitch with their respective role, team, and jersey number. Furthermore, we introduce GS-HOTA, a novel metric to evaluate game state reconstruction methods. Finally, we propose and release an end-to-end baseline for game state reconstruction, bootstrapping the research on this task. Our experiments show that GSR is a challenging novel task, which opens the field for future research. Our dataset and codebase are publicly available at https://github.com/SoccerNet/sn-gamestate.
☆ Toward Understanding the Disagreement Problem in Neural Network Feature Attribution
In recent years, neural networks have demonstrated their remarkable ability to discern intricate patterns and relationships from raw data. However, understanding the inner workings of these black box models remains challenging, yet crucial for high-stake decisions. Among the prominent approaches for explaining these black boxes are feature attribution methods, which assign relevance or contribution scores to each input variable for a model prediction. Despite the plethora of proposed techniques, ranging from gradient-based to backpropagation-based methods, a significant debate persists about which method to use. Various evaluation metrics have been proposed to assess the trustworthiness or robustness of their results. However, current research highlights disagreement among state-of-the-art methods in their explanations. Our work addresses this confusion by investigating the explanations' fundamental and distributional behavior. Additionally, through a comprehensive simulation study, we illustrate the impact of common scaling and encoding techniques on the explanation quality, assess their efficacy across different effect sizes, and demonstrate the origin of inconsistency in rank-based evaluation metrics.
☆ Use of Parallel Explanatory Models to Enhance Transparency of Neural Network Configurations for Cell Degradation Detection
In a previous paper, we have shown that a recurrent neural network (RNN) can be used to detect cellular network radio signal degradations accurately. We unexpectedly found, though, that accuracy gains diminished as we added layers to the RNN. To investigate this, in this paper, we build a parallel model to illuminate and understand the internal operation of neural networks, such as the RNN, which store their internal state in order to process sequential inputs. This model is widely applicable in that it can be used with any input domain where the inputs can be represented by a Gaussian mixture. By looking at the RNN processing from a probability density function perspective, we are able to show how each layer of the RNN transforms the input distributions to increase detection accuracy. At the same time we also discover a side effect acting to limit the improvement in accuracy. To demonstrate the fidelity of the model we validate it against each stage of RNN processing as well as the output predictions. As a result, we have been able to explain the reasons for the RNN performance limits with useful insights for future designs for RNNs and similar types of neural network.
☆ A Semantic Segmentation-guided Approach for Ground-to-Aerial Image Matching
Nowadays the accurate geo-localization of ground-view images has an important role across domains as diverse as journalism, forensics analysis, transports, and Earth Observation. This work addresses the problem of matching a query ground-view image with the corresponding satellite image without GPS data. This is done by comparing the features from a ground-view image and a satellite one, innovatively leveraging the corresponding latter's segmentation mask through a three-stream Siamese-like network. The proposed method, Semantic Align Net (SAN), focuses on limited Field-of-View (FoV) and ground panorama images (images with a FoV of 360{\deg}). The novelty lies in the fusion of satellite images in combination with their semantic segmentation masks, aimed at ensuring that the model can extract useful features and focus on the significant parts of the images. This work shows how SAN through semantic analysis of images improves the performance on the unlabelled CVUSA dataset for all the tested FoVs.
comment: 6 pages, 2 figures, 2 tables, Submitted to IGARSS 2024
☆ Learning from Unlabelled Data with Transformers: Domain Adaptation for Semantic Segmentation of High Resolution Aerial Images
Data from satellites or aerial vehicles are most of the times unlabelled. Annotating such data accurately is difficult, requires expertise, and is costly in terms of time. Even if Earth Observation (EO) data were correctly labelled, labels might change over time. Learning from unlabelled data within a semi-supervised learning framework for segmentation of aerial images is challenging. In this paper, we develop a new model for semantic segmentation of unlabelled images, the Non-annotated Earth Observation Semantic Segmentation (NEOS) model. NEOS performs domain adaptation as the target domain does not have ground truth semantic segmentation masks. The distribution inconsistencies between the target and source domains are due to differences in acquisition scenes, environment conditions, sensors, and times. Our model aligns the learned representations of the different domains to make them coincide. The evaluation results show that NEOS is successful and outperforms other models for semantic segmentation of unlabelled data.
comment: 6 pages, 7 figures, Submitted to IGARSS 2024
☆ Quantum-inspired Techniques in Tensor Networks for Industrial Contexts
In this paper we present a study of the applicability and feasibility of quantum-inspired algorithms and techniques in tensor networks for industrial environments and contexts, with a compilation of the available literature and an analysis of the use cases that may be affected by such methods. In addition, we explore the limitations of such techniques in order to determine their potential scalability.
comment: 13 pages, 5 figures
☆ DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series
Time series anomaly detection (TAD) faces a significant challenge due to the scarcity of labelled data, which hinders the development of accurate detection models. Unsupervised domain adaptation (UDA) addresses this challenge by leveraging a labelled dataset from a related domain to detect anomalies in a target dataset. Existing domain adaptation techniques assume that the number of anomalous classes does not change between the source and target domains. In this paper, we propose a novel Domain Adaptation Contrastive learning for Anomaly Detection in multivariate time series (DACAD) model to address this issue by combining UDA and contrastive representation learning. DACAD's approach includes an anomaly injection mechanism that introduces various types of synthetic anomalies, enhancing the model's ability to generalise across unseen anomalous classes in different domains. This method significantly broadens the model's adaptability and robustness. Additionally, we propose a supervised contrastive loss for the source domain and a self-supervised contrastive triplet loss for the target domain, improving comprehensive feature representation learning and extraction of domain-invariant features. Finally, an effective Centre-based Entropy Classifier (CEC) is proposed specifically for anomaly detection, facilitating accurate learning of normal boundaries in the source domain. Our extensive evaluation across multiple real-world datasets against leading models in time series anomaly detection and UDA underscores DACAD's effectiveness. The results validate DACAD's superiority in transferring knowledge across domains and its potential to mitigate the challenge of limited labelled data in time series anomaly detection.
comment: 11 pages, 2 figures, 5 tables
☆ Analytical results for uncertainty propagation through trained machine learning regression models
Machine learning (ML) models are increasingly being used in metrology applications. However, for ML models to be credible in a metrology context they should be accompanied by principled uncertainty quantification. This paper addresses the challenge of uncertainty propagation through trained/fixed machine learning (ML) regression models. Analytical expressions for the mean and variance of the model output are obtained/presented for certain input data distributions and for a variety of ML models. Our results cover several popular ML models including linear regression, penalised linear regression, kernel ridge regression, Gaussian Processes (GPs), support vector machines (SVMs) and relevance vector machines (RVMs). We present numerical experiments in which we validate our methods and compare them with a Monte Carlo approach from a computational efficiency point of view. We also illustrate our methods in the context of a metrology application, namely modelling the state-of-health of lithium-ion cells based upon Electrical Impedance Spectroscopy (EIS) data
☆ Position Engineering: Boosting Large Language Models through Positional Information Manipulation
The performance of large language models (LLMs) is significantly influenced by the quality of the prompts provided. In response, researchers have developed enormous prompt engineering strategies aimed at modifying the prompt text to enhance task performance. In this paper, we introduce a novel technique termed position engineering, which offers a more efficient way to guide large language models. Unlike prompt engineering, which requires substantial effort to modify the text provided to LLMs, position engineering merely involves altering the positional information in the prompt without modifying the text itself. We have evaluated position engineering in two widely-used LLM scenarios: retrieval-augmented generation (RAG) and in-context learning (ICL). Our findings show that position engineering substantially improves upon the baseline in both cases. Position engineering thus represents a promising new strategy for exploiting the capabilities of large language models.
☆ Exploring the Transferability of Visual Prompting for Multimodal Large Language Models CVPR 2024
Although Multimodal Large Language Models (MLLMs) have demonstrated promising versatile capabilities, their performance is still inferior to specialized models on downstream tasks, which makes adaptation necessary to enhance their utility. However, fine-tuning methods require independent training for every model, leading to huge computation and memory overheads. In this paper, we propose a novel setting where we aim to improve the performance of diverse MLLMs with a group of shared parameters optimized for a downstream task. To achieve this, we propose Transferable Visual Prompting (TVP), a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model. We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts, including 1) Feature Consistency Alignment: which imposes constraints to the prompted feature changes to maintain task-agnostic knowledge; 2) Task Semantics Enrichment: which encourages the prompted images to contain richer task-specific semantics with language guidance. We validate the effectiveness of TVP through extensive experiments with 6 modern MLLMs on a wide variety of tasks ranging from object recognition and counting to multimodal reasoning and hallucination correction.
comment: Accepted in CVPR 2024 as Poster (Highlight)
☆ KI-GAN: Knowledge-Informed Generative Adversarial Networks for Enhanced Multi-Vehicle Trajectory Forecasting at Signalized Intersections CVPR
Reliable prediction of vehicle trajectories at signalized intersections is crucial to urban traffic management and autonomous driving systems. However, it presents unique challenges, due to the complex roadway layout at intersections, involvement of traffic signal controls, and interactions among different types of road users. To address these issues, we present in this paper a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates both traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately. Additionally, we propose a specialized attention pooling method that accounts for vehicle orientation and proximity at intersections. Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle. When the prediction window is extended to 9 seconds, the ADE and FDE values are further reduced to 0.11 and 0.26, respectively. These results demonstrate the effectiveness of the proposed KI-GAN model in vehicle trajectory prediction under complex scenarios at signalized intersections, which represents a significant advancement in the target field.
comment: 10 pages, 2 figures, accepted by CVPRW
☆ Deep Neural Networks via Complex Network Theory: a Perspective IJCAI'24
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures. However, classic works adapt CNT metrics that only permit a topological analysis as they do not account for the effect of the input data. In addition, CNT metrics have been applied to a limited range of architectures, mainly including Fully Connected neural networks. In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning. For the novel metrics, in addition to the existing ones, we provide a mathematical formalisation for Fully Connected, AutoEncoder, Convolutional and Recurrent neural networks, of which we vary the activation functions and the number of hidden layers. We show that these metrics differentiate DNNs based on the architecture, the number of hidden layers, and the activation function. Our contribution provides a method rooted in physics for interpreting DNNs that offers insights beyond the traditional input-output relationship and the CNT topological analysis.
comment: IJCAI'24 (full paper, main track)
☆ Personalized Heart Disease Detection via ECG Digital Twin Generation
Heart diseases rank among the leading causes of global mortality, demonstrating a crucial need for early diagnosis and intervention. Most traditional electrocardiogram (ECG) based automated diagnosis methods are trained at population level, neglecting the customization of personalized ECGs to enhance individual healthcare management. A potential solution to address this limitation is to employ digital twins to simulate symptoms of diseases in real patients. In this paper, we present an innovative prospective learning approach for personalized heart disease detection, which generates digital twins of healthy individuals' anomalous ECGs and enhances the model sensitivity to the personalized symptoms. In our approach, a vector quantized feature separator is proposed to locate and isolate the disease symptom and normal segments in ECG signals with ECG report guidance. Thus, the ECG digital twins can simulate specific heart diseases used to train a personalized heart disease detection model. Experiments demonstrate that our approach not only excels in generating high-fidelity ECG signals but also improves personalized heart disease detection. Moreover, our approach ensures robust privacy protection, safeguarding patient data in model development.
☆ LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory IJCAI 2024
Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.
comment: Published at IJCAI 2024. arXiv admin note: text overlap with arXiv:2212.08136 by other authors
☆ Pre-processing matters: A segment search method for WSI classification
Pre-processing for whole slide images can affect classification performance both in the training and inference stages. Our study analyzes the impact of pre-processing parameters on inference and training across single- and multiple-domain datasets. However, searching for an optimal parameter set is time-consuming. To overcome this, we propose a novel Similarity-based Simulated Annealing approach for fast parameter tuning to enhance inference performance on single-domain data. Our method demonstrates significant performance improvements in accuracy, which raise accuracy from 0.512 to 0.847 in a single domain. We further extend our insight into training performance in multi-domain data by employing a novel Bayesian optimization to search optimal pre-processing parameters, resulting in a high AUC of 0.967. We highlight that better pre-processing for WSI can contribute to further accuracy improvement in the histology area.
☆ Explainable Machine Learning System for Predicting Chronic Kidney Disease in High-Risk Cardiovascular Patients
As the global population ages, the incidence of Chronic Kidney Disease (CKD) is rising. CKD often remains asymptomatic until advanced stages, which significantly burdens both the healthcare system and patient quality of life. This research developed an explainable machine learning system for predicting CKD in patients with cardiovascular risks, utilizing medical history and laboratory data. The Random Forest model achieved the highest sensitivity of 88.2%. The study introduces a comprehensive explainability framework that extends beyond traditional feature importance methods, incorporating global and local interpretations, bias inspection, biomedical relevance, and safety assessments. Key predictive features identified in global interpretation were the use of diabetic and ACEI/ARB medications, and initial eGFR values. Local interpretation provided model insights through counterfactual explanations, which aligned with other system parts. After conducting a bias inspection, it was found that the initial eGFR values and CKD predictions exhibited some bias, but no significant gender bias was identified. The model's logic, extracted by scoped rules, was confirmed to align with existing medical literature. The safety assessment tested potentially dangerous cases and confirmed that the model behaved safely. This system enhances the explainability, reliability, and accountability of the model, promoting its potential integration into healthcare settings and compliance with upcoming regulatory standards, and showing promise for broader applications in healthcare machine learning.
comment: 9 pages, 5 figures
☆ Learning epidemic trajectories through Kernel Operator Learning: from modelling to optimal control
Since infectious pathogens start spreading into a susceptible population, mathematical models can provide policy makers with reliable forecasts and scenario analyses, which can be concretely implemented or solely consulted. In these complex epidemiological scenarios, machine learning architectures can play an important role, since they directly reconstruct data-driven models circumventing the specific modelling choices and the parameter calibration, typical of classical compartmental models. In this work, we discuss the efficacy of Kernel Operator Learning (KOL) to reconstruct population dynamics during epidemic outbreaks, where the transmission rate is ruled by an input strategy. In particular, we introduce two surrogate models, named KOL-m and KOL-$\partial$, which reconstruct in two different ways the evolution of the epidemics. Moreover, we evaluate the generalization performances of the two approaches with different kernels, including the Neural Tangent Kernels, and compare them with a classical neural network model learning method. Employing synthetic but semi-realistic data, we show how the two introduced approaches are suitable for realizing fast and robust forecasts and scenario analyses, and how these approaches are competitive for determining optimal intervention strategies with respect to specific performance measures.
comment: 39 pages, 13 figures
☆ Variational quantization for state space models
Forecasting tasks using large datasets gathering thousands of heterogeneous time series is a crucial statistical problem in numerous sectors. The main challenge is to model a rich variety of time series, leverage any available external signals and provide sharp predictions with statistical guarantees. In this work, we propose a new forecasting model that combines discrete state space hidden Markov models with recent neural network architectures and training procedures inspired by vector quantized variational autoencoders. We introduce a variational discrete posterior distribution of the latent states given the observations and a two-stage training procedure to alternatively train the parameters of the latent states and of the emission distributions. By learning a collection of emission laws and temporarily activating them depending on the hidden process dynamics, the proposed method allows to explore large datasets and leverage available external signals. We assess the performance of the proposed method using several datasets and show that it outperforms other state-of-the-art solutions.
☆ Music Enhancement with Deep Filters: A Technical Report for The ICASSP 2024 Cadenza Challenge ICASSP 2024
In this challenge, we disentangle the deep filters from the original DeepfilterNet and incorporate them into our Spec-UNet-based network to further improve a hybrid Demucs (hdemucs) based remixing pipeline. The motivation behind the use of the deep filter component lies at its potential in better handling temporal fine structures. We demonstrate an incremental improvement in both the Signal-to-Distortion Ratio (SDR) and the Hearing Aid Audio Quality Index (HAAQI) metrics when comparing the performance of hdemucs against different versions of our model.
comment: 2 pages, 2 figures, 1 tables, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
☆ Reuse out-of-year data to enhance land cover mappingvia feature disentanglement and contrastive learning
Timely up-to-date land use/land cover (LULC) maps play a pivotal role in supporting agricultural territory management, environmental monitoring and facilitating well-informed and sustainable decision-making. Typically, when creating a land cover (LC) map, precise ground truth data is collected through time-consuming and expensive field campaigns. This data is then utilized in conjunction with satellite image time series (SITS) through advanced machine learning algorithms to get the final map. Unfortunately, each time this process is repeated (e.g., annually over a region to estimate agricultural production or potential biodiversity loss), new ground truth data must be collected, leading to the complete disregard of previously gathered reference data despite the substantial financial and time investment they have required. How to make value of historical data, from the same or similar study sites, to enhance the current LULC mapping process constitutes a significant challenge that could enable the financial and human-resource efforts invested in previous data campaigns to be valued again. Aiming to tackle this important challenge, we here propose a deep learning framework based on recent advances in domain adaptation and generalization to combine remote sensing and reference data coming from two different domains (e.g. historical data and fresh ones) to ameliorate the current LC mapping process. Our approach, namely REFeD (data Reuse with Effective Feature Disentanglement for land cover mapping), leverages a disentanglement strategy, based on contrastive learning, where invariant and specific per-domain features are derived to recover the intrinsic information related to the downstream LC mapping task and alleviate possible distribution shifts between domains. Additionally, REFeD is equipped with an effective supervision scheme where feature disentanglement is further enforced via multiple levels of supervision at different granularities. The experimental assessment over two study areas covering extremely diverse and contrasted landscapes, namely Koumbia (located in the West-Africa region, in Burkina Faso) and Centre Val de Loire (located in centre Europe, France), underlines the quality of our framework and the obtained findings demonstrate that out-of-year information coming from the same (or similar) study site, at different periods of time, can constitute a valuable additional source of information to enhance the LC mapping process.
☆ Synthesizing Realistic Data for Table Recognition ICDAR 2024
To overcome the limitations and challenges of current automatic table data annotation methods and random table data synthesis approaches, we propose a novel method for synthesizing annotation data specifically designed for table recognition. This method utilizes the structure and content of existing complex tables, facilitating the efficient creation of tables that closely replicate the authentic styles found in the target domain. By leveraging the actual structure and content of tables from Chinese financial announcements, we have developed the first extensive table annotation dataset in this domain. We used this dataset to train several recent deep learning-based end-to-end table recognition models. Additionally, we have established the inaugural benchmark for real-world complex tables in the Chinese financial announcement domain, using it to assess the performance of models trained on our synthetic data, thereby effectively validating our method's practicality and effectiveness. Furthermore, we applied our synthesis method to augment the FinTabNet dataset, extracted from English financial announcements, by increasing the proportion of tables with multiple spanning cells to introduce greater complexity. Our experiments show that models trained on this augmented dataset achieve comprehensive improvements in performance, especially in the recognition of tables with multiple spanning cells.
comment: ICDAR 2024
☆ Neural Network Approach for Non-Markovian Dissipative Dynamics of Many-Body Open Quantum Systems
Simulating the dynamics of open quantum systems coupled to non-Markovian environments remains an outstanding challenge due to exponentially scaling computational costs. We present an artificial intelligence strategy to overcome this obstacle by integrating the neural quantum states approach into the dissipaton-embedded quantum master equation in second quantization (DQME-SQ). Our approach utilizes restricted Boltzmann machines (RBMs) to compactly represent the reduced density tensor, explicitly encoding the combined effects of system-environment correlations and nonMarkovian memory. Applied to model systems exhibiting prominent effects of system-environment correlation and non-Markovian memory, our approach achieves comparable accuracy to conventional hierarchical equations of motion, while requiring significantly fewer dynamical variables. The novel RBM-based DQME-SQ approach paves the way for investigating non-Markovian open quantum dynamics in previously intractable regimes, with implications spanning various frontiers of modern science.
comment: 7 pages, 5 figures
☆ EEG_GLT-Net: Optimising EEG Graphs for Real-time Motor Imagery Signals Classification
Brain-Computer Interfaces connect the brain to external control devices, necessitating the accurate translation of brain signals such as from electroencephalography (EEG) into executable commands. Graph Neural Networks (GCN) have been increasingly applied for classifying EEG Motor Imagery signals, primarily because they incorporates the spatial relationships among EEG channels, resulting in improved accuracy over traditional convolutional methods. Recent advances by GCNs-Net in real-time EEG MI signal classification utilised Pearson Coefficient Correlation (PCC) for constructing adjacency matrices, yielding significant results on the PhysioNet dataset. Our paper introduces the EEG Graph Lottery Ticket (EEG_GLT) algorithm, an innovative technique for constructing adjacency matrices for EEG channels. It does not require pre-existing knowledge of inter-channel relationships, and it can be tailored to suit both individual subjects and GCN model architectures. Our findings demonstrated that the PCC method outperformed the Geodesic approach by 9.65% in mean accuracy, while our EEG_GLT matrix consistently exceeded the performance of the PCC method by a mean accuracy of 13.39%. Also, we found that the construction of the adjacency matrix significantly influenced accuracy, to a greater extent than GCN model configurations. A basic GCN configuration utilising our EEG_GLT matrix exceeded the performance of even the most complex GCN setup with a PCC matrix in average accuracy. Our EEG_GLT method also reduced MACs by up to 97% compared to the PCC method, while maintaining or enhancing accuracy. In conclusion, the EEG_GLT algorithm marks a breakthrough in the development of optimal adjacency matrices, effectively boosting both computational accuracy and efficiency, making it well-suited for real-time classification of EEG MI signals that demand intensive computational resources.
☆ ScaleFold: Reducing AlphaFold Initial Training Time to 10 Hours
AlphaFold2 has been hailed as a breakthrough in protein folding. It can rapidly predict protein structures with lab-grade accuracy. However, its implementation does not include the necessary training code. OpenFold is the first trainable public reimplementation of AlphaFold. AlphaFold training procedure is prohibitively time-consuming, and gets diminishing benefits from scaling to more compute resources. In this work, we conducted a comprehensive analysis on the AlphaFold training procedure based on Openfold, identified that inefficient communications and overhead-dominated computations were the key factors that prevented the AlphaFold training from effective scaling. We introduced ScaleFold, a systematic training method that incorporated optimizations specifically for these factors. ScaleFold successfully scaled the AlphaFold training to 2080 NVIDIA H100 GPUs with high resource utilization. In the MLPerf HPC v3.0 benchmark, ScaleFold finished the OpenFold benchmark in 7.51 minutes, shown over $6\times$ speedup than the baseline. For training the AlphaFold model from scratch, ScaleFold completed the pretraining in 10 hours, a significant improvement over the seven days required by the original AlphaFold pretraining baseline.
☆ LMEraser: Large Model Unlearning through Adaptive Prompt Tuning
To address the growing demand for privacy protection in machine learning, we propose a novel and efficient machine unlearning approach for \textbf{L}arge \textbf{M}odels, called \textbf{LM}Eraser. Existing unlearning research suffers from entangled training data and complex model architectures, incurring extremely high computational costs for large models. LMEraser takes a divide-and-conquer strategy with a prompt tuning architecture to isolate data influence. The training dataset is partitioned into public and private datasets. Public data are used to train the backbone of the model. Private data are adaptively clustered based on their diversity, and each cluster is used to optimize a prompt separately. This adaptive prompt tuning mechanism reduces unlearning costs and maintains model performance. Experiments demonstrate that LMEraser achieves a $100$-fold reduction in unlearning costs without compromising accuracy compared to prior work. Our code is available at: \url{https://github.com/lmeraser/lmeraser}.
☆ Supervised Contrastive Vision Transformer for Breast Histopathological Image Classification
Invasive ductal carcinoma (IDC) is the most prevalent form of breast cancer. Breast tissue histopathological examination is critical in diagnosing and classifying breast cancer. Although existing methods have shown promising results, there is still room for improvement in the classification accuracy and generalization of IDC using histopathology images. We present a novel approach, Supervised Contrastive Vision Transformer (SupCon-ViT), for improving the classification of invasive ductal carcinoma in terms of accuracy and generalization by leveraging the inherent strengths and advantages of both transfer learning, i.e., pre-trained vision transformer, and supervised contrastive learning. Our results on a benchmark breast cancer dataset demonstrate that SupCon-Vit achieves state-of-the-art performance in IDC classification, with an F1-score of 0.8188, precision of 0.7692, and specificity of 0.8971, outperforming existing methods. In addition, the proposed model demonstrates resilience in scenarios with minimal labeled data, making it highly efficient in real-world clinical settings where labelled data is limited. Our findings suggest that supervised contrastive learning in conjunction with pre-trained vision transformers appears to be a viable strategy for an accurate classification of IDC, thus paving the way for a more efficient and reliable diagnosis of breast cancer through histopathological image analysis.
comment: 8 pages, 7 figures
☆ Stepwise Alignment for Constrained Language Model Policy Optimization
Safety and trustworthiness are indispensable requirements for applying AI systems based on large language models (LLMs) in real-world applications. This paper formulates a human value alignment as a language model policy optimization problem to maximize reward under a safety constraint and then proposes an algorithm called Stepwise Alignment for Constrained Policy Optimization (SACPO). A key idea behind SACPO, supported by theory, is that the optimal policy incorporating both reward and safety can be directly obtained from a reward-aligned policy. Based on this key idea, SACPO aligns the LLMs with each metric step-wise while leveraging simple yet powerful alignment algorithms such as direct preference optimization (DPO). SACPO provides many benefits such as simplicity, stability, computational efficiency, and flexibility regarding algorithms and dataset selection. Under mild assumption, our theoretical analysis provides the upper bounds regarding near-optimality and safety constraint violation. Our experimental results show that SACPO can fine-tune Alpaca-7B better than the state-of-the-art method in terms of both helpfulness and harmlessness
☆ Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model
Federated learning aims to tackle the ``isolated data island" problem, where it trains a collective model from physically isolated clients while safeguarding the privacy of users' data. However, supervised federated learning necessitates that each client labels their data for training, which can be both time-consuming and resource-intensive, and may even be impractical for edge devices. Moreover, the training and transmission of deep models present challenges to the computation and communication capabilities of the clients. To address these two inherent challenges in supervised federated learning, we propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication by harnessing pretrained vision-language models, such as CLIP. By capitalizing on the zero-shot prediction capability and the well-trained image encoder of the pre-trained CLIP model, we have carefully crafted an efficient and resilient self-training approach. This method refines the initial zero-shot predicted pseudo-labels of unlabeled instances through the sole training of a linear classifier on top of the fixed image encoder. Additionally, to address data heterogeneity within each client, we propose a class-balanced text feature sampling strategy for generating synthetic instances in the feature space to support local training. Experiments are conducted on multiple benchmark datasets. The experimental results demonstrate that our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods given limited computational and communication overhead.
☆ On the Empirical Complexity of Reasoning and Planning in LLMs
Large Language Models (LLMs) work surprisingly well for some complex reasoning problems via chain-of-thought (CoT) or tree-of-thought (ToT), but the underlying reasons remain unclear. We seek to understand the performance of these methods by conducting experimental case studies and linking the outcomes to sample and computational complexity in machine learning. We found that if problems can be decomposed into a sequence of reasoning steps and learning to predict the next step has a low sample and computational complexity, explicitly outlining the reasoning chain with all necessary information for predicting the next step may improve performance. Conversely, for problems where predicting the next step is computationally hard, adopting ToT may yield better reasoning outcomes than attempting to formulate a short reasoning chain.
☆ Cross-Platform Hate Speech Detection with Weakly Supervised Causal Disentanglement
Content moderation faces a challenging task as social media's ability to spread hate speech contrasts with its role in promoting global connectivity. With rapidly evolving slang and hate speech, the adaptability of conventional deep learning to the fluid landscape of online dialogue remains limited. In response, causality inspired disentanglement has shown promise by segregating platform specific peculiarities from universal hate indicators. However, its dependency on available ground truth target labels for discerning these nuances faces practical hurdles with the incessant evolution of platforms and the mutable nature of hate speech. Using confidence based reweighting and contrastive regularization, this study presents HATE WATCH, a novel framework of weakly supervised causal disentanglement that circumvents the need for explicit target labeling and effectively disentangles input features into invariant representations of hate. Empirical validation across platforms two with target labels and two without positions HATE WATCH as a novel method in cross platform hate speech detection with superior performance. HATE WATCH advances scalable content moderation techniques towards developing safer online communities.
☆ CORE: Data Augmentation for Link Prediction via Information Bottleneck
Link prediction (LP) is a fundamental task in graph representation learning, with numerous applications in diverse domains. However, the generalizability of LP models is often compromised due to the presence of noisy or spurious information in graphs and the inherent incompleteness of graph data. To address these challenges, we draw inspiration from the Information Bottleneck principle and propose a novel data augmentation method, COmplete and REduce (CORE) to learn compact and predictive augmentations for LP models. In particular, CORE aims to recover missing edges in graphs while simultaneously removing noise from the graph structures, thereby enhancing the model's robustness and performance. Extensive experiments on multiple benchmark datasets demonstrate the applicability and superiority of CORE over state-of-the-art methods, showcasing its potential as a leading approach for robust LP in graph representation learning.
☆ Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal that involves creating agents that can sense, perceive, reason about, learn from, and respond to affect, behavior, and cognition of other agents (human or artificial). Progress towards Social-AI has accelerated in the past decade across several computing communities, including natural language processing, machine learning, robotics, human-machine interaction, computer vision, and speech. Natural language processing, in particular, has been prominent in Social-AI research, as language plays a key role in constructing the social world. In this position paper, we identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI. We anchor our discussion in the context of social intelligence concepts and prior progress in Social-AI research.
comment: Position Paper, Under Review, 19 pages, 2 figures
☆ You do not have to train Graph Neural Networks at all on text-attributed graphs
Graph structured data, specifically text-attributed graphs (TAG), effectively represent relationships among varied entities. Such graphs are essential for semi-supervised node classification tasks. Graph Neural Networks (GNNs) have emerged as a powerful tool for handling this graph-structured data. Although gradient descent is commonly utilized for training GNNs for node classification, this study ventures into alternative methods, eliminating the iterative optimization processes. We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace. This model constructs a weight matrix to represent each class's node attribute subspace, offering an efficient approach to semi-supervised node classification on TAG. Extensive experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts, demonstrating the possibility of refraining from gradient descent in certain configurations.
comment: preprint
☆ Many-Shot In-Context Learning
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, without any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases and can learn high-dimensional functions with numerical inputs. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
☆ FedFa: A Fully Asynchronous Training Paradigm for Federated Learning
Federated learning has been identified as an efficient decentralized training paradigm for scaling the machine learning model training on a large number of devices while guaranteeing the data privacy of the trainers. FedAvg has become a foundational parameter update strategy for federated learning, which has been promising to eliminate the effect of the heterogeneous data across clients and guarantee convergence. However, the synchronization parameter update barriers for each communication round during the training significant time on waiting, slowing down the training procedure. Therefore, recent state-of-the-art solutions propose using semi-asynchronous approaches to mitigate the waiting time cost with guaranteed convergence. Nevertheless, emerging semi-asynchronous approaches are unable to eliminate the waiting time completely. We propose a full asynchronous training paradigm, called FedFa, which can guarantee model convergence and eliminate the waiting time completely for federated learning by using a few buffered results on the server for parameter updating. Further, we provide theoretical proof of the convergence rate for our proposed FedFa. Extensive experimental results indicate our approach effectively improves the training performance of federated learning by up to 6x and 4x speedup compared to the state-of-the-art synchronous and semi-asynchronous strategies while retaining high accuracy in both IID and Non-IID scenarios.
☆ Control Theoretic Approach to Fine-Tuning and Transfer Learning
Given a training set in the form of a paired $(\mathcal{X},\mathcal{Y})$, we say that the control system $\dot{x} = f(x,u)$ has learned the paired set via the control $u^*$ if the system steers each point of $\mathcal{X}$ to its corresponding target in $\mathcal{Y}$. Most existing methods for finding a control function $u^*$ require learning of a new control function if the training set is updated. To overcome this limitation, we introduce the concept of $\textit{tuning without forgetting}$. We develop $\textit{an iterative algorithm}$ to tune the control function $u^*$ when the training set expands, whereby points already in the paired set are still matched, and new training samples are learned. More specifically, at each update of our method, the control $u^*$ is projected onto the kernel of the end-point mapping generated by the controlled dynamics at the learned samples. It ensures keeping the end points for the previously learned samples constant while iteratively learning additional samples. Our work contributes to the scalability of control methods, offering a novel approach to adaptively handle training set expansions.
☆ Online Algorithms with Limited Data Retention
We introduce a model of online algorithms subject to strict constraints on data retention. An online learning algorithm encounters a stream of data points, one per round, generated by some stationary process. Crucially, each data point can request that it be removed from memory $m$ rounds after it arrives. To model the impact of removal, we do not allow the algorithm to store any information or calculations between rounds other than a subset of the data points (subject to the retention constraints). At the conclusion of the stream, the algorithm answers a statistical query about the full dataset. We ask: what level of performance can be guaranteed as a function of $m$? We illustrate this framework for multidimensional mean estimation and linear regression problems. We show it is possible to obtain an exponential improvement over a baseline algorithm that retains all data as long as possible. Specifically, we show that $m = \textsc{Poly}(d, \log(1/\epsilon))$ retention suffices to achieve mean squared error $\epsilon$ after observing $O(1/\epsilon)$ $d$-dimensional data points. This matches the error bound of the optimal, yet infeasible, algorithm that retains all data forever. We also show a nearly matching lower bound on the retention required to guarantee error $\epsilon$. One implication of our results is that data retention laws are insufficient to guarantee the right to be forgotten even in a non-adversarial world in which firms merely strive to (approximately) optimize the performance of their algorithms. Our approach makes use of recent developments in the multidimensional random subset sum problem to simulate the progression of stochastic gradient descent under a model of adversarial noise, which may be of independent interest.
☆ Clipped SGD Algorithms for Privacy Preserving Performative Prediction: Bias Amplification and Remedies
Clipped stochastic gradient descent (SGD) algorithms are among the most popular algorithms for privacy preserving optimization that reduces the leakage of users' identity in model training. This paper studies the convergence properties of these algorithms in a performative prediction setting, where the data distribution may shift due to the deployed prediction model. For example, the latter is caused by strategical users during the training of loan policy for banks. Our contributions are two-fold. First, we show that the straightforward implementation of a projected clipped SGD (PCSGD) algorithm may converge to a biased solution compared to the performative stable solution. We quantify the lower and upper bound for the magnitude of the bias and demonstrate a bias amplification phenomenon where the bias grows with the sensitivity of the data distribution. Second, we suggest two remedies to the bias amplification effect. The first one utilizes an optimal step size design for PCSGD that takes the privacy guarantee into account. The second one uses the recently proposed DiceSGD algorithm [Zhang et al., 2024]. We show that the latter can successfully remove the bias and converge to the performative stable solution. Numerical experiments verify our analysis.
comment: 22 pages, 11 figures
☆ Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves IJCAI 2023
The industrial multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves. These complex devices in challenging circumstances need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves. The Multi-Agent Reinforcement Learning (MARL) controller trained with the Proximal Policy Optimization (PPO) algorithm can handle these complexities. In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics and find that they are key to better performance. We investigated the performance of a fully connected neural network (FCN), LSTM, and Transformer model variants with varying depths and gated residual connections. Our results show that the transformer model of moderate depth with gated residual connections around the multi-head attention, multi-layer perceptron, and the transformer block (STrXL) proposed in this paper is optimal and boosts energy efficiency by an average of 22.1% for these complex spread waves over the existing spring damper (SD) controller. Furthermore, unlike the default SD controller, the transformer controller almost eliminated the mechanical stress from the rotational yaw motion for angled waves. Demo: https://tinyurl.com/yueda3jh
comment: IJCAI 2023, Proceedings of the Thirty-Second International Joint Conference on Artificial IntelligenceAugust 2023
☆ FairSSD: Understanding Bias in Synthetic Speech Detectors CVPR 2024
Methods that can generate synthetic speech which is perceptually indistinguishable from speech recorded by a human speaker, are easily available. Several incidents report misuse of synthetic speech generated from these methods to commit fraud. To counter such misuse, many methods have been proposed to detect synthetic speech. Some of these detectors are more interpretable, can generalize to detect synthetic speech in the wild and are robust to noise. However, limited work has been done on understanding bias in these detectors. In this work, we examine bias in existing synthetic speech detectors to determine if they will unfairly target a particular gender, age and accent group. We also inspect whether these detectors will have a higher misclassification rate for bona fide speech from speech-impaired speakers w.r.t fluent speakers. Extensive experiments on 6 existing synthetic speech detectors using more than 0.9 million speech signals demonstrate that most detectors are gender, age and accent biased, and future work is needed to ensure fairness. To support future research, we release our evaluation dataset, models used in our study and source code at https://gitlab.com/viper-purdue/fairssd.
comment: Accepted at CVPR 2024 (WMF)
☆ Graph Continual Learning with Debiased Lossless Memory Replay
Real-life graph data often expands continually, rendering the learning of graph neural networks (GNNs) on static graph data impractical. Graph continual learning (GCL) tackles this problem by continually adapting GNNs to the expanded graph of the current task while maintaining the performance over the graph of previous tasks. Memory replay-based methods, which aim to replay data of previous tasks when learning new tasks, have been explored as one principled approach to mitigate the forgetting of the knowledge learned from the previous tasks. In this paper we extend this methodology with a novel framework, called Debiased Lossless Memory replay (DeLoMe). Unlike existing methods that sample nodes/edges of previous graphs to construct the memory, DeLoMe learns small lossless synthetic node representations as the memory. The learned memory can not only preserve the graph data privacy but also capture the holistic graph information, for which the sampling-based methods are not viable. Further, prior methods suffer from bias toward the current task due to the data imbalance between the classes in the memory data and the current data. A debiased GCL loss function is devised in DeLoMe to effectively alleviate this bias. Extensive experiments on four graph datasets show the effectiveness of DeLoMe under both class- and task-incremental learning settings.
comment: 12 pages
☆ Hyper Evidential Deep Learning to Quantify Composite Classification Uncertainty ICLR 2024
Deep neural networks (DNNs) have been shown to perform well on exclusive, multi-class classification tasks. However, when different classes have similar visual features, it becomes challenging for human annotators to differentiate them. This scenario necessitates the use of composite class labels. In this paper, we propose a novel framework called Hyper-Evidential Neural Network (HENN) that explicitly models predictive uncertainty due to composite class labels in training data in the context of the belief theory called Subjective Logic (SL). By placing a grouped Dirichlet distribution on the class probabilities, we treat predictions of a neural network as parameters of hyper-subjective opinions and learn the network that collects both single and composite evidence leading to these hyper-opinions by a deterministic DNN from data. We introduce a new uncertainty type called vagueness originally designed for hyper-opinions in SL to quantify composite classification uncertainty for DNNs. Our results demonstrate that HENN outperforms its state-of-the-art counterparts based on four image datasets. The code and datasets are available at: https://github.com/Hugo101/HyperEvidentialNN.
comment: In Proceedings of The Twelfth International Conference on Learning Representations, ICLR 2024
☆ Leveraging 3D LiDAR Sensors to Enable Enhanced Urban Safety and Public Health: Pedestrian Monitoring and Abnormal Activity Detection
The integration of Light Detection and Ranging (LiDAR) and Internet of Things (IoT) technologies offers transformative opportunities for public health informatics in urban safety and pedestrian well-being. This paper proposes a novel framework utilizing these technologies for enhanced 3D object detection and activity classification in urban traffic scenarios. By employing elevated LiDAR, we obtain detailed 3D point cloud data, enabling precise pedestrian activity monitoring. To overcome urban data scarcity, we create a specialized dataset through simulated traffic environments in Blender, facilitating targeted model training. Our approach employs a modified Point Voxel-Region-based Convolutional Neural Network (PV-RCNN) for robust 3D detection and PointNet for classifying pedestrian activities, significantly benefiting urban traffic management and public health by offering insights into pedestrian behavior and promoting safer urban environments. Our dual-model approach not only enhances urban traffic management but also contributes significantly to public health by providing insights into pedestrian behavior and promoting safer urban environment.
☆ Group-Aware Coordination Graph for Multi-Agent Reinforcement Learning IJCAI 2024
Cooperative Multi-Agent Reinforcement Learning (MARL) necessitates seamless collaboration among agents, often represented by an underlying relation graph. Existing methods for learning this graph primarily focus on agent-pair relations, neglecting higher-order relationships. While several approaches attempt to extend cooperation modelling to encompass behaviour similarities within groups, they commonly fall short in concurrently learning the latent graph, thereby constraining the information exchange among partially observed agents. To overcome these limitations, we present a novel approach to infer the Group-Aware Coordination Graph (GACG), which is designed to capture both the cooperation between agent pairs based on current observations and group-level dependencies from behaviour patterns observed across trajectories. This graph is further used in graph convolution for information exchange between agents during decision-making. To further ensure behavioural consistency among agents within the same group, we introduce a group distance loss, which promotes group cohesion and encourages specialization between groups. Our evaluations, conducted on StarCraft II micromanagement tasks, demonstrate GACG's superior performance. An ablation study further provides experimental evidence of the effectiveness of each component of our method.
comment: Accepted by IJCAI 2024
♻ ☆ Towards White Box Deep Learning
Deep neural networks learn fragile "shortcut" features, rendering them difficult to interpret (black box) and vulnerable to adversarial attacks. This paper proposes semantic features as a general architectural solution to this problem. The main idea is to make features locality-sensitive in the adequate semantic topology of the domain, thus introducing a strong regularization. The proof of concept network is lightweight, inherently interpretable and achieves almost human-level adversarial test metrics - with no adversarial training! These results and the general nature of the approach warrant further research on semantic features. The code is available at https://github.com/314-Foundation/white-box-nn
comment: 16 pages, 12 figures, independent research, v5 changes: Expanded Abstract and Related Work section; minor wording improvements
♻ ☆ Re-Nerfing: Improving Novel Views Synthesis through Novel Views Synthesis
Neural Radiance Fields (NeRFs) have shown remarkable novel view synthesis capabilities even in large-scale, unbounded scenes, albeit requiring hundreds of views or introducing artifacts in sparser settings. Their optimization suffers from shape-radiance ambiguities wherever only a small visual overlap is available. This leads to erroneous scene geometry and artifacts. In this paper, we propose Re-Nerfing, a simple and general multi-stage data augmentation approach that leverages NeRF's own view synthesis ability to address these limitations. With Re-Nerfing, we enhance the geometric consistency of novel views as follows: First, we train a NeRF with the available views. Then, we use the optimized NeRF to synthesize pseudo-views around the original ones with a view selection strategy to improve coverage and preserve view quality. Finally, we train a second NeRF with both the original images and the pseudo views masking out uncertain regions. Extensive experiments applying Re-Nerfing on various pipelines on the mip-NeRF 360 dataset, including Gaussian Splatting, provide valuable insights into the improvements achievable without external data or supervision, on denser and sparser input scenarios. Project page: https://renerfing.github.io
comment: Code will be released upon acceptance
♻ ☆ Mastering Diverse Domains through World Models
Developing a general algorithm that learns to solve tasks across a wide range of applications has been a fundamental challenge in artificial intelligence. Although current reinforcement learning algorithms can be readily applied to tasks similar to what they have been developed for, configuring them for new application domains requires significant human expertise and experimentation. We present DreamerV3, a general algorithm that outperforms specialized methods across over 150 diverse tasks, with a single configuration. Dreamer learns a model of the environment and improves its behavior by imagining future scenarios. Robustness techniques based on normalization, balancing, and transformations enable stable learning across domains. Applied out of the box, Dreamer is the first algorithm to collect diamonds in Minecraft from scratch without human data or curricula. This achievement has been posed as a significant challenge in artificial intelligence that requires exploring farsighted strategies from pixels and sparse rewards in an open world. Our work allows solving challenging control problems without extensive experimentation, making reinforcement learning broadly applicable.
comment: Website: https://danijar.com/dreamerv3
♻ ☆ Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling
Traffic congestion at intersections is a significant issue in urban areas, leading to increased commute times, safety hazards, and operational inefficiencies. This study aims to develop a predictive model for congestion at intersections in major U.S. cities, utilizing a dataset of trip-logging metrics from commercial vehicles across 4,800 intersections. The dataset encompasses 27 features, including intersection coordinates, street names, time of day, and traffic metrics (Kashyap et al., 2019). Additional features, such as rainfall/snowfall percentage, distance from downtown and outskirts, and road types, were incorporated to enhance the model's predictive power. The methodology involves data exploration, feature transformation, and handling missing values through low-rank models and label encoding. The proposed model has the potential to assist city planners and governments in anticipating traffic hot spots, optimizing operations, and identifying infrastructure challenges.
♻ ☆ Decentralized Personalized Federated Learning for Min-Max Problems
Personalized Federated Learning (PFL) has witnessed remarkable advancements, enabling the development of innovative machine learning applications that preserve the privacy of training data. However, existing theoretical research in this field has primarily focused on distributed optimization for minimization problems. This paper is the first to study PFL for saddle point problems encompassing a broader range of optimization problems, that require more than just solving minimization problems. In this work, we consider a recently proposed PFL setting with the mixing objective function, an approach combining the learning of a global model together with locally distributed learners. Unlike most previous work, which considered only the centralized setting, we work in a more general and decentralized setup that allows us to design and analyze more practical and federated ways to connect devices to the network. We proposed new algorithms to address this problem and provide a theoretical analysis of the smooth (strongly) convex-(strongly) concave saddle point problems in stochastic and deterministic cases. Numerical experiments for bilinear problems and neural networks with adversarial noise demonstrate the effectiveness of the proposed methods.
comment: 33 pages, 3 algorithms, 5 figures, 2 tables
♻ ☆ Generative Representational Instruction Tuning
All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.
comment: 66 pages (16 main), 25 figures, 34 tables
♻ ☆ Information theory for data-driven model reduction in physics and biology
Model reduction is the construction of simple yet predictive descriptions of the dynamics of many-body systems in terms of a few relevant variables. A prerequisite to model reduction is the identification of these relevant variables, a task for which no general method exists. Here, we develop a systematic approach based on the information bottleneck to identify the relevant variables, defined as those most predictive of the future. We elucidate analytically the relation between these relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further, we show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally stop increasing the complexity of the reduced model. Furthermore, it provides a firm foundation to construct interpretable deep learning tools that perform model reduction. We illustrate how these tools work in practice by considering uncurated videos of atmospheric flows from which our algorithms automatically extract the dominant slow collective variables, as well as experimental videos of cyanobacteria colonies in which we discover an emergent synchronization order parameter.
comment: 39 pages, 19 figures
♻ ☆ Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models
In a mixed generalized linear model, the objective is to learn multiple signals from unlabeled observations: each sample comes from exactly one signal, but it is not known which one. We consider the prototypical problem of estimating two statistically independent signals in a mixed generalized linear model with Gaussian covariates. Spectral methods are a popular class of estimators which output the top two eigenvectors of a suitable data-dependent matrix. However, despite the wide applicability, their design is still obtained via heuristic considerations, and the number of samples $n$ needed to guarantee recovery is super-linear in the signal dimension $d$. In this paper, we develop exact asymptotics on spectral methods in the challenging proportional regime in which $n, d$ grow large and their ratio converges to a finite constant. By doing so, we are able to optimize the design of the spectral method, and combine it with a simple linear estimator, in order to minimize the estimation error. Our characterization exploits a mix of tools from random matrices, free probability and the theory of approximate message passing algorithms. Numerical simulations for mixed linear regression and phase retrieval demonstrate the advantage enabled by our analysis over existing designs of spectral methods.
♻ ☆ DiscDiff: Latent Diffusion Model for DNA Sequence Generation
This paper introduces a novel framework for DNA sequence generation, comprising two key components: DiscDiff, a Latent Diffusion Model (LDM) tailored for generating discrete DNA sequences, and Absorb-Escape, a post-training algorithm designed to refine these sequences. Absorb-Escape enhances the realism of the generated sequences by correcting `round errors' inherent in the conversion process between latent and input spaces. Our approach not only sets new standards in DNA sequence generation but also demonstrates superior performance over existing diffusion models, in generating both short and long DNA sequences. Additionally, we introduce EPD-GenDNA, the first comprehensive, multi-species dataset for DNA generation, encompassing 160,000 unique sequences from 15 species. We hope this study will advance the generative modelling of DNA, with potential implications for gene therapy and protein production.
comment: Different from the prior work "Latent Diffusion Model for DNA Sequence Generation" (arXiv:2310.06150), we updated the evaluation framework and compared the DiscDiff with other methods comprehensively. In addition, a post-training framework is proposed to increase the quality of generated sequences
♻ ☆ What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
♻ ☆ Parameter-Efficient Fine-Tuning for Large Models: A Comprehensive Survey
Large models represent a groundbreaking advancement in multiple application fields, enabling remarkable achievements across various tasks. However, their unprecedented scale comes with significant computational costs. These models, often consisting of billions of parameters, require vast amounts of computational resources for execution. Especially, the expansive scale and computational demands pose considerable challenges when customizing them for particular downstream tasks, particularly over the hardware platforms constrained by computational capabilities. Parameter Efficient Fine-Tuning (PEFT) provides a practical solution by efficiently adapt the large models over the various downstream tasks. In particular, PEFT refers to the process of adjusting the parameters of a pre-trained large models to adapt it to a specific task while minimizing the number of additional parameters introduced or computational resources required. This approach is particularly important when dealing with large language models with high parameter counts, as fine-tuning these models from scratch can be computationally expensive and resource-intensive, posing considerable challenges in the supporting system platform design. In this survey, we present comprehensive studies of various PEFT algorithms, examining their performance and computational overhead. Moreover, we provide an overview of applications developed using different PEFT algorithms and discuss common techniques employed to mitigate computation costs for PEFT. In addition to the algorithmic perspective, we overview various real-world system designs to investigate the implementation costs associated with different PEFT algorithms. This survey serves as an indispensable resource for researchers aiming to understand both the PEFT algorithm and its system implementation, offering detailed insights into recent advancements and practical applications.
comment: 24 pages, 12 figures
♻ ☆ Landmark Guided Active Exploration with State-specific Balance Coefficient
Goal-conditioned hierarchical reinforcement learning (GCHRL) decomposes long-horizon tasks into sub-tasks through a hierarchical framework and it has demonstrated promising results across a variety of domains. However, the high-level policy's action space is often excessively large, presenting a significant challenge to effective exploration and resulting in potentially inefficient training. In this paper, we design a measure of prospect for sub-goals by planning in the goal space based on the goal-conditioned value function. Building upon the measure of prospect, we propose a landmark-guided exploration strategy by integrating the measures of prospect and novelty which aims to guide the agent to explore efficiently and improve sample efficiency. In order to dynamically consider the impact of prospect and novelty on exploration, we introduce a state-specific balance coefficient to balance the significance of prospect and novelty. The experimental results demonstrate that our proposed exploration strategy significantly outperforms the baseline methods across multiple tasks.
♻ ☆ StructComp: Substituting propagation with Structural Compression in Training Graph Contrastive Learning ICLR 2024
Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on various datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.
comment: Accepted by ICLR 2024
♻ ☆ PAC Privacy Preserving Diffusion Models
Data privacy protection is garnering increased attention among researchers. Diffusion models (DMs), particularly with strict differential privacy, can potentially produce images with both high privacy and visual quality. However, challenges arise such as in ensuring robust protection in privatizing specific data attributes, areas where current models often fall short. To address these challenges, we introduce the PAC Privacy Preserving Diffusion Model, a model leverages diffusion principles and ensure Probably Approximately Correct (PAC) privacy. We enhance privacy protection by integrating a private classifier guidance into the Langevin Sampling Process. Additionally, recognizing the gap in measuring the privacy of models, we have developed a novel metric to gauge privacy levels. Our model, assessed with this new metric and supported by Gaussian matrix computations for the PAC bound, has shown superior performance in privacy protection over existing leading private generative models according to benchmark tests.
♻ ☆ Provable Reward-Agnostic Preference-Based Reinforcement Learning ICLR 2024
Preference-based Reinforcement Learning (PbRL) is a paradigm in which an RL agent learns to optimize a task using pair-wise preference-based feedback over trajectories, rather than explicit reward signals. While PbRL has demonstrated practical success in fine-tuning language models, existing theoretical work focuses on regret minimization and fails to capture most of the practical frameworks. In this study, we fill in such a gap between theoretical PbRL and practical algorithms by proposing a theoretical reward-agnostic PbRL framework where exploratory trajectories that enable accurate learning of hidden reward functions are acquired before collecting any human feedback. Theoretical analysis demonstrates that our algorithm requires less human feedback for learning the optimal policy under preference-based models with linear parameterization and unknown transitions, compared to the existing theoretical literature. Specifically, our framework can incorporate linear and low-rank MDPs with efficient sample complexity. Additionally, we investigate reward-agnostic RL with action-based comparison feedback and introduce an efficient querying algorithm tailored to this scenario.
comment: ICLR 2024 Spotlight
♻ ☆ From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying VLDB 2024
Safeguarding the Intellectual Property (IP) of data has become critically important as machine learning applications continue to proliferate, and their success heavily relies on the quality of training data. While various mechanisms exist to secure data during storage, transmission, and consumption, fewer studies have been developed to detect whether they are already leaked for model training without authorization. This issue is particularly challenging due to the absence of information and control over the training process conducted by potential attackers. In this paper, we concentrate on the domain of tabular data and introduce a novel methodology, Local Distribution Shifting Synthesis (\textsc{LDSS}), to detect leaked data that are used to train classification models. The core concept behind \textsc{LDSS} involves injecting a small volume of synthetic data--characterized by local shifts in class distribution--into the owner's dataset. This enables the effective identification of models trained on leaked data through model querying alone, as the synthetic data injection results in a pronounced disparity in the predictions of models trained on leaked and modified datasets. \textsc{LDSS} is \emph{model-oblivious} and hence compatible with a diverse range of classification models. We have conducted extensive experiments on seven types of classification models across five real-world datasets. The comprehensive results affirm the reliability, robustness, fidelity, security, and efficiency of \textsc{LDSS}. Extending \textsc{LDSS} to regression tasks further highlights its versatility and efficacy compared with baseline methods.
comment: Accepted and To Appear in VLDB 2024
♻ ☆ Solving morphological analogies: from retrieval to generation
Analogical inference is a remarkable capability of human reasoning, and has been used to solve hard reasoning tasks. Analogy based reasoning (AR) has gained increasing interest from the artificial intelligence community and has shown its potential in multiple machine learning tasks such as classification, decision making and recommendation with competitive results. We propose a deep learning (DL) framework to address and tackle two key tasks in AR: analogy detection and solving. The framework is thoroughly tested on the Siganalogies dataset of morphological analogical proportions (APs) between words, and shown to outperform symbolic approaches in many languages. Previous work have explored the behavior of the Analogy Neural Network for classification (ANNc) on analogy detection and of the Analogy Neural Network for retrieval (ANNr) on analogy solving by retrieval, as well as the potential of an autoencoder (AE) for analogy solving by generating the solution word. In this article we summarize these findings and we extend them by combining ANNr and the AE embedding model, and checking the performance of ANNc as an retrieval method. The combination of ANNr and AE outperforms the other approaches in almost all cases, and ANNc as a retrieval method achieves competitive or better performance than 3CosMul. We conclude with general guidelines on using our framework to tackle APs with DL.
♻ ☆ Interpreting and generalizing deep learning in physics-based problems with functional linear models
Although deep learning has achieved remarkable success in various scientific machine learning applications, its opaque nature poses concerns regarding interpretability and generalization capabilities beyond the training data. Interpretability is crucial and often desired in modeling physical systems. Moreover, acquiring extensive datasets that encompass the entire range of input features is challenging in many physics-based learning tasks, leading to increased errors when encountering out-of-distribution (OOD) data. In this work, motivated by the field of functional data analysis (FDA), we propose generalized functional linear models as an interpretable surrogate for a trained deep learning model. We demonstrate that our model could be trained either based on a trained neural network (post-hoc interpretation) or directly from training data (interpretable operator learning). A library of generalized functional linear models with different kernel functions is considered and sparse regression is used to discover an interpretable surrogate model that could be analytically presented. We present test cases in solid mechanics, fluid mechanics, and transport. Our results demonstrate that our model can achieve comparable accuracy to deep learning and can improve OOD generalization while providing more transparency and interpretability. Our study underscores the significance of interpretable representation in scientific machine learning and showcases the potential of functional linear models as a tool for interpreting and generalizing deep learning.
♻ ☆ Predictive representations: building blocks of intelligence
Adaptive behavior often requires predicting future events. The theory of reinforcement learning prescribes what kinds of predictive representations are useful and how to compute them. This paper integrates these theoretical ideas with work on cognition and neuroscience. We pay special attention to the successor representation (SR) and its generalizations, which have been widely applied both as engineering tools and models of brain function. This convergence suggests that particular kinds of predictive representations may function as versatile building blocks of intelligence.
♻ ☆ Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation
Sequential recommendation methods play a pivotal role in modern recommendation systems. A key challenge lies in accurately modeling user preferences in the face of data sparsity. To tackle this challenge, recent methods leverage contrastive learning (CL) to derive self-supervision signals by maximizing the mutual information of two augmented views of the original user behavior sequence. Despite their effectiveness, CL-based methods encounter a limitation in fully exploiting self-supervision signals for users with limited behavior data, as users with extensive behaviors naturally offer more information. To address this problem, we introduce a novel learning paradigm, named Online Self-Supervised Self-distillation for Sequential Recommendation ($S^4$Rec), effectively bridging the gap between self-supervised learning and self-distillation methods. Specifically, we employ online clustering to proficiently group users by their distinct latent intents. Additionally, an adversarial learning strategy is utilized to ensure that the clustering procedure is not affected by the behavior length factor. Subsequently, we employ self-distillation to facilitate the transfer of knowledge from users with extensive behaviors (teachers) to users with limited behaviors (students). Experiments conducted on four real-world datasets validate the effectiveness of the proposed method.
♻ ☆ Reformatted Alignment
The quality of finetuning data is crucial for aligning large language models (LLMs) with human values. Current methods to improve data quality are either labor-intensive or prone to factual errors caused by LLM hallucinations. This paper explores elevating the quality of existing instruction data to better align with human values, introducing a simple and effective approach named ReAlign, which reformats the responses of instruction data into a format that better aligns with pre-established criteria and the collated evidence. This approach minimizes human annotation, hallucination, and the difficulty in scaling, remaining orthogonal to existing alignment techniques. Experimentally, ReAlign significantly boosts the general alignment ability, math reasoning, factuality, and readability of the LLMs. Encouragingly, without introducing any additional data or advanced training techniques, and merely by reformatting the response, LLaMA-2-13B's mathematical reasoning ability on GSM8K can be improved from 46.77% to 56.63% in accuracy. Additionally, a mere 5% of ReAlign data yields a 67% boost in general alignment ability measured by the Alpaca dataset. This work highlights the need for further research into the science and mechanistic interpretability of LLMs. We have made the associated code and data publicly accessible to support future studies at https://github.com/GAIR-NLP/ReAlign.
comment: Homepage: https://gair-nlp.github.io/ReAlign/
♻ ☆ ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation CVPR
In the absence of parallax cues, a learning-based single image depth estimation (SIDE) model relies heavily on shading and contextual cues in the image. While this simplicity is attractive, it is necessary to train such models on large and varied datasets, which are difficult to capture. It has been shown that using embeddings from pre-trained foundational models, such as CLIP, improves zero shot transfer in several applications. Taking inspiration from this, in our paper we explore the use of global image priors generated from a pre-trained ViT model to provide more detailed contextual information. We argue that the embedding vector from a ViT model, pre-trained on a large dataset, captures greater relevant information for SIDE than the usual route of generating pseudo image captions, followed by CLIP based text embeddings. Based on this idea, we propose a new SIDE model using a diffusion backbone which is conditioned on ViT embeddings. Our proposed design establishes a new state-of-the-art (SOTA) for SIDE on NYUv2 dataset, achieving Abs Rel error of 0.059 (14% improvement) compared to 0.069 by the current SOTA (VPD). And on KITTI dataset, achieving Sq Rel error of 0.139 (2% improvement) compared to 0.142 by the current SOTA (GEDepth). For zero-shot transfer with a model trained on NYUv2, we report mean relative improvement of (20%, 23%, 81%, 25%) over NeWCRFs on (Sun-RGBD, iBims1, DIODE, HyperSim) datasets, compared to (16%, 18%, 45%, 9%) by ZoeDepth. The project page is available at https://ecodepth-iitd.github.io
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
♻ ☆ TorchSurv: A Lightweight Package for Deep Survival Analysis
TorchSurv is a Python package that serves as a companion tool to perform deep survival modeling within the PyTorch environment. Unlike existing libraries that impose specific parametric forms, TorchSurv enables the use of custom PyTorch-based deep survival models. With its lightweight design, minimal input requirements, full PyTorch backend, and freedom from restrictive survival model parameterizations, TorchSurv facilitates efficient deep survival model implementation and is particularly beneficial for high-dimensional and complex input data scenarios.
comment: https://opensource.nibr.com/torchsurv/
♻ ☆ Scaling Instructable Agents Across Many Simulated Worlds
Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.
♻ ☆ E2R: a Hierarchical-Learning inspired Novelty-Search method to generate diverse repertoires of grasping trajectories
Robotics grasping refers to the task of making a robotic system pick an object by applying forces and torques on its surface. Despite the recent advances in data-driven approaches, grasping remains an unsolved problem. Most of the works on this task are relying on priors and heavy constraints to avoid the exploration problem. Novelty Search (NS) refers to evolutionary algorithms that replace selection of best performing individuals with selection of the most novel ones. Such methods have already shown promising results on hard exploration problems. In this work, we introduce a new NS-based method that can generate large datasets of grasping trajectories in a platform-agnostic manner. Inspired by the hierarchical learning paradigm, our method decouples approach and prehension to make the behavioral space smoother. Experiments conducted on 3 different robot-gripper setups and on several standard objects shows that our method outperforms state-of-the-art for generating diverse repertoire of grasping trajectories, getting a higher successful run ratio, as well as a better diversity for both approach and prehension. Some of the generated solutions have been successfully deployed on a real robot, showing the exploitability of the obtained repertoires.
comment: 7 pages, 6 figures. Preprint version
♻ ☆ Time Fairness in Online Knapsack Problems ICLR 2024
The online knapsack problem is a classic problem in the field of online algorithms. Its canonical version asks how to pack items of different values and weights arriving online into a capacity-limited knapsack so as to maximize the total value of the admitted items. Although optimal competitive algorithms are known for this problem, they may be fundamentally unfair, i.e., individual items may be treated inequitably in different ways. We formalize a practically-relevant notion of time fairness which effectively models a trade off between static and dynamic pricing in a motivating application such as cloud resource allocation, and show that existing algorithms perform poorly under this metric. We propose a parameterized deterministic algorithm where the parameter precisely captures the Pareto-optimal trade-off between fairness (static pricing) and competitiveness (dynamic pricing). We show that randomization is theoretically powerful enough to be simultaneously competitive and fair; however, it does not work well in experiments. To further improve the trade-off between fairness and competitiveness, we develop a nearly-optimal learning-augmented algorithm which is fair, consistent, and robust (competitive), showing substantial performance improvements in numerical experiments.
comment: Accepted to ICLR 2024. 26 pages, 5 figures
♻ ☆ EPIM: Efficient Processing-In-Memory Accelerators based on Epitome
The utilization of large-scale neural networks on Processing-In-Memory (PIM) accelerators encounters challenges due to constrained on-chip memory capacity. To tackle this issue, current works explore model compression algorithms to reduce the size of Convolutional Neural Networks (CNNs). Most of these algorithms either aim to represent neural operators with reduced-size parameters (e.g., quantization) or search for the best combinations of neural operators (e.g., neural architecture search). Designing neural operators to align with PIM accelerators' specifications is an area that warrants further study. In this paper, we introduce the Epitome, a lightweight neural operator offering convolution-like functionality, to craft memory-efficient CNN operators for PIM accelerators (EPIM). On the software side, we evaluate epitomes' latency and energy on PIM accelerators and introduce a PIM-aware layer-wise design method to enhance their hardware efficiency. We apply epitome-aware quantization to further reduce the size of epitomes. On the hardware side, we modify the datapath of current PIM accelerators to accommodate epitomes and implement a feature map reuse technique to reduce computation cost. Experimental results reveal that our 3-bit quantized EPIM-ResNet50 attains 71.59% top-1 accuracy on ImageNet, reducing crossbar areas by 30.65 times. EPIM surpasses the state-of-the-art pruning methods on PIM.
♻ ☆ Investigating Gender Fairness in Machine Learning-driven Personalized Care for Chronic Pain
Chronic pain significantly diminishes the quality of life for millions worldwide. While psychoeducation and therapy can improve pain outcomes, many individuals experiencing pain lack access to evidence-based treatments or fail to complete the necessary number of sessions to achieve benefit. Reinforcement learning (RL) shows potential in tailoring personalized pain management interventions according to patients' individual needs while ensuring the efficient use of scarce clinical resources. However, clinicians, patients, and healthcare decision-makers are concerned that RL solutions could exacerbate disparities associated with patient characteristics like race or gender. In this article, we study gender fairness in personalized pain care recommendations using a real-world application of reinforcement learning (Piette et al., 2022a). Here, adhering to gender fairness translates to minimal or no disparity in the utility received by subpopulations as defined by gender. We investigate whether the selection of relevant patient information (referred to as features) used to assist decision-making affects gender fairness. Our experiments, conducted using real-world data Piette, 2022), indicate that included features can impact gender fairness. Moreover, we propose an RL solution, NestedRecommendation, that demonstrates the ability: i) to adaptively learn to select the features that optimize for utility and fairness, and ii) to accelerate feature selection and in turn, improve pain care recommendations from early on, by leveraging clinicians' domain expertise.
♻ ☆ Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning
In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data while maintaining performance on seen categories from labeled data. The central challenge is the substantial learning gap between seen and novel categories, as the model learns the former faster due to accurate supervisory information. Moreover, capturing the semantics of unlabeled novel category samples is also challenging due to the missing label information. To address the above issues, we introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together in the output space. Extensive experiments on benchmark datasets demonstrate that previous approaches may significantly hinder novel class learning, whereas our method strikingly balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset. Importantly, we find that fine-tuning the self-supervised pre-trained model significantly boosts the performance, which is overlooked in prior literature. Our code is available at https://github.com/yebo0216best/LPS-main.
♻ ☆ Do Counterfactual Examples Complicate Adversarial Training? CVPR'24
We leverage diffusion models to study the robustness-performance tradeoff of robust classifiers. Our approach introduces a simple, pretrained diffusion method to generate low-norm counterfactual examples (CEs): semantically altered data which results in different true class membership. We report that the confidence and accuracy of robust models on their clean training data are associated with the proximity of the data to their CEs. Moreover, robust models perform very poorly when evaluated on the CEs directly, as they become increasingly invariant to the low-norm, semantic changes brought by CEs. The results indicate a significant overlap between non-robust and semantic features, countering the common assumption that non-robust features are not interpretable.
comment: Accepted as a short paper to the GCV Workshop at CVPR'24
♻ ☆ Incremental Residual Concept Bottleneck Models
Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts and use the concepts to make predictions, enhancing the transparency of the decision-making process. Multimodal pre-trained models can match visual representations with textual concept embeddings, allowing for obtaining the interpretable concept bottleneck without the expertise concept annotations. Recent research has focused on the concept bank establishment and the high-quality concept selection. However, it is challenging to construct a comprehensive concept bank through humans or large language models, which severely limits the performance of CBMs. In this work, we propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness. Specifically, the residual concept bottleneck model employs a set of optimizable vectors to complete missing concepts, then the incremental concept discovery module converts the complemented vectors with unclear meanings into potential concepts in the candidate concept bank. Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs. Furthermore, to measure the descriptive efficiency of CBMs, the Concept Utilization Efficiency (CUE) metric is proposed. Experiments show that the Res-CBM outperforms the current state-of-the-art methods in terms of both accuracy and efficiency and achieves comparable performance to black-box models across multiple datasets.
♻ ☆ AQuA -- Combining Experts' and Non-Experts' Views To Assess Deliberation Quality in Online Discussions Using LLMs
Measuring the quality of contributions in political online discussions is crucial in deliberation research and computer science. Research has identified various indicators to assess online discussion quality, and with deep learning advancements, automating these measures has become feasible. While some studies focus on analyzing specific quality indicators, a comprehensive quality score incorporating various deliberative aspects is often preferred. In this work, we introduce AQuA, an additive score that calculates a unified deliberative quality score from multiple indices for each discussion post. Unlike other singular scores, AQuA preserves information on the deliberative aspects present in comments, enhancing model transparency. We develop adapter models for 20 deliberative indices, and calculate correlation coefficients between experts' annotations and the perceived deliberativeness by non-experts to weigh the individual indices into a single deliberative score. We demonstrate that the AQuA score can be computed easily from pre-trained adapters and aligns well with annotations on other datasets that have not be seen during training. The analysis of experts' vs. non-experts' annotations confirms theoretical findings in the social science literature.
♻ ☆ Online Bin Packing with Predictions
Bin packing is a classic optimization problem with a wide range of applications, from load balancing to supply chain management. In this work, we study the online variant of the problem, in which a sequence of items of various sizes must be placed into a minimum number of bins of uniform capacity. The online algorithm is enhanced with a (potentially erroneous) prediction concerning the frequency of item sizes in the sequence. We design and analyze online algorithms with efficient tradeoffs between the consistency (i.e., the competitive ratio assuming no prediction error) and the robustness (i.e., the competitive ratio under adversarial error), and whose performance degrades near-optimally as a function of the prediction error. This is the first theoretical and experimental study of online bin packing under competitive analysis, in the realistic setting of learnable predictions. Previous work addressed only extreme cases with respect to the prediction error, and relied on overly powerful and error-free oracles.
comment: 30 pages, 6 figures
♻ ☆ Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
In this paper, we have expanded the current status of semantic communication limited to processing one task to a more general system that can handle multiple tasks concurrently. In pursuit of this, we first introduced our definition of the "semantic source", enabling the interpretation of multiple semantics based on a single observation. A semantic encoder design is then introduced, featuring the division of the encoder into a common unit and multiple specific units enabling cooperative multi-task processing. Simulation results demonstrate the effectiveness of the proposed semantic source and the system design. Our approach employs information maximization (infomax) and end-to-end design principles.
comment: This work has been submitted to the IEEE Wireless Communications Letters
♻ ☆ Federated Class-Incremental Learning with New-Class Augmented Self-Distillation
Federated Learning (FL) enables collaborative model training among participants while guaranteeing the privacy of raw data. Mainstream FL methodologies overlook the dynamic nature of real-world data, particularly its tendency to grow in volume and diversify in classes over time. This oversight results in FL methods suffering from catastrophic forgetting, where the trained models inadvertently discard previously learned information upon assimilating new data. In response to this challenge, we propose a novel Federated Class-Incremental Learning (FCIL) method, named \underline{Fed}erated \underline{C}lass-Incremental \underline{L}earning with New-Class \underline{A}ugmented \underline{S}elf-Di\underline{S}tillation (FedCLASS). The core of FedCLASS is to enrich the class scores of historical models with new class scores predicted by current models and utilize the combined knowledge for self-distillation, enabling a more sufficient and precise knowledge transfer from historical models to current models. Theoretical analyses demonstrate that FedCLASS stands on reliable foundations, considering scores of old classes predicted by historical models as conditional probabilities in the absence of new classes, and the scores of new classes predicted by current models as the conditional probabilities of class scores derived from historical models. Empirical experiments demonstrate the superiority of FedCLASS over four baseline algorithms in reducing average forgetting rate and boosting global accuracy.
comment: 9 pages, 2 figures, 4 tables
♻ ☆ Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems AISTATS 2024
We consider stochastic optimization problems with heavy-tailed noise with structured density. For such problems, we show that it is possible to get faster rates of convergence than $\mathcal{O}(K^{-2(\alpha - 1)/\alpha})$, when the stochastic gradients have finite moments of order $\alpha \in (1, 2]$. In particular, our analysis allows the noise norm to have an unbounded expectation. To achieve these results, we stabilize stochastic gradients, using smoothed medians of means. We prove that the resulting estimates have negligible bias and controllable variance. This allows us to carefully incorporate them into clipped-SGD and clipped-SSTM and derive new high-probability complexity bounds in the considered setup.
comment: AISTATS 2024. 60 pages, 3 figures. Changes in V2: small typos were fixed, extra experiments and discussion were added. Code: https://github.com/Kutuz4/AISTATS2024_SMoM
♻ ☆ BurstAttention: An Efficient Distributed Attention Framework for Extremely Long Sequences
Effective attention modules have played a crucial role in the success of Transformer-based large language models (LLMs), but the quadratic time and memory complexities of these attention modules also pose a challenge when processing long sequences. One potential solution for the long sequence problem is to utilize distributed clusters to parallelize the computation of attention modules across multiple devices (e.g., GPUs). However, adopting a distributed approach inevitably introduces extra memory overheads to store local attention results and incurs additional communication costs to aggregate local results into global ones. In this paper, we propose a distributed attention framework named ``BurstAttention'' to optimize memory access and communication operations at both the global cluster and local device levels. In our experiments, we compare BurstAttention with other competitive distributed attention solutions for long sequence processing. The experimental results under different length settings demonstrate that BurstAttention offers significant advantages for processing long sequences compared with these competitive baselines, reducing 40% communication overheads and achieving 1.37 X speedup during training 128K sequence length on 32 X A100.
comment: 13 pages, 7 figures
♻ ☆ Zero-Shot Reinforcement Learning from Low Quality Data
Zero-shot reinforcement learning (RL) promises to provide agents that can perform any task in an environment after an offline, reward-free pre-training phase. Methods leveraging successor measures and successor features have shown strong performance in this setting, but require access to large heterogenous datasets for pre-training which cannot be expected for most real problems. Here, we explore how the performance of zero-shot RL methods degrades when trained on small homogeneous datasets, and propose fixes inspired by conservatism, a well-established feature of performant single-task offline RL algorithms. We evaluate our proposals across various datasets, domains and tasks, and show that conservative zero-shot RL algorithms outperform their non-conservative counterparts on low quality datasets, and perform no worse on high quality datasets. Somewhat surprisingly, our proposals also outperform baselines that get to see the task during training. Our code is available via https://enjeeneer.io/projects/zero-shot-rl/.
comment: Project page: https://enjeeneer.io/projects/zero-shot-rl/
♻ ☆ T$^3$Bench: Benchmarking Current Progress in Text-to-3D Generation
Recent methods in text-to-3D leverage powerful pretrained diffusion models to optimize NeRF. Notably, these methods are able to produce high-quality 3D scenes without training on 3D data. Due to the open-ended nature of the task, most studies evaluate their results with subjective case studies and user experiments, thereby presenting a challenge in quantitatively addressing the question: How has current progress in Text-to-3D gone so far? In this paper, we introduce T$^3$Bench, the first comprehensive text-to-3D benchmark containing diverse text prompts of three increasing complexity levels that are specially designed for 3D generation. To assess both the subjective quality and the text alignment, we propose two automatic metrics based on multi-view images produced by the 3D contents. The quality metric combines multi-view text-image scores and regional convolution to detect quality and view inconsistency. The alignment metric uses multi-view captioning and GPT-4 evaluation to measure text-3D consistency. Both metrics closely correlate with different dimensions of human judgments, providing a paradigm for efficiently evaluating text-to-3D models. The benchmarking results, shown in Fig. 1, reveal performance differences among an extensive 10 prevalent text-to-3D methods. Our analysis further highlights the common struggles for current methods on generating surroundings and multi-object scenes, as well as the bottleneck of leveraging 2D guidance for 3D generation. Our project page is available at: https://t3bench.com.
comment: Under review
♻ ☆ How Prevalent is Gender Bias in ChatGPT? -- Exploring German and English ChatGPT Responses ECML
With the introduction of ChatGPT, OpenAI made large language models (LLM) accessible to users with limited IT expertise. However, users with no background in natural language processing (NLP) might lack a proper understanding of LLMs. Thus the awareness of their inherent limitations, and therefore will take the systems' output at face value. In this paper, we systematically analyse prompts and the generated responses to identify possible problematic issues with a special focus on gender biases, which users need to be aware of when processing the system's output. We explore how ChatGPT reacts in English and German if prompted to answer from a female, male, or neutral perspective. In an in-depth investigation, we examine selected prompts and analyse to what extent responses differ if the system is prompted several times in an identical way. On this basis, we show that ChatGPT is indeed useful for helping non-IT users draft texts for their daily work. However, it is absolutely crucial to thoroughly check the system's responses for biases as well as for syntactic and grammatical mistakes.
comment: Accepted @ "1st Workshop on Biased Data in Conversational Agents" (co-located with ECML PKDD 2023). This is the author's version of the work. The definite version of record will be published in the proceedings
♻ ☆ KDAS: Knowledge Distillation via Attention Supervision Framework for Polyp Segmentation
Polyp segmentation, a contentious issue in medical imaging, has seen numerous proposed methods aimed at improving the quality of segmented masks. While current state-of-the-art techniques yield impressive results, the size and computational cost of these models create challenges for practical industry applications. To address this challenge, we present KDAS, a Knowledge Distillation framework that incorporates attention supervision, and our proposed Symmetrical Guiding Module. This framework is designed to facilitate a compact student model with fewer parameters, allowing it to learn the strengths of the teacher model and mitigate the inconsistency between teacher features and student features, a common challenge in Knowledge Distillation, via the Symmetrical Guiding Module. Through extensive experiments, our compact models demonstrate their strength by achieving competitive results with state-of-the-art methods, offering a promising approach to creating compact models with high accuracy for polyp segmentation and in the medical imaging field. The implementation is available on https://github.com/huyquoctrinh/KDAS.
♻ ☆ Hacking Task Confounder in Meta-Learning IJCAI 2024
Meta-learning enables rapid generalization to new tasks by learning knowledge from various tasks. It is intuitively assumed that as the training progresses, a model will acquire richer knowledge, leading to better generalization performance. However, our experiments reveal an unexpected result: there is negative knowledge transfer between tasks, affecting generalization performance. To explain this phenomenon, we conduct Structural Causal Models (SCMs) for causal analysis. Our investigation uncovers the presence of spurious correlations between task-specific causal factors and labels in meta-learning. Furthermore, the confounding factors differ across different batches. We refer to these confounding factors as ``Task Confounders". Based on these findings, we propose a plug-and-play Meta-learning Causal Representation Learner (MetaCRL) to eliminate task confounders. It encodes decoupled generating factors from multiple tasks and utilizes an invariant-based bi-level optimization mechanism to ensure their causality for meta-learning. Extensive experiments on various benchmark datasets demonstrate that our work achieves state-of-the-art (SOTA) performance.
comment: Accepted by IJCAI 2024, 9 pages, 5 figures, 4 tables
♻ ☆ Finding Decision Tree Splits in Streaming and Massively Parallel Models
In this work, we provide data stream algorithms that compute optimal splits in decision tree learning. In particular, given a data stream of observations $x_i$ and their labels $y_i$, the goal is to find the optimal split point $j$ that divides the data into two sets such that the mean squared error (for regression) or misclassification rate (for classification) is minimized. We provide various fast streaming algorithms that use sublinear space and a small number of passes for these problems. These algorithms can also be extended to the massively parallel computation model. Our work, while not directly comparable, complements the seminal work of Domingos and Hulten (KDD 2000).
♻ ☆ Locality Sensitive Sparse Encoding for Learning World Models Online ICLR 2024
Acquiring an accurate world model online for model-based reinforcement learning (MBRL) is challenging due to data nonstationarity, which typically causes catastrophic forgetting for neural networks (NNs). From the online learning perspective, a Follow-The-Leader (FTL) world model is desirable, which optimally fits all previous experiences at each round. Unfortunately, NN-based models need re-training on all accumulated data at every interaction step to achieve FTL, which is computationally expensive for lifelong agents. In this paper, we revisit models that can achieve FTL with incremental updates. Specifically, our world model is a linear regression model supported by nonlinear random features. The linear part ensures efficient FTL update while the nonlinear random feature empowers the fitting of complex environments. To best trade off model capacity and computation efficiency, we introduce a locality sensitive sparse encoding, which allows us to conduct efficient sparse updates even with very high dimensional nonlinear features. We validate the representation power of our encoding and verify that it allows efficient online learning under data covariate shift. We also show, in the Dyna MBRL setting, that our world models learned online using a single pass of trajectory data either surpass or match the performance of deep world models trained with replay and other continual learning methods.
comment: ICLR 2024
♻ ☆ Weight Copy and Low-Rank Adaptation for Few-Shot Distillation of Vision Transformers
Few-shot knowledge distillation recently emerged as a viable approach to harness the knowledge of large-scale pre-trained models, using limited data and computational resources. In this paper, we propose a novel few-shot feature distillation approach for vision transformers. Our approach is based on two key steps. Leveraging the fact that vision transformers have a consistent depth-wise structure, we first copy the weights from intermittent layers of existing pre-trained vision transformers (teachers) into shallower architectures (students), where the intermittence factor controls the complexity of the student transformer with respect to its teacher. Next, we employ an enhanced version of Low-Rank Adaptation (LoRA) to distill knowledge into the student in a few-shot scenario, aiming to recover the information processing carried out by the skipped teacher layers. We present comprehensive experiments with supervised and self-supervised transformers as teachers, on five data sets from various domains, including natural, medical and satellite images. The empirical results confirm the superiority of our approach over competitive baselines. Moreover, the ablation results demonstrate the usefulness of each component of the proposed pipeline.
♻ ☆ Manifold Gaussian Variational Bayes on the Precision Matrix
We propose an optimization algorithm for Variational Inference (VI) in complex models. Our approach relies on natural gradient updates where the variational space is a Riemann manifold. We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix. Our Manifold Gaussian Variational Bayes on the Precision matrix (MGVBP) solution provides simple update rules, is straightforward to implement, and the use of the precision matrix parametrization has a significant computational advantage. Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models. Over five datasets, we empirically validate our feasible approach on different statistical and econometric models, discussing its performance with respect to baseline methods.
♻ ☆ Adaptive Lasso, Transfer Lasso, and Beyond: An Asymptotic Perspective
This paper presents a comprehensive exploration of the theoretical properties inherent in the Adaptive Lasso and the Transfer Lasso. The Adaptive Lasso, a well-established method, employs regularization divided by initial estimators and is characterized by asymptotic normality and variable selection consistency. In contrast, the recently proposed Transfer Lasso employs regularization subtracted by initial estimators with the demonstrated capacity to curtail non-asymptotic estimation errors. A pivotal question thus emerges: Given the distinct ways the Adaptive Lasso and the Transfer Lasso employ initial estimators, what benefits or drawbacks does this disparity confer upon each method? This paper conducts a theoretical examination of the asymptotic properties of the Transfer Lasso, thereby elucidating its differentiation from the Adaptive Lasso. Informed by the findings of this analysis, we introduce a novel method, one that amalgamates the strengths and compensates for the weaknesses of both methods. The paper concludes with validations of our theory and comparisons of the methods via simulation experiments.
♻ ☆ Fourier-Mixed Window Attention: Accelerating Informer for Long Sequence Time-Series Forecasting
We study a fast local-global window-based attention method to accelerate Informer for long sequence time-series forecasting. While window attention being local is a considerable computational saving, it lacks the ability to capture global token information which is compensated by a subsequent Fourier transform block. Our method, named FWin, does not rely on query sparsity hypothesis and an empirical approximation underlying the ProbSparse attention of Informer. Through experiments on univariate and multivariate datasets, we show that FWin transformers improve the overall prediction accuracies of Informer while accelerating its inference speeds by 1.6 to 2 times. We also provide a mathematical definition of FWin attention, and prove that it is equivalent to the canonical full attention under the block diagonal invertibility (BDI) condition of the attention matrix. The BDI is shown experimentally to hold with high probability for typical benchmark datasets.
comment: 19 pages (main), 11 pages (appendix), 8 figures
♻ ☆ Partial Rankings of Optimizers
We introduce a framework for benchmarking optimizers according to multiple criteria over various test functions. Based on a recently introduced union-free generic depth function for partial orders/rankings, it fully exploits the ordinal information and allows for incomparability. Our method describes the distribution of all partial orders/rankings, avoiding the notorious shortcomings of aggregation. This permits to identify test functions that produce central or outlying rankings of optimizers and to assess the quality of benchmarking suites.
♻ ☆ Leave-one-out Distinguishability in Machine Learning ICLR 2024
We introduce an analytical framework to quantify the changes in a machine learning algorithm's output distribution following the inclusion of a few data points in its training set, a notion we define as leave-one-out distinguishability (LOOD). This is key to measuring data **memorization** and information **leakage** as well as the **influence** of training data points in machine learning. We illustrate how our method broadens and refines existing empirical measures of memorization and privacy risks associated with training data. We use Gaussian processes to model the randomness of machine learning algorithms, and validate LOOD with extensive empirical analysis of leakage using membership inference attacks. Our analytical framework enables us to investigate the causes of leakage and where the leakage is high. For example, we analyze the influence of activation functions, on data memorization. Additionally, our method allows us to identify queries that disclose the most information about the training data in the leave-one-out setting. We illustrate how optimal queries can be used for accurate **reconstruction** of training data.
comment: ICLR 2024
♻ ☆ Dependency-based Anomaly Detection: a General Framework and Comprehensive Evaluation
Anomaly detection is crucial for understanding unusual behaviors in data, as anomalies offer valuable insights. This paper introduces Dependency-based Anomaly Detection (DepAD), a general framework that utilizes variable dependencies to uncover meaningful anomalies with better interpretability. DepAD reframes unsupervised anomaly detection as supervised feature selection and prediction tasks, which allows users to tailor anomaly detection algorithms to their specific problems and data. We extensively evaluate representative off-the-shelf techniques for the DepAD framework. Two DepAD algorithms emerge as all-rounders and superior performers in handling a wide range of datasets compared to nine state-of-the-art anomaly detection methods. Additionally, we demonstrate that DepAD algorithms provide new and insightful interpretations for detected anomalies.
♻ ☆ MCPNet: An Interpretable Classifier via Multi-Level Concept Prototypes CVPR 2024
Recent advancements in post-hoc and inherently interpretable methods have markedly enhanced the explanations of black box classifier models. These methods operate either through post-analysis or by integrating concept learning during model training. Although being effective in bridging the semantic gap between a model's latent space and human interpretation, these explanation methods only partially reveal the model's decision-making process. The outcome is typically limited to high-level semantics derived from the last feature map. We argue that the explanations lacking insights into the decision processes at low and mid-level features are neither fully faithful nor useful. Addressing this gap, we introduce the Multi-Level Concept Prototypes Classifier (MCPNet), an inherently interpretable model. MCPNet autonomously learns meaningful concept prototypes across multiple feature map levels using Centered Kernel Alignment (CKA) loss and an energy-based weighted PCA mechanism, and it does so without reliance on predefined concept labels. Further, we propose a novel classifier paradigm that learns and aligns multi-level concept prototype distributions for classification purposes via Class-aware Concept Distribution (CCD) loss. Our experiments reveal that our proposed MCPNet while being adaptable to various model architectures, offers comprehensive multi-level explanations while maintaining classification accuracy. Additionally, its concept distribution-based classification approach shows improved generalization capabilities in few-shot classification scenarios.
comment: Accepted by CVPR 2024
♻ ☆ The False Dawn: Reevaluating Google's Reinforcement Learning for Chip Macro Placement
Reinforcement learning (RL) for physical design of silicon chips in a Google 2021 Nature paper stirred controversy due to poorly documented claims that raised eyebrows and drew critical media coverage. The paper withheld critical methodology steps and most inputs needed to reproduce results. Our meta-analysis shows how two separate evaluations filled in the gaps and demonstrated that Google RL lags behind (i) human designers, (ii) a well-known algorithm (Simulated Annealing), and (iii) generally-available commercial software, while being slower; and in a 2023 open research contest, RL methods weren't in top 5. Crosschecked data indicate that the integrity of the Nature paper is substantially undermined owing to errors in conduct, analysis and reporting. Before publishing, Google rebuffed internal allegations of fraud, which still stand. We note policy implications and conclusions for chip design.
comment: 15 pages, 1 figure, 4 tables, 80 references
♻ ☆ MICRO: Model-Based Offline Reinforcement Learning with a Conservative Bellman Operator IJCAI 2024
Offline reinforcement learning (RL) faces a significant challenge of distribution shift. Model-free offline RL penalizes the Q value for out-of-distribution (OOD) data or constrains the policy closed to the behavior policy to tackle this problem, but this inhibits the exploration of the OOD region. Model-based offline RL, which uses the trained environment model to generate more OOD data and performs conservative policy optimization within that model, has become an effective method for this problem. However, the current model-based algorithms rarely consider agent robustness when incorporating conservatism into policy. Therefore, the new model-based offline algorithm with a conservative Bellman operator (MICRO) is proposed. This method trades off performance and robustness via introducing the robust Bellman operator into the algorithm. Compared with previous model-based algorithms with robust adversarial models, MICRO can significantly reduce the computation cost by only choosing the minimal Q value in the state uncertainty set. Extensive experiments demonstrate that MICRO outperforms prior RL algorithms in offline RL benchmark and is considerably robust to adversarial perturbations.
comment: Accepted by IJCAI 2024 (the 33rd International Joint Conference on Artificial Intelligence)
♻ ☆ Can Large Language Models Infer Causation from Correlation? ICLR 2024
Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 200K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize -- they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and would be helpful in guiding future research on improving LLMs' pure reasoning skills and generalizability. Our data is at https://huggingface.co/datasets/causalnlp/corr2cause. Our code is at https://github.com/causalNLP/corr2cause.
comment: ICLR 2024
♻ ☆ Attention Satisfies: A Constraint-Satisfaction Lens on Factual Errors of Language Models ICLR 2024
We investigate the internal behavior of Transformer-based Large Language Models (LLMs) when they generate factually incorrect text. We propose modeling factual queries as constraint satisfaction problems and use this framework to investigate how the LLM interacts internally with factual constraints. We find a strong positive relationship between the LLM's attention to constraint tokens and the factual accuracy of generations. We curate a suite of 10 datasets containing over 40,000 prompts to study the task of predicting factual errors with the Llama-2 family across all scales (7B, 13B, 70B). We propose SAT Probe, a method probing attention patterns, that can predict factual errors and fine-grained constraint satisfaction, and allow early error identification. The approach and findings take another step towards using the mechanistic understanding of LLMs to enhance their reliability.
comment: Published at ICLR 2024
♻ ☆ Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach
Differentially Private Stochastic Gradient Descent with Gradient Clipping (DPSGD-GC) is a powerful tool for training deep learning models using sensitive data, providing both a solid theoretical privacy guarantee and high efficiency. However, using DPSGD-GC to ensure Differential Privacy (DP) comes at the cost of model performance degradation due to DP noise injection and gradient clipping. Existing research has extensively analyzed the theoretical convergence of DPSGD-GC, and has shown that it only converges when using large clipping thresholds that are dependent on problem-specific parameters. Unfortunately, these parameters are often unknown in practice, making it hard to choose the optimal clipping threshold. Therefore, in practice, DPSGD-GC suffers from degraded performance due to the {\it constant} bias introduced by the clipping. In our work, we propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC, which not only offers a diminishing utility bound without inducing a constant clipping bias, but more importantly, it allows for an arbitrary choice of clipping threshold that is independent of the problem. We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R{\'e}nyi DP. Additionally, we demonstrate that under mild conditions, our algorithm can achieve nearly the same utility bound as DPSGD without gradient clipping. Our empirical results on Cifar-10/100 and E2E datasets, show that the proposed algorithm achieves higher accuracies than DPSGD while maintaining the same level of DP guarantee.
♻ ☆ Policy Learning with Competing Agents
Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating estimation of the optimal policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where the decision maker allocates treatments at each time step and heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy gradient. In a semi-synthetic experiment with data from the National Education Longitudinal Study of 1988, we demonstrate that this estimator can be used for learning capacity-constrained policies in the presence of strategic behavior.
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices
Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
♻ ☆ Distributed Random Reshuffling Methods with Improved Convergence
This paper proposes two distributed random reshuffling methods, namely Gradient Tracking with Random Reshuffling (GT-RR) and Exact Diffusion with Random Reshuffling (ED-RR), to solve the distributed optimization problem over a connected network, where a set of agents aim to minimize the average of their local cost functions. Both algorithms invoke random reshuffling (RR) update for each agent, inherit favorable characteristics of RR for minimizing smooth nonconvex objective functions, and improve the performance of previous distributed random reshuffling methods both theoretically and empirically. Specifically, both GT-RR and ED-RR achieve the convergence rate of $O(1/[(1-\lambda)^{1/3}m^{1/3}T^{2/3}])$ in driving the (minimum) expected squared norm of the gradient to zero, where $T$ denotes the number of epochs, $m$ is the sample size for each agent, and $1-\lambda$ represents the spectral gap of the mixing matrix. When the objective functions further satisfy the Polyak-{\L}ojasiewicz (PL) condition, we show GT-RR and ED-RR both achieve $O(1/[(1-\lambda)mT^2])$ convergence rate in terms of the averaged expected differences between the agents' function values and the global minimum value. Notably, both results are comparable to the convergence rates of centralized RR methods (up to constant factors depending on the network topology) and outperform those of previous distributed random reshuffling algorithms. Moreover, we support the theoretical findings with a set of numerical experiments.
comment: 16 pages, 8 figures
♻ ☆ Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science
In the domain of data science, the predictive tasks of classification, regression, and imputation of missing values are commonly encountered challenges associated with tabular data. This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks. Despite their proficiency in comprehending natural language, LLMs fall short in dealing with structured tabular data. This limitation stems from their lacking exposure to the intricacies of tabular data during their foundational training. Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2 on this enriched dataset. Furthermore, we investigate the practical application of applying the trained model to zero-shot prediction, few-shot prediction, and in-context learning scenarios. Through extensive experiments, our methodology has shown significant improvements over existing benchmarks. These advancements highlight the efficacy of tailoring LLM training to solve table-related problems in data science, thereby establishing a new benchmark in the utilization of LLMs for enhancing tabular intelligence.
comment: 10 pages
♻ ☆ Distributional Preference Learning: Understanding and Accounting for Hidden Context in RLHF ICLR 2024
In practice, preference learning from human feedback depends on incomplete data with hidden context. Hidden context refers to data that affects the feedback received, but which is not represented in the data used to train a preference model. This captures common issues of data collection, such as having human annotators with varied preferences, cognitive processes that result in seemingly irrational behavior, and combining data labeled according to different criteria. We prove that standard applications of preference learning, including reinforcement learning from human feedback (RLHF), implicitly aggregate over hidden contexts according to a well-known voting rule called Borda count. We show this can produce counter-intuitive results that are very different from other methods which implicitly aggregate via expected utility. Furthermore, our analysis formalizes the way that preference learning from users with diverse values tacitly implements a social choice function. A key implication of this result is that annotators have an incentive to misreport their preferences in order to influence the learned model, leading to vulnerabilities in the deployment of RLHF. As a step towards mitigating these problems, we introduce a class of methods called distributional preference learning (DPL). DPL methods estimate a distribution of possible score values for each alternative in order to better account for hidden context. Experimental results indicate that applying DPL to RLHF for LLM chatbots identifies hidden context in the data and significantly reduces subsequent jailbreak vulnerability. Our code and data are available at https://github.com/cassidylaidlaw/hidden-context
comment: Presented at ICLR 2024
♻ ☆ Runner re-identification from single-view running video in the open-world setting
In many sports, player re-identification is crucial for automatic video processing and analysis. However, most of the current studies on player re-identification in multi- or single-view sports videos focus on re-identification in the closed-world setting using labeled image dataset, and player re-identification in the open-world setting for automatic video analysis is not well developed. In this paper, we propose a runner re-identification system that directly processes single-view video to address the open-world setting. In the open-world setting, we cannot use labeled dataset and have to process video directly. The proposed system automatically processes raw video as input to identify runners, and it can identify runners even when they are framed out multiple times. For the automatic processing, we first detect the runners in the video using the pre-trained YOLOv8 and the fine-tuned EfficientNet. We then track the runners using ByteTrack and detect their shoes with the fine-tuned YOLOv8. Finally, we extract the image features of the runners using an unsupervised method with the gated recurrent unit autoencoder and global and local features mixing. To improve the accuracy of runner re-identification, we use shoe images as local image features and dynamic features of running sequence images. We evaluated the system on a running practice video dataset and showed that the proposed method identified runners with higher accuracy than some state-of-the-art models in unsupervised re-identification. We also showed that our proposed local image feature and running dynamic feature were effective for runner re-identification. Our runner re-identification system can be useful for the automatic analysis of running videos.
comment: 20 pages, 7 figures
♻ ☆ Scoring Intervals using Non-Hierarchical Transformer For Automatic Piano Transcription
The neural semi-Markov Conditional Random Field (semi-CRF) framework has demonstrated promise for event-based piano transcription. In this framework, all events (notes or pedals) are represented as closed intervals tied to specific event types. The neural semi-CRF approach requires an interval scoring matrix that assigns a score for every candidate interval. However, designing an efficient and expressive architecture for scoring intervals is not trivial. In this paper, we introduce a simple method for scoring intervals using scaled inner product operations that resemble how attention scoring is done in transformers. We show theoretically that, due to the special structure from encoding the non-overlapping intervals, under a mild condition, the inner product operations are expressive enough to represent an ideal scoring matrix that can yield the correct transcription result. We then demonstrate that an encoder-only non-hierarchical transformer backbone, operating only on a low-time-resolution feature map, is capable of transcribing piano notes and pedals with high accuracy and time precision. The experiment shows that our approach achieves the new state-of-the-art performance across all subtasks in terms of the F1 measure on the Maestro dataset.
comment: Fixed Typos
♻ ☆ GenSERP: Large Language Models for Whole Page Presentation
The advent of large language models (LLMs) brings an opportunity to minimize the effort in search engine result page (SERP) organization. In this paper, we propose GenSERP, a framework that leverages LLMs with vision in a few-shot setting to dynamically organize intermediate search results, including generated chat answers, website snippets, multimedia data, knowledge panels into a coherent SERP layout based on a user's query. Our approach has three main stages: (1) An information gathering phase where the LLM continuously orchestrates API tools to retrieve different types of items, and proposes candidate layouts based on the retrieved items, until it's confident enough to generate the final result. (2) An answer generation phase where the LLM populates the layouts with the retrieved content. In this phase, the LLM adaptively optimize the ranking of items and UX configurations of the SERP. Consequently, it assigns a location on the page to each item, along with the UX display details. (3) A scoring phase where an LLM with vision scores all the generated SERPs based on how likely it can satisfy the user. It then send the one with highest score to rendering. GenSERP features two generation paradigms. First, coarse-to-fine, which allow it to approach optimal layout in a more manageable way, (2) beam search, which give it a better chance to hit the optimal solution compared to greedy decoding. Offline experimental results on real-world data demonstrate how LLMs can contextually organize heterogeneous search results on-the-fly and provide a promising user experience.
comment: Microsoft corp policy
♻ ☆ Structured Entity Extraction Using Large Language Models
Recent advances in machine learning have significantly impacted the field of information extraction, with Large Language Models (LLMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction (SEE) and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new model that harnesses the power of LLMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction.
Multimedia 6
☆ Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion
Human motion understanding is a fundamental task with diverse practical applications, facilitated by the availability of large-scale motion capture datasets. Recent studies focus on text-motion tasks, such as text-based motion generation, editing and question answering. In this study, we introduce the novel task of text-based human motion grounding (THMG), aimed at precisely localizing temporal segments corresponding to given textual descriptions within untrimmed motion sequences. Capturing global temporal information is crucial for the THMG task. However, transformer-based models that rely on global temporal self-attention face challenges when handling long untrimmed sequences due to the quadratic computational cost. We address these challenges by proposing Text-controlled Motion Mamba (TM-Mamba), a unified model that integrates temporal global context, language query control, and spatial graph topology with only linear memory cost. The core of the model is a text-controlled selection mechanism which dynamically incorporates global temporal information based on text query. The model is further enhanced to be topology-aware through the integration of relational embeddings. For evaluation, we introduce BABEL-Grounding, the first text-motion dataset that provides detailed textual descriptions of human actions along with their corresponding temporal segments. Extensive evaluations demonstrate the effectiveness of TM-Mamba on BABEL-Grounding.
Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.
comment: Accepted by IEEE Conference on Multimedia Expo 2024
☆ DRepMRec: A Dual Representation Learning Framework for Multimodal Recommendation
Multimodal Recommendation focuses mainly on how to effectively integrate behavior and multimodal information in the recommendation task. Previous works suffer from two major issues. Firstly, the training process tightly couples the behavior module and multimodal module by jointly optimizing them using the sharing model parameters, which leads to suboptimal performance since behavior signals and modality signals often provide opposite guidance for the parameters updates. Secondly, previous approaches fail to take into account the significant distribution differences between behavior and modality when they attempt to fuse behavior and modality information. This resulted in a misalignment between the representations of behavior and modality. To address these challenges, in this paper, we propose a novel Dual Representation learning framework for Multimodal Recommendation called DRepMRec, which introduce separate dual lines for coupling problem and Behavior-Modal Alignment (BMA) for misalignment problem. Specifically, DRepMRec leverages two independent lines of representation learning to calculate behavior and modal representations. After obtaining separate behavior and modal representations, we design a Behavior-Modal Alignment Module (BMA) to align and fuse the dual representations to solve the misalignment problem. Furthermore, we integrate the BMA into other recommendation models, resulting in consistent performance improvements. To ensure dual representations maintain their semantic independence during alignment, we introduce Similarity-Supervised Signal (SSS) for representation learning. We conduct extensive experiments on three public datasets and our method achieves state-of-the-art (SOTA) results. The source code will be available upon acceptance.
comment: 8 pages, 9 figures
☆ Music Enhancement with Deep Filters: A Technical Report for The ICASSP 2024 Cadenza Challenge ICASSP 2024
In this challenge, we disentangle the deep filters from the original DeepfilterNet and incorporate them into our Spec-UNet-based network to further improve a hybrid Demucs (hdemucs) based remixing pipeline. The motivation behind the use of the deep filter component lies at its potential in better handling temporal fine structures. We demonstrate an incremental improvement in both the Signal-to-Distortion Ratio (SDR) and the Hearing Aid Audio Quality Index (HAAQI) metrics when comparing the performance of hdemucs against different versions of our model.
comment: 2 pages, 2 figures, 1 tables, Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
☆ FairSSD: Understanding Bias in Synthetic Speech Detectors CVPR 2024
Methods that can generate synthetic speech which is perceptually indistinguishable from speech recorded by a human speaker, are easily available. Several incidents report misuse of synthetic speech generated from these methods to commit fraud. To counter such misuse, many methods have been proposed to detect synthetic speech. Some of these detectors are more interpretable, can generalize to detect synthetic speech in the wild and are robust to noise. However, limited work has been done on understanding bias in these detectors. In this work, we examine bias in existing synthetic speech detectors to determine if they will unfairly target a particular gender, age and accent group. We also inspect whether these detectors will have a higher misclassification rate for bona fide speech from speech-impaired speakers w.r.t fluent speakers. Extensive experiments on 6 existing synthetic speech detectors using more than 0.9 million speech signals demonstrate that most detectors are gender, age and accent biased, and future work is needed to ensure fairness. To support future research, we release our evaluation dataset, models used in our study and source code at https://gitlab.com/viper-purdue/fairssd.
comment: Accepted at CVPR 2024 (WMF)
♻ ☆ Explainable Multimodal Emotion Reasoning: a Promising Way to Open-set Emotion Recognition
Multimodal emotion recognition is an active research topic in artificial intelligence. Its main goal is to integrate multi-modalities to identify human emotional states. Current works generally assume accurate emotion labels for benchmark datasets and focus on developing more effective architectures. However, emotions have inherent ambiguity and subjectivity. To obtain more reliable labels, existing datasets usually restrict the label space to some basic categories, then hire multiple annotators and use majority voting to select the most likely label. However, this process may cause some correct but non-candidate or non-majority labels to be ignored. To improve reliability without ignoring subtle emotions, we propose a new task called ``\textbf{Explainable Multimodal Emotion Reasoning (EMER)}''. In contrast to traditional tasks that focus on predicting emotions, EMER takes a step further by providing explanations for these predictions. Through this task, we can extract more reliable labels since each label has a certain basis. Meanwhile, we use LLMs to disambiguate unimodal descriptions and generate more complete multimodal EMER descriptions. From them, we can extract subtle labels, providing a promising approach for open-set emotion recognition. This paper presents our initial efforts, where we introduce a new dataset, establish baselines, and define evaluation metrics. In addition, EMER can also be used as a benchmark dataset to evaluate the audio-video-text understanding capabilities of multimodal LLMs. To facilitate further research, we will make the code and data available at: https://github.com/zeroQiaoba/AffectGPT.
Computation and Language 131
☆ MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents
Recognizing if LLM output can be grounded in evidence is central to many tasks in NLP: retrieval-augmented generation, summarization, document-grounded dialogue, and more. Current approaches to this kind of "fact-checking" are based on verifying each piece of a model generation against potential evidence using an LLM. However, this process can be very computationally expensive, requiring many calls to LLMs to check a single response. In this work, we show how to build small models that have GPT-4-level performance but for 400x lower cost. We do this by constructing synthetic training data with GPT-4, which involves creating realistic yet challenging instances of factual errors via a structured generation procedure. Training on this data teaches models to check each fact in the claim and recognize synthesis of information across sentences. For evaluation, we unify pre-existing datasets into a benchmark LLM-AggreFact, collected from recent work on fact-checking and grounding LLM generations. Our best system MiniCheck-FT5 (770M parameters) outperforms all systems of comparable size and reaches GPT-4 accuracy. We release LLM-AggreFact, code for data synthesis, and models.
comment: LLM-AggreFact benchmark, MiniCheck models, data generation code at https://github.com/Liyan06/MiniCheck
☆ LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.
☆ Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification
Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star light curves, based on large datasets from the Kepler and K2 missions. Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision. Employing AutoDL optimization, we achieve striking performance with the 1D-Convolution+BiLSTM architecture and the Swin Transformer, hitting accuracies of 94\% and 99\% correspondingly, with the latter demonstrating a notable 83\% accuracy in discerning the elusive Type II Cepheids-comprising merely 0.02\% of the total dataset.We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal large language model (MLLM), and Large Audio Language Model (LALM). Each model is fine-tuned with strategic prompt engineering and customized training methods to explore the emergent abilities of these models for astronomical data. Remarkably, StarWhisper LC Series exhibit high accuracies around 90\%, significantly reducing the need for explicit feature engineering, thereby paving the way for streamlined parallel data processing and the progression of multifaceted multimodal models in astronomical applications. The study furnishes two detailed catalogs illustrating the impacts of phase and sampling intervals on deep learning classification accuracy, showing that a substantial decrease of up to 14\% in observation duration and 21\% in sampling points can be realized without compromising accuracy by more than 10\%.
comment: 35 pages, 20 figures
☆ Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study
Reinforcement Learning from Human Feedback (RLHF) is currently the most widely used method to align large language models (LLMs) with human preferences. Existing RLHF methods can be roughly categorized as either reward-based or reward-free. Novel applications such as ChatGPT and Claude leverage reward-based methods that first learn a reward model and apply actor-critic algorithms, such as Proximal Policy Optimization (PPO). However, in academic benchmarks, state-of-the-art results are often achieved via reward-free methods, such as Direct Preference Optimization (DPO). Is DPO truly superior to PPO? Why does PPO perform poorly on these benchmarks? In this paper, we first conduct both theoretical and empirical studies on the algorithmic properties of DPO and show that DPO may have fundamental limitations. Moreover, we also comprehensively examine PPO and reveal the key factors for the best performances of PPO in fine-tuning LLMs. Finally, we benchmark DPO and PPO across various a collection of RLHF testbeds, ranging from dialogue to code generation. Experiment results demonstrate that PPO is able to surpass other alignment methods in all cases and achieve state-of-the-art results in challenging code competitions.
comment: 16 pages, 2 figures, 14 tables
☆ Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
☆ Cross-Language Evolution of Divergent Collective Memory Around the Arab Spring
The Arab Spring was a historic set of protests beginning in 2011 that toppled governments and led to major conflicts. Collective memories of events like these can vary significantly across social contexts in response to political, cultural, and linguistic factors. While Wikipedia plays an important role in documenting both historic and current events, little attention has been given to how Wikipedia articles, created in the aftermath of major events, continue to evolve over years or decades. Using the archived content of Arab Spring-related topics across the Arabic and English Wikipedias between 2011 and 2024, we define and evaluate multilingual measures of event salience, deliberation, contextualization, and consolidation of collective memory surrounding the Arab Spring. Our findings about the temporal evolution of the Wikipedia articles' content similarity across languages has implications for theorizing about online collective memory processes and evaluating linguistic models trained on these data.
☆ Question Difficulty Ranking for Multiple-Choice Reading Comprehension
Multiple-choice (MC) tests are an efficient method to assess English learners. It is useful for test creators to rank candidate MC questions by difficulty during exam curation. Typically, the difficulty is determined by having human test takers trial the questions in a pretesting stage. However, this is expensive and not scalable. Therefore, we explore automated approaches to rank MC questions by difficulty. However, there is limited data for explicit training of a system for difficulty scores. Hence, we compare task transfer and zero-shot approaches: task transfer adapts level classification and reading comprehension systems for difficulty ranking while zero-shot prompting of instruction finetuned language models contrasts absolute assessment against comparative. It is found that level classification transfers better than reading comprehension. Additionally, zero-shot comparative assessment is more effective at difficulty ranking than the absolute assessment and even the task transfer approaches at question difficulty ranking with a Spearman's correlation of 40.4%. Combining the systems is observed to further boost the correlation.
comment: 7 pages, 3 figures
☆ Integrating knowledge bases to improve coreference and bridging resolution for the chemical domain
Resolving coreference and bridging relations in chemical patents is important for better understanding the precise chemical process, where chemical domain knowledge is very critical. We proposed an approach incorporating external knowledge into a multi-task learning model for both coreference and bridging resolution in the chemical domain. The results show that integrating external knowledge can benefit both chemical coreference and bridging resolution.
comment: working in progress
☆ ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (\textbf{Vi}etnamese \textbf{Text}-based \textbf{V}isual \textbf{Q}uestion \textbf{A}nswering dataset) which contains \textbf{over 16,000} images and \textbf{over 50,000} questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this \href{https://github.com/minhquan6203/ViTextVQA-Dataset}{link} for research purposes.
comment: Preprint submitted to IJCV
☆ Self-playing Adversarial Language Game Enhances LLM Reasoning
We explore the self-play training procedure of large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate with respect to a target word only visible to the attacker. The attacker aims to induce the defender to utter the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players should have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Play in this Adversarial language Game (SPAG). With this goal, we let LLMs act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performance uniformly improves on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLM's reasoning ability. The code is at https://github.com/Linear95/SPAG.
comment: Preprint
☆ HLAT: High-quality Large Language Model Pre-trained on AWS Trainium
Getting large language models (LLMs) to perform well on the downstream tasks requires pre-training over trillions of tokens. This typically demands a large number of powerful computational devices in addition to a stable distributed training framework to accelerate the training. The growing number of applications leveraging AI/ML had led to a scarcity of the expensive conventional accelerators (such as GPUs), which begs the need for the alternative specialized-accelerators that are scalable and cost-efficient. AWS Trainium is the second-generation machine learning accelerator that has been purposely built for training large deep learning models. Its corresponding instance, Amazon EC2 trn1, is an alternative to GPU instances for LLM training. However, training LLMs with billions of parameters on trn1 is challenging due to its relatively nascent software ecosystem. In this paper, we showcase HLAT: a 7 billion parameter decoder-only LLM pre-trained using trn1 instances over 1.8 trillion tokens. The performance of HLAT is benchmarked against popular open source baseline models including LLaMA and OpenLLaMA, which have been trained on NVIDIA GPUs and Google TPUs, respectively. On various evaluation tasks, we show that HLAT achieves model quality on par with the baselines. We also share the best practice of using the Neuron Distributed Training Library (NDTL), a customized distributed training library for AWS Trainium to achieve efficient training. Our work demonstrates that AWS Trainium powered by the NDTL is able to successfully pre-train state-of-the-art LLM models with high performance and cost-effectiveness.
☆ The application of Augmented Reality (AR) in Remote Work and Education
With the rapid advancement of technology, Augmented Reality (AR) technology, known for its ability to deeply integrate virtual information with the real world, is gradually transforming traditional work modes and teaching methods. Particularly in the realms of remote work and online education, AR technology demonstrates a broad spectrum of application prospects. This paper delves into the application potential and actual effects of AR technology in remote work and education. Through a systematic literature review, this study outlines the key features, advantages, and challenges of AR technology. Based on theoretical analysis, it discusses the scientific basis and technical support that AR technology provides for enhancing remote work efficiency and promoting innovation in educational teaching models. Additionally, by designing an empirical research plan and analyzing experimental data, this article reveals the specific performance and influencing factors of AR technology in practical applications. Finally, based on the results of the experiments, this research summarizes the application value of AR technology in remote work and education, looks forward to its future development trends, and proposes forward-looking research directions and strategic suggestions, offering empirical foundation and theoretical guidance for further promoting the in-depth application of AR technology in related fields.
☆ Construction of Domain-specified Japanese Large Language Model for Finance through Continual Pre-training
Large language models (LLMs) are now widely used in various fields, including finance. However, Japanese financial-specific LLMs have not been proposed yet. Hence, this study aims to construct a Japanese financial-specific LLM through continual pre-training. Before tuning, we constructed Japanese financial-focused datasets for continual pre-training. As a base model, we employed a Japanese LLM that achieved state-of-the-art performance on Japanese financial benchmarks among the 10-billion-class parameter models. After continual pre-training using the datasets and the base model, the tuned model performed better than the original model on the Japanese financial benchmarks. Moreover, the outputs comparison results reveal that the tuned model's outputs tend to be better than the original model's outputs in terms of the quality and length of the answers. These findings indicate that domain-specific continual pre-training is also effective for LLMs. The tuned model is publicly available on Hugging Face.
comment: 7 pages
☆ Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning
The open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress. This includes both base models, which are pre-trained on extensive datasets without alignment, and aligned models, deliberately designed to align with ethical standards and human values. Contrary to the prevalent assumption that the inherent instruction-following limitations of base LLMs serve as a safeguard against misuse, our investigation exposes a critical oversight in this belief. By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions. To systematically assess these risks, we introduce a novel set of risk evaluation metrics. Empirical results reveal that the outputs from base LLMs can exhibit risk levels on par with those of models fine-tuned for malicious purposes. This vulnerability, requiring neither specialized knowledge nor training, can be manipulated by almost anyone, highlighting the substantial risk and the critical need for immediate attention to the base LLMs' security protocols.
☆ CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
☆ White Men Lead, Black Women Help: Uncovering Gender, Racial, and Intersectional Bias in Language Agency
Social biases can manifest in language agency. For instance, White individuals and men are often described as "agentic" and achievement-oriented, whereas Black individuals and women are frequently described as "communal" and as assisting roles. This study establishes agency as an important aspect of studying social biases in both human-written and Large Language Model (LLM)-generated texts. To accurately measure "language agency" at sentence level, we propose a Language Agency Classification dataset to train reliable agency classifiers. We then use an agency classifier to reveal notable language agency biases in 6 datasets of human- or LLM-written texts, including biographies, professor reviews, and reference letters. While most prior NLP research on agency biases focused on single dimensions, we comprehensively explore language agency biases in gender, race, and intersectional identities. We observe that (1) language agency biases in human-written texts align with real-world social observations; (2) LLM-generated texts demonstrate remarkably higher levels of language agency bias than human-written texts; and (3) critical biases in language agency target people of minority groups--for instance, languages used to describe Black females exhibit the lowest level of agency across datasets. Our findings reveal intricate social biases in human- and LLM-written texts through the lens of language agency, warning against using LLM generations in social contexts without scrutiny.
☆ A Sentiment Analysis of Medical Text Based on Deep Learning
The field of natural language processing (NLP) has made significant progress with the rapid development of deep learning technologies. One of the research directions in text sentiment analysis is sentiment analysis of medical texts, which holds great potential for application in clinical diagnosis. However, the medical field currently lacks sufficient text datasets, and the effectiveness of sentiment analysis is greatly impacted by different model design approaches, which presents challenges. Therefore, this paper focuses on the medical domain, using bidirectional encoder representations from transformers (BERT) as the basic pre-trained model and experimenting with modules such as convolutional neural network (CNN), fully connected network (FCN), and graph convolutional networks (GCN) at the output layer. Experiments and analyses were conducted on the METS-CoV dataset to explore the training performance after integrating different deep learning networks. The results indicate that CNN models outperform other networks when trained on smaller medical text datasets in combination with pre-trained models like BERT. This study highlights the significance of model selection in achieving effective sentiment analysis in the medical domain and provides a reference for future research to develop more efficient model architectures.
Self-Supervised Visual Preference Alignment
This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code will be available.
☆ When Emotional Stimuli meet Prompt Designing: An Auto-Prompt Graphical Paradigm
With the development of Large Language Models (LLM), numerous prompts have been proposed, each with a rich set of features and their own merits. This paper summarizes the prompt words for large language models (LLMs), categorizing them into stimulating and framework types, and proposes an Auto-Prompt Graphical Paradigm(APGP) that combines both stimulating and framework prompts to enhance the problem-solving capabilities of LLMs across multiple domains, then exemplifies it with a framework that adheres to this paradigm. The framework involves automated prompt generation and consideration of emotion-stimulus factors, guiding LLMs in problem abstraction, diversified solutions generation, comprehensive optimization, and self-verification after providing answers, ensuring solution accuracy. Compared to traditional stimuli and framework prompts, this framework integrates the advantages of both by adopting automated approaches inspired by APE work, overcoming the limitations of manually designed prompts. Test results on the ruozhiba and BBH datasets demonstrate that this framework can effectively improve the efficiency and accuracy of LLMs in problem-solving, paving the way for new applications of LLMs.
comment: 9 pages, 5 figures
☆ Conversations as a Source for Teaching Scientific Concepts at Different Education Levels
Open conversations are one of the most engaging forms of teaching. However, creating those conversations in educational software is a complex endeavor, especially if we want to address the needs of different audiences. While language models hold great promise for educational applications, there are substantial challenges in training them to engage in meaningful and effective conversational teaching, especially when considering the diverse needs of various audiences. No official data sets exist for this task to facilitate the training of language models for conversational teaching, considering the diverse needs of various audiences. This paper presents a novel source for facilitating conversational teaching of scientific concepts at various difficulty levels (from preschooler to expert), namely dialogues taken from video transcripts. We analyse this data source in various ways to show that it offers a diverse array of examples that can be used to generate contextually appropriate and natural responses to scientific topics for specific target audiences. It is a freely available valuable resource for training and evaluating conversation models, encompassing organically occurring dialogues. While the raw data is available online, we provide additional metadata for conversational analysis of dialogues at each level in all available videos.
☆ DESTEIN: Navigating Detoxification of Language Models via Universal Steering Pairs and Head-wise Activation Fusion
Despite the remarkable achievements of language models (LMs) across a broad spectrum of tasks, their propensity for generating toxic outputs remains a prevalent concern. Current solutions involving fine-tuning or auxiliary models usually require extensive memory and computational resources, rendering them less practical for deployment in large language models (LLMs). In this paper, we propose DeStein, a novel method that detoxififies LMs by altering their internal representations in the activation space with lower resource and time cost. Specifically, we leverage self-induced steering pairs to identify detoxification vectors through arithmetic operations in the activation space. During inference, detoxification is achieved by blending the detoxification vectors with the original representations. Empirical results demonstrate that our method significantly outperforms previous state-of-the-art approaches on popular detoxification metrics, while also maintaining satisfactory generation quality and diversity. Furthermore, we extend our method to multiple LLMs, demonstrating its practicality and scalability. Warning: some example model outputs contain highly offensive or disturbing text.
☆ Language Proficiency and F0 Entrainment: A Study of L2 English Imitation in Italian, French, and Slovak Speakers
This study explores F0 entrainment in second language (L2) English speech imitation during an Alternating Reading Task (ART). Participants with Italian, French, and Slovak native languages imitated English utterances, and their F0 entrainment was quantified using the Dynamic Time Warping (DTW) distance between the parameterized F0 contours of the imitated utterances and those of the model utterances. Results indicate a nuanced relationship between L2 English proficiency and entrainment: speakers with higher proficiency generally exhibit less entrainment in pitch variation and declination. However, within dyads, the more proficient speakers demonstrate a greater ability to mimic pitch range, leading to increased entrainment. This suggests that proficiency influences entrainment differently at individual and dyadic levels, highlighting the complex interplay between language skill and prosodic adaptation.
comment: Accepted at Speech Prosody 2024
☆ MAD Speech: Measures of Acoustic Diversity of Speech
Generative spoken language models produce speech in a wide range of voices, prosody, and recording conditions, seemingly approaching the diversity of natural speech. However, the extent to which generated speech is acoustically diverse remains unclear due to a lack of appropriate metrics. We address this gap by developing lightweight metrics of acoustic diversity, which we collectively refer to as MAD Speech. We focus on measuring five facets of acoustic diversity: voice, gender, emotion, accent, and background noise. We construct the metrics as a composition of specialized, per-facet embedding models and an aggregation function that measures diversity within the embedding space. Next, we build a series of datasets with a priori known diversity preferences for each facet. Using these datasets, we demonstrate that our proposed metrics achieve a stronger agreement with the ground-truth diversity than baselines. Finally, we showcase the applicability of our proposed metrics across several real-life evaluation scenarios. MAD Speech will be made publicly accessible.
☆ Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering
Large language models (LLMs), such as GPT3.5, GPT4 and LLAMA2 perform surprisingly well and outperform human experts on many tasks. However, in many domain-specific evaluations, these LLMs often suffer from hallucination problems due to insufficient training of relevant corpus. Furthermore, fine-tuning large models may face problems such as the LLMs are not open source or the construction of high-quality domain instruction is difficult. Therefore, structured knowledge databases such as knowledge graph can better provide domain back- ground knowledge for LLMs and make full use of the reasoning and analysis capabilities of LLMs. In some previous works, LLM was called multiple times to determine whether the current triplet was suitable for inclusion in the subgraph when retrieving subgraphs through a question. Especially for the question that require a multi-hop reasoning path, frequent calls to LLM will consume a lot of computing power. Moreover, when choosing the reasoning path, LLM will be called once for each step, and if one of the steps is selected incorrectly, it will lead to the accumulation of errors in the following steps. In this paper, we integrated and optimized a pipeline for selecting reasoning paths from KG based on LLM, which can reduce the dependency on LLM. In addition, we propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank which can returns the paths most likely to contain the answer. We conduct experiments on three datasets: GenMedGPT-5k [14], WebQuestions [2], and CMCQA [21]. Finally, RoK can demonstrate that using fewer LLM calls can achieve the same results as previous SOTAs models.
☆ Self-Explore to Avoid the Pit: Improving the Reasoning Capabilities of Language Models with Fine-grained Rewards
Training on large amounts of rationales (i.e., CoT Fine-tuning) is effective at improving the reasoning capabilities of large language models (LLMs). However, acquiring human-authored rationales or augmenting rationales from proprietary models is costly and not scalable. In this paper, we study the problem of whether LLMs could self-improve their reasoning capabilities. To this end, we propose Self-Explore, where the LLM is tasked to explore the first wrong step (i.e., the first pit) within the rationale and use such signals as fine-grained rewards for further improvement. On the GSM8K and MATH test set, Self-Explore achieves 11.57% and 2.89% improvement on average across three LLMs compared to supervised fine-tuning (SFT). Our code is available at https://github.com/hbin0701/Self-Explore.
comment: Preprint Under Review
☆ Enhancing Confidence Expression in Large Language Models Through Learning from Past Experience
Large Language Models (LLMs) have exhibited remarkable performance across various downstream tasks, but they may generate inaccurate or false information with a confident tone. One of the possible solutions is to empower the LLM confidence expression capability, in which the confidence expressed can be well-aligned with the true probability of the generated answer being correct. However, leveraging the intrinsic ability of LLMs or the signals from the output logits of answers proves challenging in accurately capturing the response uncertainty in LLMs. Therefore, drawing inspiration from cognitive diagnostics, we propose a method of Learning from Past experience (LePe) to enhance the capability for confidence expression. Specifically, we first identify three key problems: (1) How to capture the inherent confidence of the LLM? (2) How to teach the LLM to express confidence? (3) How to evaluate the confidence expression of the LLM? Then we devise three stages in LePe to deal with these problems. Besides, to accurately capture the confidence of an LLM when constructing the training data, we design a complete pipeline including question preparation and answer sampling. We also conduct experiments using the Llama family of LLMs to verify the effectiveness of our proposed method on four datasets.
☆ Balancing Speciality and Versatility: a Coarse to Fine Framework for Supervised Fine-tuning Large Language Model
Aligned Large Language Models (LLMs) showcase remarkable versatility, capable of handling diverse real-world tasks. Meanwhile, aligned LLMs are also expected to exhibit speciality, excelling in specific applications. However, fine-tuning with extra data, a common practice to gain speciality, often leads to catastrophic forgetting (CF) of previously acquired versatility, hindering the model's performance across diverse tasks. In response to this challenge, we propose CoFiTune, a coarse to fine framework in an attempt to strike the balance between speciality and versatility. At the coarse-grained level, an empirical tree-search algorithm is utilized to pinpoint and update specific modules that are crucial for speciality, while keeping other parameters frozen; at the fine-grained level, a soft-masking mechanism regulates the update to the LLMs, mitigating the CF issue without harming speciality. In an overall evaluation of both speciality and versatility, CoFiTune consistently outperforms baseline methods across diverse tasks and model scales. Compared to the full-parameter SFT, CoFiTune leads to about 14% versatility improvement and marginal speciality loss on a 13B model. Lastly, based on further analysis, we provide a speculative insight into the information forwarding process in LLMs, which helps explain the effectiveness of the proposed method. The code is available at https://github.com/rattlesnakey/CoFiTune.
comment: 43 pages, 10 figures
☆ Future Language Modeling from Temporal Document History ICLR 2024
Predicting the future is of great interest across many aspects of human activity. Businesses are interested in future trends, traders are interested in future stock prices, and companies are highly interested in future technological breakthroughs. While there are many automated systems for predicting future numerical data, such as weather, stock prices, and demand for products, there is relatively little work in automatically predicting textual data. Humans are interested in textual data predictions because it is a natural format for our consumption, and experts routinely make predictions in a textual format (Christensen et al., 2004; Tetlock & Gardner, 2015; Frick, 2015). However, there has been relatively little formalization of this general problem in the machine learning or natural language processing communities. To address this gap, we introduce the task of future language modeling: probabilistic modeling of texts in the future based on a temporal history of texts. To our knowledge, our work is the first work to formalize the task of predicting the future in this way. We show that it is indeed possible to build future language models that improve upon strong non-temporal language model baselines, opening the door to working on this important, and widely applicable problem.
comment: Accepted by ICLR 2024
☆ Social Choice for AI Alignment: Dealing with Diverse Human Feedback
Foundation models such as GPT-4 are fine-tuned to avoid unsafe or otherwise problematic behavior, so that, for example, they refuse to comply with requests for help with committing crimes or with producing racist text. One approach to fine-tuning, called reinforcement learning from human feedback, learns from humans' expressed preferences over multiple outputs. Another approach is constitutional AI, in which the input from humans is a list of high-level principles. But how do we deal with potentially diverging input from humans? How can we aggregate the input into consistent data about ''collective'' preferences or otherwise use it to make collective choices about model behavior? In this paper, we argue that the field of social choice is well positioned to address these questions, and we discuss ways forward for this agenda, drawing on discussions in a recent workshop on Social Choice for AI Ethics and Safety held in Berkeley, CA, USA in December 2023.
comment: 15 pages, 4 figures
☆ Modeling Low-Resource Health Coaching Dialogues via Neuro-Symbolic Goal Summarization and Text-Units-Text Generation LREC
Health coaching helps patients achieve personalized and lifestyle-related goals, effectively managing chronic conditions and alleviating mental health issues. It is particularly beneficial, however cost-prohibitive, for low-socioeconomic status populations due to its highly personalized and labor-intensive nature. In this paper, we propose a neuro-symbolic goal summarizer to support health coaches in keeping track of the goals and a text-units-text dialogue generation model that converses with patients and helps them create and accomplish specific goals for physical activities. Our models outperform previous state-of-the-art while eliminating the need for predefined schema and corresponding annotation. We also propose a new health coaching dataset extending previous work and a metric to measure the unconventionality of the patient's response based on data difficulty, facilitating potential coach alerts during deployment.
comment: Accepted to the main conference of LREC-COLING 2024
☆ Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy
The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.
☆ MoE-TinyMed: Mixture of Experts for Tiny Medical Large Vision-Language Models
Mixture of Expert Tuning (MoE-Tuning) has effectively enhanced the performance of general MLLMs with fewer parameters, yet its application in resource-limited medical settings has not been fully explored. To address this gap, we developed MoE-TinyMed, a model tailored for medical applications that significantly lowers parameter demands. In evaluations on the VQA-RAD, SLAKE, and Path-VQA datasets, MoE-TinyMed outperformed LLaVA-Med in all Med-VQA closed settings with just 3.6B parameters. Additionally, a streamlined version with 2B parameters surpassed LLaVA-Med's performance in PathVQA, showcasing its effectiveness in resource-limited healthcare settings.
☆ Generative Text Steganography with Large Language Model
Recent advances in large language models (LLMs) have blurred the boundary of high-quality text generation between humans and machines, which is favorable for generative text steganography. While, current advanced steganographic mapping is not suitable for LLMs since most users are restricted to accessing only the black-box API or user interface of the LLMs, thereby lacking access to the training vocabulary and its sampling probabilities. In this paper, we explore a black-box generative text steganographic method based on the user interfaces of large language models, which is called LLM-Stega. The main goal of LLM-Stega is that the secure covert communication between Alice (sender) and Bob (receiver) is conducted by using the user interfaces of LLMs. Specifically, We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages. Furthermore, to guarantee accurate extraction of secret messages and rich semantics of generated stego texts, an optimization mechanism based on reject sampling is proposed. Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.
☆ Two-Stage Stance Labeling: User-Hashtag Heuristics with Graph Neural Networks
The high volume and rapid evolution of content on social media present major challenges for studying the stance of social media users. In this work, we develop a two stage stance labeling method that utilizes the user-hashtag bipartite graph and the user-user interaction graph. In the first stage, a simple and efficient heuristic for stance labeling uses the user-hashtag bipartite graph to iteratively update the stance association of user and hashtag nodes via a label propagation mechanism. This set of soft labels is then integrated with the user-user interaction graph to train a graph neural network (GNN) model using semi-supervised learning. We evaluate this method on two large-scale datasets containing tweets related to climate change from June 2021 to June 2022 and gun control from January 2022 to January 2023. Experiments demonstrate that our user-hashtag heuristic and the semi-supervised GNN method outperform zero-shot stance labeling using LLMs such as GPT4. Further analysis illustrates how the stance labeling information and interaction graph can be used for evaluating the polarization of social media interactions on divisive issues such as climate change and gun control.
☆ Find The Gap: Knowledge Base Reasoning For Visual Question Answering
We analyze knowledge-based visual question answering, for which given a question, the models need to ground it into the visual modality and retrieve the relevant knowledge from a given large knowledge base (KB) to be able to answer. Our analysis has two folds, one based on designing neural architectures and training them from scratch, and another based on large pre-trained language models (LLMs). Our research questions are: 1) Can we effectively augment models by explicit supervised retrieval of the relevant KB information to solve the KB-VQA problem? 2) How do task-specific and LLM-based models perform in the integration of visual and external knowledge, and multi-hop reasoning over both sources of information? 3) Is the implicit knowledge of LLMs sufficient for KB-VQA and to what extent it can replace the explicit KB? Our results demonstrate the positive impact of empowering task-specific and LLM models with supervised external and visual knowledge retrieval models. Our findings show that though LLMs are stronger in 1-hop reasoning, they suffer in 2-hop reasoning in comparison with our fine-tuned NN model even if the relevant information from both modalities is available to the model. Moreover, we observed that LLM models outperform the NN model for KB-related questions which confirms the effectiveness of implicit knowledge in LLMs however, they do not alleviate the need for external KB.
☆ CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting
As the utilization of large language models (LLMs) has proliferated worldwide, it is crucial for them to have adequate knowledge and fair representation for diverse global cultures. In this work, we uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations, and extract symbols from these generations that are associated to each culture by the LLM. We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures. We also discover that LLMs have an uneven degree of diversity in the culture symbols, and that cultures from different geographic regions have different presence in LLMs' culture-agnostic generation. Our findings promote further research in studying the knowledge and fairness of global culture perception in LLMs. Code and Data can be found in: https://github.com/huihanlhh/Culture-Gen/
☆ How faithful are RAG models? Quantifying the tug-of-war between RAG and LLMs' internal prior
Retrieval augmented generation (RAG) is often used to fix hallucinations and provide up-to-date knowledge for large language models (LLMs). However, in cases when the LLM alone incorrectly answers a question, does providing the correct retrieved content always fix the error? Conversely, in cases where the retrieved content is incorrect, does the LLM know to ignore the wrong information, or does it recapitulate the error? To answer these questions, we systematically analyze the tug-of-war between a LLM's internal knowledge (i.e. its prior) and the retrieved information in settings when they disagree. We test GPT-4 and other LLMs on question-answering abilities across datasets with and without reference documents. As expected, providing the correct retrieved information fixes most model mistakes (94% accuracy). However, when the reference document is perturbed with increasing levels of wrong values, the LLM is more likely to recite the incorrect, modified information when its internal prior is weaker but is more resistant when its prior is stronger. Similarly, we also find that the more the modified information deviates from the model's prior, the less likely the model is to prefer it. These results highlight an underlying tension between a model's prior knowledge and the information presented in reference documents.
☆ Uncertainty-Based Abstention in LLMs Improves Safety and Reduces Hallucinations
A major barrier towards the practical deployment of large language models (LLMs) is their lack of reliability. Three situations where this is particularly apparent are correctness, hallucinations when given unanswerable questions, and safety. In all three cases, models should ideally abstain from responding, much like humans, whose ability to understand uncertainty makes us refrain from answering questions we don't know. Inspired by analogous approaches in classification, this study explores the feasibility and efficacy of abstaining while uncertain in the context of LLMs within the domain of question-answering. We investigate two kinds of uncertainties, statistical uncertainty metrics and a distinct verbalized measure, termed as In-Dialogue Uncertainty (InDU). Using these uncertainty measures combined with models with and without Reinforcement Learning with Human Feedback (RLHF), we show that in all three situations, abstention based on the right kind of uncertainty measure can boost the reliability of LLMs. By sacrificing only a few highly uncertain samples we can improve correctness by 2% to 8%, avoid 50% hallucinations via correctly identifying unanswerable questions and increase safety by 70% up to 99% with almost no additional computational overhead.
☆ Can Language Models Solve Olympiad Programming?
Computing olympiads contain some of the most challenging problems for humans, requiring complex algorithmic reasoning, puzzle solving, in addition to generating efficient code. However, it has been understudied as a domain to evaluate language models (LMs). In this paper, we introduce the USACO benchmark with 307 problems from the USA Computing Olympiad, along with high-quality unit tests, reference code, and official analyses for each problem. These resources enable us to construct and test a range of LM inference methods for competitive programming for the first time. We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting, and our best inference method improves it to 20.2% using a combination of self-reflection and retrieval over episodic knowledge. However, this is far from solving the benchmark. To better understand the remaining challenges, we design a novel human-in-the-loop study and surprisingly find that a small number of targeted hints enable GPT-4 to solve 13 out of 15 problems previously unsolvable by any model and method. Our benchmark, baseline methods, quantitative results, and qualitative analysis serve as an initial step toward LMs with grounded, creative, and algorithmic reasoning.
comment: Code and data: https://princeton-nlp.github.io/USACOBench/
☆ More Room for Language: Investigating the Effect of Retrieval on Language Models NAACL 2024
Retrieval-augmented language models pose a promising alternative to standard language modeling. During pretraining, these models search in a corpus of documents for contextually relevant information that could aid the language modeling objective. We introduce an 'ideal retrieval' methodology to study these models in a fully controllable setting. We conduct an extensive evaluation to examine how retrieval augmentation affects the behavior of the underlying language model. Among other things, we observe that these models: i) save substantially less world knowledge in their weights, ii) are better at understanding local context and inter-word dependencies, but iii) are worse at comprehending global context.
comment: NAACL 2024
☆ Shears: Unstructured Sparsity with Neural Low-rank Adapter Search
Recently, several approaches successfully demonstrated that weight-sharing Neural Architecture Search (NAS) can effectively explore a search space of elastic low-rank adapters (LoRA), allowing the parameter-efficient fine-tuning (PEFT) and compression of large language models. In this paper, we introduce a novel approach called Shears, demonstrating how the integration of cost-effective sparsity and a proposed Neural Low-rank adapter Search (NLS) algorithm can further improve the efficiency of PEFT approaches. Results demonstrate the benefits of Shears compared to other methods, reaching high sparsity levels while improving or with little drop in accuracy, utilizing a single GPU for a pair of hours.
comment: 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (Industry Track)
☆ LLMem: Estimating GPU Memory Usage for Fine-Tuning Pre-Trained LLMs IJCAI 2024
Fine-tuning pre-trained large language models (LLMs) with limited hardware presents challenges due to GPU memory constraints. Various distributed fine-tuning methods have been proposed to alleviate memory constraints on GPU. However, determining the most effective method for achieving rapid fine-tuning while preventing GPU out-of-memory issues in a given environment remains unclear. To address this challenge, we introduce LLMem, a solution that estimates the GPU memory consumption when applying distributed fine-tuning methods across multiple GPUs and identifies the optimal method. We conduct GPU memory usage estimation prior to fine-tuning, leveraging the fundamental structure of transformer-based decoder models and the memory usage distribution of each method. Experimental results show that LLMem accurately estimates peak GPU memory usage on a single GPU, with error rates of up to 1.6%. Additionally, it shows an average error rate of 3.0% when applying distributed fine-tuning methods to LLMs with more than a billion parameters on multi-GPU setups.
comment: 9 pages, 9 figures, accepted to IJCAI 2024
☆ Binder: Hierarchical Concept Representation through Order Embedding of Binary Vectors
For natural language understanding and generation, embedding concepts using an order-based representation is an essential task. Unlike traditional point vector based representation, an order-based representation imposes geometric constraints on the representation vectors for explicitly capturing various semantic relationships that may exist between a pair of concepts. In existing literature, several approaches on order-based embedding have been proposed, mostly focusing on capturing hierarchical relationships; examples include vectors in Euclidean space, complex, Hyperbolic, order, and Box Embedding. Box embedding creates region-based rich representation of concepts, but along the process it sacrifices simplicity, requiring a custom-made optimization scheme for learning the representation. Hyperbolic embedding improves embedding quality by exploiting the ever-expanding property of Hyperbolic space, but it also suffers from the same fate as box embedding as gradient descent like optimization is not simple in the Hyperbolic space. In this work, we propose Binder, a novel approach for order-based representation. Binder uses binary vectors for embedding, so the embedding vectors are compact with an order of magnitude smaller footprint than other methods. Binder uses a simple and efficient optimization scheme for learning representation vectors with a linear time complexity. Our comprehensive experimental results show that Binder is very accurate, yielding competitive results on the representation task. But Binder stands out from its competitors on the transitive closure link prediction task as it can learn concept embeddings just from the direct edges, whereas all existing order-based approaches rely on the indirect edges.
☆ Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training NAACL
Recent advancements in language modeling have led to the emergence of Large Language Models (LLMs) capable of various natural language processing tasks. Despite their success in text-based tasks, applying LLMs to the speech domain remains limited and challenging. This paper presents BLOOMZMMS, a novel model that integrates a multilingual LLM with a multilingual speech encoder, aiming to harness the capabilities of LLMs for speech recognition and beyond. Utilizing a multi-instructional training approach, we demonstrate the transferability of linguistic knowledge from the text to the speech modality. Our experiments, conducted on 1900 hours of transcribed data from 139 languages, establish that a multilingual speech representation can be effectively learned and aligned with a multilingual LLM. While this learned representation initially shows limitations in task generalization, we address this issue by generating synthetic targets in a multi-instructional style. Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks, including speech translation and multilingual spoken language understanding, thereby opening new avenues for applying LLMs in the speech domain.
comment: NAACL Findings 2024
☆ Which questions should I answer? Salience Prediction of Inquisitive Questions
Inquisitive questions -- open-ended, curiosity-driven questions people ask as they read -- are an integral part of discourse processing (Kehler and Rohde, 2017; Onea, 2016) and comprehension (Prince, 2004). Recent work in NLP has taken advantage of question generation capabilities of LLMs to enhance a wide range of applications. But the space of inquisitive questions is vast: many questions can be evoked from a given context. So which of those should be prioritized to find answers? Linguistic theories, unfortunately, have not yet provided an answer to this question. This paper presents QSALIENCE, a salience predictor of inquisitive questions. QSALIENCE is instruction-tuned over our dataset of linguist-annotated salience scores of 1,766 (context, question) pairs. A question scores high on salience if answering it would greatly enhance the understanding of the text (Van Rooy, 2003). We show that highly salient questions are empirically more likely to be answered in the same article, bridging potential questions (Onea, 2016) with Questions Under Discussion (Roberts, 2012). We further validate our findings by showing that answering salient questions is an indicator of summarization quality in news.
☆ Search Beyond Queries: Training Smaller Language Models for Web Interactions via Reinforcement Learning
Traditional search systems focus on query formulation for effective results but face challenges in scenarios such as product searches where crucial product details (e.g., size, color) remain concealed until users visit specific product pages. This highlights the need for intelligent web navigation agents capable of formulating queries and navigating web pages according to users' high-level intents. In response to this need, this work introduces a Grounded Language Agent for Intelligent Web Interactions, called GLAINTEL. Drawing upon advancements in language modeling and reinforcement learning, GLAINTEL investigates the efficacy of transformer-based models in enhancing the search capabilities of interactive web environments. Given the dynamic action space for each state in web navigation, GLAINTEL employs the Flan-T5 architecture and incorporates language modeling and value estimation heads. This work focuses on training smaller language models as agents across various scenarios, systematically evaluating the impact of human demonstrations on the training process. Specifically, we investigate scenarios where no human demonstrations are available and subsequently assess the effective utilization of such demonstrations. We also explore unsupervised domain adaptation for situations where demonstrations are confined to a specific domain. Experimental evaluations across diverse setups demonstrate the effectiveness of training agents in unsupervised settings, outperforming in-context learning-based approaches that employ larger models with up to 540 billion parameters. Surprisingly, behavioral cloning-based methods that straightforwardly use human demonstrations do not outperform unsupervised learning-based methods. Additionally, combining human demonstrations with Reinforcement Learning-based training yields results comparable to models utilizing GPT-4.
comment: 9 pages
☆ Incubating Text Classifiers Following User Instruction with Nothing but LLM
In this paper, we aim to generate text classification data given arbitrary class definitions (i.e., user instruction), so one can train a small text classifier without any human annotation or raw corpus. Compared with pioneer attempts, our proposed Incubator is the first framework that can handle complicated and even mutually dependent classes (e.g., "TED Talk given by Educator" and "Other"). Specifically, Incubator is an LLM firstly tuned on the instruction-to-data mappings that we obtained from classification datasets and descriptions on HuggingFace together with in-context augmentation by GPT-4. We then refine Incubator by learning on the cluster centers of semantic textual embeddings to emphasize the uniformity and semantic diversity in generations. We compare Incubator on various classification tasks with strong baselines such as direct LLM-based inference and training data generation by prompt engineering. Experiments show Incubator is able to (1) perform well on traditional benchmarks, (2) take label dependency and user preference into consideration, and (3) enable logical text mining by incubating multiple classifiers.
☆ Forcing Diffuse Distributions out of Language Models
Despite being trained specifically to follow user instructions, today's language models perform poorly when instructed to produce random outputs. For example, when prompted to pick a number uniformly between one and ten Llama-2-13B-chat disproportionately favors the number five, and when tasked with picking a first name at random, Mistral-7B-Instruct chooses Avery 40 times more often than we would expect based on the U.S. population. When these language models are used for real-world tasks where diversity of outputs is crucial, such as language model assisted dataset construction, their inability to produce diffuse distributions over valid choices is a major hurdle. In this work, we propose a fine-tuning method that encourages language models to output distributions that are diffuse over valid outcomes. The methods we introduce generalize across a variety of tasks and distributions and make large language models practical for synthetic dataset generation with little human intervention.
☆ D3CODE: Disentangling Disagreements in Data across Cultures on Offensiveness Detection and Evaluation
While human annotations play a crucial role in language technologies, annotator subjectivity has long been overlooked in data collection. Recent studies that have critically examined this issue are often situated in the Western context, and solely document differences across age, gender, or racial groups. As a result, NLP research on subjectivity have overlooked the fact that individuals within demographic groups may hold diverse values, which can influence their perceptions beyond their group norms. To effectively incorporate these considerations into NLP pipelines, we need datasets with extensive parallel annotations from various social and cultural groups. In this paper we introduce the \dataset dataset: a large-scale cross-cultural dataset of parallel annotations for offensive language in over 4.5K sentences annotated by a pool of over 4k annotators, balanced across gender and age, from across 21 countries, representing eight geo-cultural regions. The dataset contains annotators' moral values captured along six moral foundations: care, equality, proportionality, authority, loyalty, and purity. Our analyses reveal substantial regional variations in annotators' perceptions that are shaped by individual moral values, offering crucial insights for building pluralistic, culturally sensitive NLP models.
☆ A LayoutLMv3-Based Model for Enhanced Relation Extraction in Visually-Rich Documents ICDAR 2024
Document Understanding is an evolving field in Natural Language Processing (NLP). In particular, visual and spatial features are essential in addition to the raw text itself and hence, several multimodal models were developed in the field of Visual Document Understanding (VDU). However, while research is mainly focused on Key Information Extraction (KIE), Relation Extraction (RE) between identified entities is still under-studied. For instance, RE is crucial to regroup entities or obtain a comprehensive hierarchy of data in a document. In this paper, we present a model that, initialized from LayoutLMv3, can match or outperform the current state-of-the-art results in RE applied to Visually-Rich Documents (VRD) on FUNSD and CORD datasets, without any specific pre-training and with fewer parameters. We also report an extensive ablation study performed on FUNSD, highlighting the great impact of certain features and modelization choices on the performances.
comment: Accepted at the International Conference on Document Analysis and Recognition (ICDAR 2024)
☆ Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning
In recent years, pre-trained multimodal large models have attracted widespread attention due to their outstanding performance in various multimodal applications. Nonetheless, the extensive computational resources and vast datasets required for their training present significant hurdles for deployment in environments with limited computational resources. To address this challenge, we propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model for efficient cross-modal representation learning for the first time. Unlike existing distillation methods, our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model. Ensuring that the student model inherits a comprehensive and nuanced understanding of the teacher knowledge. To optimize each distillation loss in a balanced and efficient manner, we propose a dynamic self-adaptive distillation loss balancer, a novel component eliminating the need for manual loss weight adjustments and dynamically balances each loss item during the distillation process. Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information, requiring minimal computational resources. This efficient approach is suited for various applications and allows the deployment of advanced multimodal technologies even in resource-limited settings. Extensive experiments has demonstrated that our method maintains high performance while significantly reducing model complexity and training costs. Moreover, our distilled student model utilizes only image-level information to achieve state-of-the-art performance on cross-modal retrieval tasks, surpassing previous methods that relied on region-level information.
comment: 10 pages
☆ Fewer Truncations Improve Language Modeling
In large language model training, input documents are typically concatenated together and then split into sequences of equal length to avoid padding tokens. Despite its efficiency, the concatenation approach compromises data integrity -- it inevitably breaks many documents into incomplete pieces, leading to excessive truncations that hinder the model from learning to compose logically coherent and factually consistent content that is grounded on the complete context. To address the issue, we propose Best-fit Packing, a scalable and efficient method that packs documents into training sequences through length-aware combinatorial optimization. Our method completely eliminates unnecessary truncations while retaining the same training efficiency as concatenation. Empirical results from both text and code pre-training show that our method achieves superior performance (e.g., relatively +4.7% on reading comprehension; +16.8% in context following; and +9.2% on program synthesis), and reduces closed-domain hallucination effectively by up to 58.3%.
♻ ☆ GROUNDHOG: Grounding Large Language Models to Holistic Segmentation CVPR 2024
Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm lacks pixel-level representations that are important for fine-grained visual understanding and diagnosis. In this work, we introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation. GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone, which then connects groundable phrases to unified grounding masks by retrieving and merging the entity masks. To train GROUNDHOG, we carefully curated M3G2, a grounded visual instruction tuning dataset with Multi-Modal Multi-Grained Grounding, by harvesting a collection of segmentation-grounded datasets with rich annotations. Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning, and significantly reduces object hallucination. GROUNDHOG also demonstrates better grounding towards complex forms of visual input and provides easy-to-understand diagnosis in failure cases.
comment: Accepted to CVPR 2024. Website: https://groundhog-mllm.github.io/
♻ ☆ Large Language Models as Generalizable Policies for Embodied Tasks
We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement. Video examples of LLaRP in unseen Language Rearrangement instructions are at https://llm-rl.github.io.
♻ ☆ When can transformers reason with abstract symbols?
We investigate the capabilities of transformer models on relational reasoning tasks. In these tasks, models are trained on a set of strings encoding abstract relations, and are then tested out-of-distribution on data that contains symbols that did not appear in the training dataset. We prove that for any relational reasoning task in a large family of tasks, transformers learn the abstract relations and generalize to the test set when trained by gradient descent on sufficiently large quantities of training data. This is in contrast to classical fully-connected networks, which we prove fail to learn to reason. Our results inspire modifications of the transformer architecture that add only two trainable parameters per head, and that we empirically demonstrate improve data efficiency for learning to reason.
comment: 25 figures
♻ ☆ AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models
We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel freezing score, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85\%$ as evaluated on GLUE benchmark while yeilding up to $9.5\times$ fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to $1.86\times$ improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices. Code will be released.
comment: 5 pages, 5 figures
♻ ☆ Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
♻ ☆ Rebuilding ROME : Resolving Model Collapse during Sequential Model Editing
Recent work using Rank-One Model Editing (ROME), a popular model editing method, has shown that there are certain facts that the algorithm is unable to edit without breaking the model. Such edits have previously been called disabling edits. These disabling edits cause immediate model collapse and limits the use of ROME for sequential editing. In this paper, we show that disabling edits are an artifact of irregularities in the implementation of ROME. With this paper, we provide a more stable implementation ROME, which we call r-ROME and show that model collapse is no longer observed when making large scale sequential edits with r-ROME, while further improving generalization and locality of model editing compared to the original implementation of ROME. We also provide a detailed mathematical explanation of the reason behind disabling edits.
comment: Added explanation of failure of original implementation of ROME in the paper
♻ ☆ RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning
Recent developments in large pre-trained language models have enabled unprecedented performance on a variety of downstream tasks. Achieving best performance with these models often leverages in-context learning, where a model performs a (possibly new) task given one or more examples. However, recent work has shown that the choice of examples can have a large impact on task performance and that finding an optimal set of examples is non-trivial. While there are many existing methods for selecting in-context examples, they generally score examples independently, ignoring the dependency between them and the order in which they are provided to the model. In this work, we propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning. We frame the problem of sequential example selection as a Markov decision process and train an example retriever using reinforcement learning. We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches heuristic and learnable baselines. We also use case studies to show that RetICL implicitly learns representations of problem solving strategies.
♻ ☆ Born With a Silver Spoon? Investigating Socioeconomic Bias in Large Language Models
Socioeconomic bias in society exacerbates disparities, influencing access to opportunities and resources based on individuals' economic and social backgrounds. This pervasive issue perpetuates systemic inequalities, hindering the pursuit of inclusive progress as a society. In this paper, we investigate the presence of socioeconomic bias, if any, in large language models. To this end, we introduce a novel dataset SilverSpoon, consisting of 3000 samples that illustrate hypothetical scenarios that involve underprivileged people performing ethically ambiguous actions due to their circumstances, and ask whether the action is ethically justified. Further, this dataset has a dual-labeling scheme and has been annotated by people belonging to both ends of the socioeconomic spectrum. Using SilverSpoon, we evaluate the degree of socioeconomic bias expressed in large language models and the variation of this degree as a function of model size. We also perform qualitative analysis to analyze the nature of this bias. Our analysis reveals that while humans disagree on which situations require empathy toward the underprivileged, most large language models are unable to empathize with the socioeconomically underprivileged regardless of the situation. To foster further research in this domain, we make SilverSpoon and our evaluation harness publicly available.
♻ ☆ From Prejudice to Parity: A New Approach to Debiasing Large Language Model Word Embeddings
Embeddings play a pivotal role in the efficacy of Large Language Models. They are the bedrock on which these models grasp contextual relationships and foster a more nuanced understanding of language and consequently perform remarkably on a plethora of complex tasks that require a fundamental understanding of human language. Given that these embeddings themselves often reflect or exhibit bias, it stands to reason that these models may also inadvertently learn this bias. In this work, we build on the seminal previous work and propose DeepSoftDebias, an algorithm that uses a neural network to perform 'soft debiasing'. We exhaustively evaluate this algorithm across a variety of SOTA datasets, accuracy metrics, and challenging NLP tasks. We find that DeepSoftDebias outperforms the current state-of-the-art methods at reducing bias across gender, race, and religion.
♻ ☆ Octopus v2: On-device language model for super agent
Language models have shown effectiveness in a variety of software applications, particularly in tasks related to automatic workflow. These models possess the crucial ability to call functions, which is essential in creating AI agents. Despite the high performance of large-scale language models in cloud environments, they are often associated with concerns over privacy and cost. Current on-device models for function calling face issues with latency and accuracy. Our research presents a new method that empowers an on-device model with 2 billion parameters to surpass the performance of GPT-4 in both accuracy and latency, and decrease the context length by 95\%. When compared to Llama-7B with a RAG-based function calling mechanism, our method enhances latency by 35-fold. This method reduces the latency to levels deemed suitable for deployment across a variety of edge devices in production environments, aligning with the performance requisites for real-world applications.
♻ ☆ Multi-dimensional Evaluation of Empathetic Dialog Responses
Empathy is critical for effective and satisfactory conversational communication. Prior efforts to measure conversational empathy mostly focus on expressed communicative intents -- that is, the way empathy is expressed. Yet, these works ignore the fact that conversation is also a collaboration involving both speakers and listeners. In contrast, we propose a multi-dimensional empathy evaluation framework to measure both expressed intents from the speaker's perspective and perceived empathy from the listener's perspective. We apply our proposed framework to analyze our internal customer-service dialogue. We find the two dimensions (expressed intent types and perceived empathy) are inter-connected, and perceived empathy has a high correlation with dialogue satisfaction levels. To reduce the annotation cost, we explore different options to automatically measure conversational empathy: prompting LLMs and training language model-based classifiers. Our experiments show that prompting methods with even popular models like GPT-4 and Flan family models perform relatively poorly on both public and our internal datasets. In contrast, instruction-finetuned classifiers based on Flan-T5 family models outperform prior works and competitive baselines. We conduct a detailed ablation study to give more insights into instruction finetuning method's strong performance.
comment: preprint
♻ ☆ The Curious Decline of Linguistic Diversity: Training Language Models on Synthetic Text NAACL 2024
This study investigates the consequences of training language models on synthetic data generated by their predecessors, an increasingly prevalent practice given the prominence of powerful generative models. Diverging from the usual emphasis on performance metrics, we focus on the impact of this training methodology on linguistic diversity, especially when conducted recursively over time. To assess this, we adapt and develop a set of novel metrics targeting lexical, syntactic, and semantic diversity, applying them in recursive finetuning experiments across various natural language generation tasks in English. Our findings reveal a consistent decrease in the diversity of the model outputs through successive iterations, especially remarkable for tasks demanding high levels of creativity. This trend underscores the potential risks of training language models on synthetic text, particularly concerning the preservation of linguistic richness. Our study highlights the need for careful consideration of the long-term effects of such training approaches on the linguistic capabilities of language models.
comment: Accepted to NAACL 2024 Findings
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ WebArena: A Realistic Web Environment for Building Autonomous Agents
With advances in generative AI, there is now potential for autonomous agents to manage daily tasks via natural language commands. However, current agents are primarily created and tested in simplified synthetic environments, leading to a disconnect with real-world scenarios. In this paper, we build an environment for language-guided agents that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on the web, and create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and designed to emulate tasks that humans routinely perform on the internet. We experiment with several baseline agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 14.41%, significantly lower than the human performance of 78.24%. These results highlight the need for further development of robust agents, that current state-of-the-art large language models are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress.
comment: Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/
♻ ☆ Benchingmaking Large Langage Models in Biomedical Triple Extraction
Biomedical triple extraction systems aim to automatically extract biomedical entities and relations between entities. The exploration of applying large language models (LLM) to triple extraction is still relatively unexplored. In this work, we mainly focus on sentence-level biomedical triple extraction. Furthermore, the absence of a high-quality biomedical triple extraction dataset impedes the progress in developing robust triple extraction systems. To address these challenges, initially, we compare the performance of various large language models. Additionally, we present GIT, an expert-annotated biomedical triple extraction dataset that covers a wider range of relation types.
comment: this is the onging work
♻ ☆ Anatomy of Industrial Scale Multilingual ASR
This paper describes AssemblyAI's industrial-scale automatic speech recognition (ASR) system, designed to meet the requirements of large-scale, multilingual ASR serving various application needs. Our system leverages a diverse training dataset comprising unsupervised (12.5M hours), supervised (188k hours), and pseudo-labeled (1.6M hours) data across four languages. We provide a detailed description of our model architecture, consisting of a full-context 600M-parameter Conformer encoder pre-trained with BEST-RQ and an RNN-T decoder fine-tuned jointly with the encoder. Our extensive evaluation demonstrates competitive word error rates (WERs) against larger and more computationally expensive models, such as Whisper large and Canary-1B. Furthermore, our architectural choices yield several key advantages, including an improved code-switching capability, a 5x inference speedup compared to an optimized Whisper baseline, a 30% reduction in hallucination rate on speech data, and a 90% reduction in ambient noise compared to Whisper, along with significantly improved time-stamp accuracy. Throughout this work, we adopt a system-centric approach to analyzing various aspects of fully-fledged ASR models to gain practically relevant insights useful for real-world services operating at scale.
♻ ☆ Explicitly Representing Syntax Improves Sentence-to-layout Prediction of Unexpected Situations ACL
Recognizing visual entities in a natural language sentence and arranging them in a 2D spatial layout require a compositional understanding of language and space. This task of layout prediction is valuable in text-to-image synthesis as it allows localized and controlled in-painting of the image. In this comparative study it is shown that we can predict layouts from language representations that implicitly or explicitly encode sentence syntax, if the sentences mention similar entity-relationships to the ones seen during training. To test compositional understanding, we collect a test set of grammatically correct sentences and layouts describing compositions of entities and relations that unlikely have been seen during training. Performance on this test set substantially drops, showing that current models rely on correlations in the training data and have difficulties in understanding the structure of the input sentences. We propose a novel structural loss function that better enforces the syntactic structure of the input sentence and show large performance gains in the task of 2D spatial layout prediction conditioned on text. The loss has the potential to be used in other generation tasks where a tree-like structure underlies the conditioning modality. Code, trained models and the USCOCO evaluation set are available via github.
comment: Published in TACL
♻ ☆ Linguistic Analysis using Paninian System of Sounds and Finite State Machines
The study of spoken languages comprises phonology, morphology, and grammar. Analysis of a language can be based on its syntax, semantics, and pragmatics. The languages can be classified as root languages, inflectional languages, and stem languages. All these factors lead to the formation of vocabulary which has commonality/similarity as well as distinct and subtle differences across languages. In this paper, we make use of Paninian system of sounds to construct a phonetic map and then words are represented as state transitions on the phonetic map. Each group of related words that cut across languages is represented by a m-language (morphological language). Morphological Finite Automata (MFA) are defined that accept the words belonging to a given m-language. This exercise can enable us to better understand the inter-relationships between words in spoken languages in both language-agnostic and language-cognizant manner. Based on our study and analysis, we propose an Ecosystem Model for Linguistic Development with Sanskrit at the core, in place of the widely accepted family tree model.
comment: 47 Pages, 18 Figures, 24 Tables
♻ ☆ Large Language Models Are Unconscious of Unreasonability in Math Problems
Large language models (LLMs) demonstrate substantial capabilities in solving math problems. However, they tend to produce hallucinations when given questions containing unreasonable errors. In this paper, we study the behavior of LLMs when faced with unreasonable math problems and further explore their potential to address these problems. We construct the Unreasonable Math Problem (UMP) benchmark to examine the error detection ability of LLMs. Experiments show that LLMs are able to detect unreasonable errors, but still fail in generating non-hallucinatory content. In order to improve their ability of error detection and correction, we further design a strategic prompt template called Critical Calculation and Conclusion(CCC). With CCC, LLMs can better self-evaluate and detect unreasonable errors in math questions, making them more reliable and safe in practical application scenarios.
comment: 11 pages, 3 figures
♻ ☆ MATHWELL: Generating Age-Appropriate Educational Math Word Problems
Math word problems are critical K-8 educational tools, but writing them is time-consuming and requires domain expertise. We suggest that language models can support K-8 math education by automatically generating problems. To be educational, generated problems must be 1) solvable, 2) accurate, and 3) appropriate. Existing datasets are unlabeled for these criteria, making them ill-suited for training problem generators. To address this gap, we use domain expert annotation to curate a high-quality synthetic training dataset for this task. We show the value of this data by using it to iteratively finetune Llama-2 (70B) to create MATHWELL, a K-8 word problem generator. Domain experts find MATHWELL has a 40% higher share of problems that have executable solutions and meet all criteria than existing open-source models, with 74% of its problems with executable solutions being solvable, accurate, and appropriate. MATHWELL achieves 94.9% of GPT-4 Turbo's performance on this task while outputting problems written at a more appropriate reading level for K-8 students. MATHWELL's performance despite being trained by finetuning only highlights the quality of our synthetic data for training age-appropriate word problem generators. We release our model, data, and annotations.
comment: 26 pages, 9 figures
♻ ☆ Language of Bargaining ACL 2023
Leveraging an established exercise in negotiation education, we build a novel dataset for studying how the use of language shapes bilateral bargaining. Our dataset extends existing work in two ways: 1) we recruit participants via behavioral labs instead of crowdsourcing platforms and allow participants to negotiate through audio, enabling more naturalistic interactions; 2) we add a control setting where participants negotiate only through alternating, written numeric offers. Despite the two contrasting forms of communication, we find that the average agreed prices of the two treatments are identical. But when subjects can talk, fewer offers are exchanged, negotiations finish faster, the likelihood of reaching agreement rises, and the variance of prices at which subjects agree drops substantially. We further propose a taxonomy of speech acts in negotiation and enrich the dataset with annotated speech acts. Our work also reveals linguistic signals that are predictive of negotiation outcomes.
comment: ACL 2023 Main Conference
♻ ☆ Gemma: Open Models Based on Gemini Research and Technology
This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.
♻ ☆ Cultural evolution via iterated learning and communication explains efficient color naming systems
It has been argued that semantic systems reflect pressure for efficiency, and a current debate concerns the cultural evolutionary process that produces this pattern. We consider efficiency as instantiated in the Information Bottleneck (IB) principle, and a model of cultural evolution that combines iterated learning and communication. We show that this model, instantiated in neural networks, converges to color naming systems that are efficient in the IB sense and similar to human color naming systems. We also show that some other proposals such as iterated learning alone, communication alone, or the greater learnability of convex categories, do not yield the same outcome as clearly. We conclude that the combination of iterated learning and communication provides a plausible means by which human semantic systems become efficient.
comment: An earlier version of this paper appeared in the Proceedings of the 45th Annual Meeting of the Cognitive Science Society (2023)
♻ ☆ Tango 2: Aligning Diffusion-based Text-to-Audio Generations through Direct Preference Optimization
Generative multimodal content is increasingly prevalent in much of the content creation arena, as it has the potential to allow artists and media personnel to create pre-production mockups by quickly bringing their ideas to life. The generation of audio from text prompts is an important aspect of such processes in the music and film industry. Many of the recent diffusion-based text-to-audio models focus on training increasingly sophisticated diffusion models on a large set of datasets of prompt-audio pairs. These models do not explicitly focus on the presence of concepts or events and their temporal ordering in the output audio with respect to the input prompt. Our hypothesis is focusing on how these aspects of audio generation could improve audio generation performance in the presence of limited data. As such, in this work, using an existing text-to-audio model Tango, we synthetically create a preference dataset where each prompt has a winner audio output and some loser audio outputs for the diffusion model to learn from. The loser outputs, in theory, have some concepts from the prompt missing or in an incorrect order. We fine-tune the publicly available Tango text-to-audio model using diffusion-DPO (direct preference optimization) loss on our preference dataset and show that it leads to improved audio output over Tango and AudioLDM2, in terms of both automatic- and manual-evaluation metrics.
comment: https://github.com/declare-lab/tango
♻ ☆ No Language is an Island: Unifying Chinese and English in Financial Large Language Models, Instruction Data, and Benchmarks
While the progression of Large Language Models (LLMs) has notably propelled financial analysis, their application has largely been confined to singular language realms, leaving untapped the potential of bilingual Chinese-English capacity. To bridge this chasm, we introduce ICE-PIXIU, seamlessly amalgamating the ICE-INTENT model and ICE-FLARE benchmark for bilingual financial analysis. ICE-PIXIU uniquely integrates a spectrum of Chinese tasks, alongside translated and original English datasets, enriching the breadth and depth of bilingual financial modeling. It provides unrestricted access to diverse model variants, a substantial compilation of diverse cross-lingual and multi-modal instruction data, and an evaluation benchmark with expert annotations, comprising 10 NLP tasks, 20 bilingual specific tasks, totaling 95k datasets. Our thorough evaluation emphasizes the advantages of incorporating these bilingual datasets, especially in translation tasks and utilizing original English data, enhancing both linguistic flexibility and analytical acuity in financial contexts. Notably, ICE-INTENT distinguishes itself by showcasing significant enhancements over conventional LLMs and existing financial LLMs in bilingual milieus, underscoring the profound impact of robust bilingual data on the accuracy and efficacy of financial NLP.
comment: 24 pages, 5 figures, 12 tables, including Appendix
♻ ☆ Learning From Failure: Integrating Negative Examples when Fine-tuning Large Language Models as Agents
Large language models (LLMs) have achieved success in acting as agents, which interact with environments through tools such as search engines. However, LLMs are optimized for language generation instead of tool use during training or alignment, limiting their effectiveness as agents. To resolve this problem, previous work has first collected interaction trajectories between LLMs and environments, using only trajectories that successfully finished the task to fine-tune smaller models, making fine-tuning data scarce and acquiring it both difficult and costly. Discarding failed trajectories also leads to significant wastage of data and resources and limits the possible optimization paths during fine-tuning. In this paper, we argue that unsuccessful trajectories offer valuable insights, and LLMs can learn from these trajectories through appropriate quality control and fine-tuning strategies. By simply adding a prefix or suffix that tells the model whether to generate a successful trajectory during training, we improve model performance by a large margin on mathematical reasoning, multi-hop question answering, and strategic question answering tasks. We further analyze the inference results and find that our method provides a better trade-off between valuable information and errors in unsuccessful trajectories. To our knowledge, we are the first to demonstrate the value of negative trajectories and their application in agent-tunning scenarios. Our findings offer guidance for developing better agent-tuning methods and low-resource data usage techniques.
comment: Agent, LLM, Large Language Model
♻ ☆ How Good Are LLMs at Out-of-Distribution Detection? COLING 2024
Out-of-distribution (OOD) detection plays a vital role in enhancing the reliability of machine learning (ML) models. The emergence of large language models (LLMs) has catalyzed a paradigm shift within the ML community, showcasing their exceptional capabilities across diverse natural language processing tasks. While existing research has probed OOD detection with relative small-scale Transformers like BERT, RoBERTa and GPT-2, the stark differences in scales, pre-training objectives, and inference paradigms call into question the applicability of these findings to LLMs. This paper embarks on a pioneering empirical investigation of OOD detection in the domain of LLMs, focusing on LLaMA series ranging from 7B to 65B in size. We thoroughly evaluate commonly-used OOD detectors, scrutinizing their performance in both zero-grad and fine-tuning scenarios. Notably, we alter previous discriminative in-distribution fine-tuning into generative fine-tuning, aligning the pre-training objective of LLMs with downstream tasks. Our findings unveil that a simple cosine distance OOD detector demonstrates superior efficacy, outperforming other OOD detectors. We provide an intriguing explanation for this phenomenon by highlighting the isotropic nature of the embedding spaces of LLMs, which distinctly contrasts with the anisotropic property observed in smaller BERT family models. The new insight enhances our understanding of how LLMs detect OOD data, thereby enhancing their adaptability and reliability in dynamic environments. We have released the source code at \url{https://github.com/Awenbocc/LLM-OOD} for other researchers to reproduce our results.
comment: Accepted at COLING 2024
♻ ☆ Knowledge Verification to Nip Hallucination in the Bud
While large language models (LLMs) have demonstrated exceptional performance across various tasks following human alignment, they may still generate responses that sound plausible but contradict factual knowledge, a phenomenon known as \emph{hallucination}. In this paper, we demonstrate the feasibility of mitigating hallucinations by verifying and minimizing the inconsistency between external knowledge present in the alignment data and the intrinsic knowledge embedded within foundation LLMs. Specifically, we propose a novel approach called Knowledge Consistent Alignment (KCA), which employs a well-aligned LLM to automatically formulate assessments based on external knowledge to evaluate the knowledge boundaries of foundation LLMs. To address knowledge inconsistencies in the alignment data, KCA implements several specific strategies to deal with these data instances. We demonstrate the superior efficacy of KCA in reducing hallucinations across six benchmarks, utilizing foundation LLMs of varying backbones and scales. This confirms the effectiveness of mitigating hallucinations by reducing knowledge inconsistency. Our code, model weights, and data are openly accessible at \url{https://github.com/fanqiwan/KCA}.
comment: Work in progress
♻ ☆ A Systematic Review of Aspect-based Sentiment Analysis (ABSA): Domains, Methods, and Trends
Aspect-based Sentiment Analysis (ABSA) is a fine-grained type of sentiment analysis that identifies aspects and their associated opinions from a given text. With the surge of digital opinionated text data, ABSA gained increasing popularity for its ability to mine more detailed and targeted insights. Many review papers on ABSA subtasks and solution methodologies exist, however, few focus on trends over time or systemic issues relating to research application domains, datasets, and solution approaches. To fill the gap, this paper presents a Systematic Literature Review (SLR) of ABSA studies with a focus on trends and high-level relationships among these fundamental components. This review is one of the largest SLRs on ABSA, and also, to our knowledge, the first that systematically examines the trends and inter-relations among ABSA research and data distribution across domains and solution paradigms and approaches. Our sample includes 519 primary studies screened from 4191 search results without time constraints via an innovative automatic filtering process. Our quantitative analysis not only identifies trends in nearly two decades of ABSA research development but also unveils a systemic lack of dataset and domain diversity as well as domain mismatch that may hinder the development of future ABSA research. We discuss these findings and their implications and propose suggestions for future research.
♻ ☆ On Training Data Influence of GPT Models
Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
♻ ☆ A Measure for Transparent Comparison of Linguistic Diversity in Multilingual NLP Data Sets NAACL 2024
Typologically diverse benchmarks are increasingly created to track the progress achieved in multilingual NLP. Linguistic diversity of these data sets is typically measured as the number of languages or language families included in the sample, but such measures do not consider structural properties of the included languages. In this paper, we propose assessing linguistic diversity of a data set against a reference language sample as a means of maximising linguistic diversity in the long run. We represent languages as sets of features and apply a version of the Jaccard index suitable for comparing sets of measures. In addition to the features extracted from typological data bases, we propose an automatic text-based measure, which can be used as a means of overcoming the well-known problem of data sparsity in manually collected features. Our diversity score is interpretable in terms of linguistic features and can identify the types of languages that are not represented in a data set. Using our method, we analyse a range of popular multilingual data sets (UD, Bible100, mBERT, XTREME, XGLUE, XNLI, XCOPA, TyDiQA, XQuAD). In addition to ranking these data sets, we find, for example, that (poly)synthetic languages are missing in almost all of them.
comment: Accepted to NAACL 2024 Findings
♻ ☆ ANLS* -- A Universal Document Processing Metric for Generative Large Language Models
Traditionally, discriminative models have been the predominant choice for tasks like document classification and information extraction. These models make predictions that fall into a limited number of predefined classes, facilitating a binary true or false evaluation and enabling the direct calculation of metrics such as the F1 score. However, recent advancements in generative large language models (GLLMs) have prompted a shift in the field due to their enhanced zero-shot capabilities, which eliminate the need for a downstream dataset and computationally expensive fine-tuning. However, evaluating GLLMs presents a challenge as the binary true or false evaluation used for discriminative models is not applicable to the predictions made by GLLMs. This paper introduces a new metric for generative models called ANLS* for evaluating a wide variety of tasks, including information extraction and classification tasks. The ANLS* metric extends existing ANLS metrics as a drop-in-replacement and is still compatible with previously reported ANLS scores. An evaluation of 7 different datasets, 6 different GLLMs and 3 different prompting methods using the ANLS* metric is also provided, demonstrating the importance of the proposed metric. We also benchmark a novel approach to generate prompts for documents, called SFT, against other prompting techniques such as LATIN. In 27 out of 35 cases, SFT outperforms other techniques and improves the state-of-the-art, sometimes by as much as $18$ percentage points. Sources are available at https://github.com/deepopinion/anls_star_metric
♻ ☆ Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose \textbf{S}mart \textbf{P}arallel \textbf{A}uto-\textbf{C}orrect d\textbf{E}coding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
♻ ☆ Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers
The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present a holistic end-to-end solution for annotating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels concerning the verifiability and factual inconsistencies found in LLM outputs. We further construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document, aiming to facilitate the evaluation of automatic fact-checking systems. Preliminary experiments show that FacTool, FactScore and Perplexity.ai are struggling to identify false claims, with the best F1=0.63 by this annotation solution based on GPT-4. Annotation tool, benchmark and code are available at https://github.com/yuxiaw/Factcheck-GPT.
comment: 30 pages, 13 figures
♻ ☆ Can LLM Generate Culturally Relevant Commonsense QA Data? Case Study in Indonesian and Sundanese
Large Language Models (LLMs) are increasingly being used to generate synthetic data for training and evaluating models. However, it is unclear whether they can generate a good quality of question answering (QA) dataset that incorporates knowledge and cultural nuance embedded in a language, especially for low-resource languages. In this study, we investigate the effectiveness of using LLMs in generating culturally relevant commonsense QA datasets for Indonesian and Sundanese languages. To do so, we create datasets for these languages using various methods involving both LLMs and human annotators, resulting in ~4.5K questions per language (~9K in total), making our dataset the largest of its kind. Our experiments show that automatic data adaptation from an existing English dataset is less effective for Sundanese. Interestingly, using the direct generation method on the target language, GPT-4 Turbo can generate questions with adequate general knowledge in both languages, albeit not as culturally 'deep' as humans. We also observe a higher occurrence of fluency errors in the Sundanese dataset, highlighting the discrepancy between medium- and lower-resource languages.
♻ ☆ Large Language User Interfaces: Voice Interactive User Interfaces powered by LLMs
The evolution of Large Language Models (LLMs) has showcased remarkable capacities for logical reasoning and natural language comprehension. These capabilities can be leveraged in solutions that semantically and textually model complex problems. In this paper, we present our efforts toward constructing a framework that can serve as an intermediary between a user and their user interface (UI), enabling dynamic and real-time interactions. We employ a system that stands upon textual semantic mappings of UI components, in the form of annotations. These mappings are stored, parsed, and scaled in a custom data structure, supplementary to an agent-based prompting backend engine. Employing textual semantic mappings allows each component to not only explain its role to the engine but also provide expectations. By comprehending the needs of both the user and the components, our LLM engine can classify the most appropriate application, extract relevant parameters, and subsequently execute precise predictions of the user's expected actions. Such an integration evolves static user interfaces into highly dynamic and adaptable solutions, introducing a new frontier of intelligent and responsive user experiences.
comment: Accepted as peer-reviewed publication
♻ ☆ Post-Semantic-Thinking: A Robust Strategy to Distill Reasoning Capacity from Large Language Models
Chain of thought finetuning aims to endow small student models with reasoning capacity to improve their performance towards a specific task by allowing them to imitate the reasoning procedure of large language models (LLMs) beyond simply predicting the answer to the question. However, the existing methods 1) generate rationale before the answer, making their answer correctness sensitive to the hallucination in the rationale;2) force the student model to repeat the exact LLMs rationale expression word-after-word, which could have the model biased towards learning the expression in rationale but count against the model from understanding the core logic behind it. Therefore, we propose a robust Post-Semantic-Thinking (PST) strategy to generate answers before rationale. Thanks to this answer-first setting, 1) the answering procedure can escape from the adverse effects caused by hallucinations in the rationale; 2) the complex reasoning procedure is tightly bound with the relatively concise answer, making the reasoning for questions easier with the prior information in the answer; 3) the efficiency of the method can also benefit from the setting since users can stop the generation right after answers are outputted when inference is conducted. Furthermore, the PST strategy loose the constraint against the generated rationale to be close to the LLMs gold standard in the hidden semantic space instead of the vocabulary space, thus making the small student model better comprehend the semantic reasoning logic in rationale. Extensive experiments conducted across 12 reasoning tasks demonstrate the effectiveness of PST.
♻ ☆ Exploring Multilingual Concepts of Human Value in Large Language Models: Is Value Alignment Consistent, Transferable and Controllable across Languages?
Prior research in representation engineering has revealed that LLMs encode concepts within their representation spaces, predominantly centered around English. In this study, we extend this philosophy to a multilingual scenario, delving into multilingual human value concepts in LLMs. Through our comprehensive exploration covering 7 types of human values, 16 languages and 3 LLM series with distinct multilinguality, we empirically substantiate the existence of multilingual human values in LLMs. Further cross-lingual analysis on these concepts discloses 3 traits arising from language resource disparities: cross-lingual inconsistency, distorted linguistic relationships, and unidirectional cross-lingual transfer between high- and low-resource languages, all in terms of human value concepts. Additionally, we validate the feasibility of cross-lingual control over value alignment capabilities of LLMs, leveraging the dominant language as a source language. Drawing from our findings on multilingual value alignment, we prudently provide suggestions on the composition of multilingual data for LLMs pre-training: including a limited number of dominant languages for cross-lingual alignment transfer while avoiding their excessive prevalence, and keeping a balanced distribution of non-dominant languages. We aspire that our findings would contribute to enhancing the safety and utility of multilingual AI.
♻ ☆ Topic-based Watermarks for LLM-Generated Text
Recent advancements of large language models (LLMs) have resulted in indistinguishable text outputs comparable to human-generated text. Watermarking algorithms are potential tools that offer a way to differentiate between LLM- and human-generated text by embedding detectable signatures within LLM-generated output. However, current watermarking schemes lack robustness against known attacks against watermarking algorithms. In addition, they are impractical considering an LLM generates tens of thousands of text outputs per day and the watermarking algorithm needs to memorize each output it generates for the detection to work. In this work, focusing on the limitations of current watermarking schemes, we propose the concept of a "topic-based watermarking algorithm" for LLMs. The proposed algorithm determines how to generate tokens for the watermarked LLM output based on extracted topics of an input prompt or the output of a non-watermarked LLM. Inspired from previous work, we propose using a pair of lists (that are generated based on the specified extracted topic(s)) that specify certain tokens to be included or excluded while generating the watermarked output of the LLM. Using the proposed watermarking algorithm, we show the practicality of a watermark detection algorithm. Furthermore, we discuss a wide range of attacks that can emerge against watermarking algorithms for LLMs and the benefit of the proposed watermarking scheme for the feasibility of modeling a potential attacker considering its benefit vs. loss.
comment: 11 pages
♻ ☆ Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length
The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce Megalodon, a neural architecture for efficient sequence modeling with unlimited context length. Megalodon inherits the architecture of Mega (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with Llama2, Megalodon achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. Megalodon reaches a training loss of 1.70, landing mid-way between Llama2-7B (1.75) and 13B (1.67). Code: https://github.com/XuezheMax/megalodon
comment: 9 pages, 6 figures and 8 tables
♻ ☆ Glitch Tokens in Large Language Models: Categorization Taxonomy and Effective Detection
With the expanding application of Large Language Models (LLMs) in various domains, it becomes imperative to comprehensively investigate their unforeseen behaviors and consequent outcomes. In this study, we introduce and systematically explore the phenomenon of "glitch tokens", which are anomalous tokens produced by established tokenizers and could potentially compromise the models' quality of response. Specifically, we experiment on seven top popular LLMs utilizing three distinct tokenizers and involving a totally of 182,517 tokens. We present categorizations of the identified glitch tokens and symptoms exhibited by LLMs when interacting with glitch tokens. Based on our observation that glitch tokens tend to cluster in the embedding space, we propose GlitchHunter, a novel iterative clustering-based technique, for efficient glitch token detection. The evaluation shows that our approach notably outperforms three baseline methods on eight open-source LLMs. To the best of our knowledge, we present the first comprehensive study on glitch tokens. Our new detection further provides valuable insights into mitigating tokenization-related errors in LLMs.
♻ ☆ PeFoMed: Parameter Efficient Fine-tuning of Multimodal Large Language Models for Medical Imaging
Multimodal large language models (MLLMs) represent an evolutionary expansion in the capabilities of traditional large language models, enabling them to tackle challenges that surpass the scope of purely text-based applications. It leverages the knowledge previously encoded within these language models, thereby enhancing their applicability and functionality in the reign of multimodal contexts. Recent works investigate the adaptation of MLLMs as a universal solution to address medical multi-modal problems as a generative task. In this paper, we propose a parameter efficient framework for fine-tuning MLLMs, specifically validated on medical visual question answering (Med-VQA) and medical report generation (MRG) tasks, using public benchmark datasets. We also introduce an evaluation metric using the 5-point Likert scale and its weighted average value to measure the quality of the generated reports for MRG tasks, where the scale ratings are labelled by both humans manually and the GPT-4 model. We further assess the consistency of performance metrics across traditional measures, GPT-4, and human ratings for both VQA and MRG tasks. The results indicate that semantic similarity assessments using GPT-4 align closely with human annotators and provide greater stability, yet they reveal a discrepancy when compared to conventional lexical similarity measurements. This questions the reliability of lexical similarity metrics for evaluating the performance of generative models in Med-VQA and report generation tasks. Besides, our fine-tuned model significantly outperforms GPT-4v. This indicates that without additional fine-tuning, multi-modal models like GPT-4v do not perform effectively on medical imaging tasks. The code will be available here: https://github.com/jinlHe/PeFoMed.
comment: 12 pages, 8 figures, 12 tables
♻ ☆ Scaling Properties of Speech Language Models
Speech Language Models (SLMs) aim to learn language from raw audio, without textual resources. Despite significant advances, our current models exhibit weak syntax and semantic abilities. However, if the scaling properties of neural language models hold for the speech modality, these abilities will improve as the amount of compute used for training increases. In this paper, we use models of this scaling behavior to estimate the scale at which our current methods will yield a SLM with the English proficiency of text-based Large Language Models (LLMs). We establish a strong correlation between pre-training loss and downstream syntactic and semantic performance in SLMs and LLMs, which results in predictable scaling of linguistic performance. We show that the linguistic performance of SLMs scales up to three orders of magnitude more slowly than that of text-based LLMs. Additionally, we study the benefits of synthetic data designed to boost semantic understanding and the effects of coarser speech tokenization.
♻ ☆ Event Grounded Criminal Court View Generation with Cooperative (Large) Language Models SIGIR2024
With the development of legal intelligence, Criminal Court View Generation has attracted much attention as a crucial task of legal intelligence, which aims to generate concise and coherent texts that summarize case facts and provide explanations for verdicts. Existing researches explore the key information in case facts to yield the court views. Most of them employ a coarse-grained approach that partitions the facts into broad segments (e.g., verdict-related sentences) to make predictions. However, this approach fails to capture the complex details present in the case facts, such as various criminal elements and legal events. To this end, in this paper, we propose an Event Grounded Generation (EGG) method for criminal court view generation with cooperative (Large) Language Models, which introduces the fine-grained event information into the generation. Specifically, we first design a LLMs-based extraction method that can extract events in case facts without massive annotated events. Then, we incorporate the extracted events into court view generation by merging case facts and events. Besides, considering the computational burden posed by the use of LLMs in the extraction phase of EGG, we propose a LLMs-free EGG method that can eliminate the requirement for event extraction using LLMs in the inference phase. Extensive experimental results on a real-world dataset clearly validate the effectiveness of our proposed method.
comment: Accepted to SIGIR2024
♻ ☆ Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism
Large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, enabling them to answer a wide range of questions across various domains. However, these models are not flawless and often produce responses that contain errors or misinformation. These inaccuracies, commonly referred to as hallucinations, render LLMs unreliable and even unusable in many scenarios. In this paper, our focus is on mitigating the issue of hallucination in LLMs, particularly in the context of question-answering. Instead of attempting to answer all questions, we explore a refusal mechanism that instructs LLMs to refuse to answer challenging questions in order to avoid errors. We then propose a simple yet effective solution called Learn to Refuse (L2R), which incorporates the refusal mechanism to enable LLMs to recognize and refuse to answer questions that they find difficult to address. To achieve this, we utilize a structured knowledge base to represent all the LLM's understanding of the world, enabling it to provide traceable gold knowledge. This knowledge base is separate from the LLM and initially empty. It can be filled with validated knowledge and progressively expanded. When an LLM encounters questions outside its domain, the system recognizes its knowledge scope and determines whether it can answer the question independently. Additionally, we introduce a method for automatically and efficiently expanding the knowledge base of LLMs. Through qualitative and quantitative analysis, we demonstrate that our approach enhances the controllability and reliability of LLMs.
♻ ☆ Unifying the Perspectives of NLP and Software Engineering: A Survey on Language Models for Code
In this work we systematically review the recent advancements in code processing with language models, covering 50+ models, 30+ evaluation tasks, 170+ datasets, and 800 related works. We break down code processing models into general language models represented by the GPT family and specialized models that are specifically pretrained on code, often with tailored objectives. We discuss the relations and differences between these models, and highlight the historical transition of code modeling from statistical models and RNNs to pretrained Transformers and LLMs, which is exactly the same course that had been taken by NLP. We also discuss code-specific features such as AST, CFG, and unit tests, along with their application in training code language models, and identify key challenges and potential future directions in this domain. We keep the survey open and updated on GitHub at https://github.com/codefuse-ai/Awesome-Code-LLM.
comment: Repo is available at https://github.com/codefuse-ai/Awesome-Code-LLM. 8 figures, 10 tables, and 796 references
♻ ☆ Stance Detection with Collaborative Role-Infused LLM-Based Agents
Stance detection automatically detects the stance in a text towards a target, vital for content analysis in web and social media research. Despite their promising capabilities, LLMs encounter challenges when directly applied to stance detection. First, stance detection demands multi-aspect knowledge, from deciphering event-related terminologies to understanding the expression styles in social media platforms. Second, stance detection requires advanced reasoning to infer authors' implicit viewpoints, as stance are often subtly embedded rather than overtly stated in the text. To address these challenges, we design a three-stage framework COLA (short for Collaborative rOle-infused LLM-based Agents) in which LLMs are designated distinct roles, creating a collaborative system where each role contributes uniquely. Initially, in the multidimensional text analysis stage, we configure the LLMs to act as a linguistic expert, a domain specialist, and a social media veteran to get a multifaceted analysis of texts, thus overcoming the first challenge. Next, in the reasoning-enhanced debating stage, for each potential stance, we designate a specific LLM-based agent to advocate for it, guiding the LLM to detect logical connections between text features and stance, tackling the second challenge. Finally, in the stance conclusion stage, a final decision maker agent consolidates prior insights to determine the stance. Our approach avoids extra annotated data and model training and is highly usable. We achieve state-of-the-art performance across multiple datasets. Ablation studies validate the effectiveness of each design role in handling stance detection. Further experiments have demonstrated the explainability and the versatility of our approach. Our approach excels in usability, accuracy, effectiveness, explainability and versatility, highlighting its value.
♻ ☆ Large Language Models are In-Context Molecule Learners
Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Hybrid Context Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Hybrid Context Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve informative context examples. Additionally, we also propose Post-retrieval Re-ranking with Sequence Reversal and Random Walk to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context molecule learning capability of LLMs with retrieved examples and adapts the parameters of LLMs for the molecule-caption translation task. Experimental results demonstrate that ICMT can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.
♻ ☆ Evaluating Large Language Models at Evaluating Instruction Following ICLR 2024
As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these ``LLM evaluators'', particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.
comment: ICLR 2024
♻ ☆ Laissez-Faire Harms: Algorithmic Biases in Generative Language Models
The rapid deployment of generative language models (LMs) has raised concerns about social biases affecting the well-being of diverse consumers. The extant literature on generative LMs has primarily examined bias via explicit identity prompting. However, prior research on bias in earlier language-based technology platforms, including search engines, has shown that discrimination can occur even when identity terms are not specified explicitly. Studies of bias in LM responses to open-ended prompts (where identity classifications are left unspecified) are lacking and have not yet been grounded in end-consumer harms. Here, we advance studies of generative LM bias by considering a broader set of natural use cases via open-ended prompting. In this "laissez-faire" setting, we find that synthetically generated texts from five of the most pervasive LMs (ChatGPT3.5, ChatGPT4, Claude2.0, Llama2, and PaLM2) perpetuate harms of omission, subordination, and stereotyping for minoritized individuals with intersectional race, gender, and/or sexual orientation identities (AI/AN, Asian, Black, Latine, MENA, NH/PI, Female, Non-binary, Queer). We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs that portray their identities in a subordinated manner compared to representative or empowering portrayals. We also document a prevalence of stereotypes (e.g. perpetual foreigner) in LM-generated outputs that are known to trigger psychological harms that disproportionately affect minoritized individuals. These include stereotype threat, which leads to impaired cognitive performance and increased negative self-perception. Our findings highlight the urgent need to protect consumers from discriminatory harms caused by language models and invest in critical AI education programs tailored towards empowering diverse consumers.
comment: 16 pages (43 if including supplementals), 8 figures (23 if including supplementals)
♻ ☆ Towards Explainability in Legal Outcome Prediction Models
Current legal outcome prediction models - a staple of legal NLP - do not explain their reasoning. However, to employ these models in the real world, human legal actors need to be able to understand the model's decisions. In the case of common law, legal practitioners reason towards the outcome of a case by referring to past case law, known as precedent. We contend that precedent is, therefore, a natural way of facilitating explainability for legal NLP models. In this paper, we contribute a novel method for identifying the precedent employed by legal outcome prediction models. Furthermore, by developing a taxonomy of legal precedent, we are able to compare human judges and neural models with respect to the different types of precedent they rely on. We find that while the models learn to predict outcomes reasonably well, their use of precedent is unlike that of human judges.
♻ ☆ Automatic Macro Mining from Interaction Traces at Scale
Macros are building block tasks of our everyday smartphone activity (e.g., "login", or "booking a flight"). Effectively extracting macros is important for understanding mobile interaction and enabling task automation. These macros are however difficult to extract at scale as they can be comprised of multiple steps yet hidden within programmatic components of mobile apps. In this paper, we introduce a novel approach based on Large Language Models (LLMs) to automatically extract semantically meaningful macros from both random and user-curated mobile interaction traces. The macros produced by our approach are automatically tagged with natural language descriptions and are fully executable. We conduct multiple studies to validate the quality of extracted macros, including user evaluation, comparative analysis against human-curated tasks, and automatic execution of these macros. These experiments and analyses show the effectiveness of our approach and the usefulness of extracted macros in various downstream applications.
comment: Accepted to CHI 2024
♻ ☆ ProSwitch: Knowledge-Guided Instruction Tuning to Generate Professional and Non-Professional Styled Text
Large Language Models (LLMs) have demonstrated efficacy in various linguistic applications, including text summarization and controlled text generation. However, studies into their capacity of switching between styles via fine-tuning remain underexplored. This study concentrates on textual professionalism and introduces a novel methodology, named ProSwitch, which equips a language model with the ability to produce both professional and non-professional responses through knowledge-guided instruction tuning. ProSwitch unfolds across three phases: data preparation for gathering domain knowledge and training corpus; instruction tuning for optimizing language models with multiple levels of instruction formats; and comprehensive evaluation for assessing the professionalism discrimination and reference-based quality of generated text. Comparative analysis of ProSwitch against both general and specialized language models reveals that our approach outperforms baselines in switching between professional and non-professional text generation.
comment: 8 pages
♻ ☆ APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
comment: 6 pages, 2 figures, published to DAC 2024: 61st IEEE/ACM Design Automation Conference. (DAC'24)
♻ ☆ A Survey on Open Information Extraction from Rule-based Model to Large Language Model
Open information extraction is an important NLP task that targets extracting structured information from unstructured text without limitations on the relation type or the domain of the text. This survey paper covers open information extraction technologies from 2007 to 2022 with a focus on new models not covered by previous surveys. We propose a new categorization method from the source of information perspective to accommodate the development of recent OIE technologies. In addition, we summarize three major approaches based on task settings as well as current popular datasets and model evaluation metrics. Given the comprehensive review, several future directions are shown from datasets, source of information, output form, method, and evaluation metric aspects.
comment: The first five authors contributed to this work equally. Names are ordered randomly
♻ ☆ What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning ICLR2024
Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.
comment: ICLR2024 Camera Ready. Data and model checkpoints are available at https://github.com/hkust-nlp/deita
♻ ☆ Triad: A Framework Leveraging a Multi-Role LLM-based Agent to Solve Knowledge Base Question Answering
Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with three roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent's multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.
comment: 8 pages
♻ ☆ Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models
Large-scale vision-language models have demonstrated impressive skill in handling tasks that involve both areas. Nevertheless, these models frequently experience significant issues with generating inaccurate information, which is hallucination. In this study, we concentrate on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures. We perform quantitative evaluations regarding number hallucination, showing it to be critical in major open-source large vision-language models. Furthermore, we utilizes two related tasks to conduct an in-depth analysis of number hallucination, revealing the severe inner and outer inconsistency among all tasks. Based on this examination, we devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods. Our code and dataset will be released to the community.
comment: 10 pages
♻ ☆ Pretraining and Updating Language- and Domain-specific Large Language Model: A Case Study in Japanese Business Domain
Several previous studies have considered language- and domain-specific large language models (LLMs) as separate topics. This study explores the combination of a non-English language and a high-demand industry domain, focusing on a Japanese business-specific LLM. This type of a model requires expertise in the business domain, strong language skills, and regular updates of its knowledge. We trained a 13-billion-parameter LLM from scratch using a new dataset of business texts and patents, and continually pretrained it with the latest business documents. Further we propose a new benchmark for Japanese business domain question answering (QA) and evaluate our models on it. The results show that our pretrained model improves QA accuracy without losing general knowledge, and that continual pretraining enhances adaptation to new information. Our pretrained model and business domain benchmark are publicly available.
♻ ☆ In-Context Learning Dynamics with Random Binary Sequences
Large language models (LLMs) trained on huge corpora of text datasets demonstrate intriguing capabilities, achieving state-of-the-art performance on tasks they were not explicitly trained for. The precise nature of LLM capabilities is often mysterious, and different prompts can elicit different capabilities through in-context learning. We propose a framework that enables us to analyze in-context learning dynamics to understand latent concepts underlying LLMs' behavioral patterns. This provides a more nuanced understanding than success-or-failure evaluation benchmarks, but does not require observing internal activations as a mechanistic interpretation of circuits would. Inspired by the cognitive science of human randomness perception, we use random binary sequences as context and study dynamics of in-context learning by manipulating properties of context data, such as sequence length. In the latest GPT-3.5+ models, we find emergent abilities to generate seemingly random numbers and learn basic formal languages, with striking in-context learning dynamics where model outputs transition sharply from seemingly random behaviors to deterministic repetition.
♻ ☆ Controllable Prosody Generation With Partial Inputs
We address the problem of human-in-the-loop control for generating prosody in the context of text-to-speech synthesis. Controlling prosody is challenging because existing generative models lack an efficient interface through which users can modify the output quickly and precisely. To solve this, we introduce a novel framework whereby the user provides partial inputs and the generative model generates the missing features. We propose a model that is specifically designed to encode partial prosodic features and output complete audio. We show empirically that our model displays two essential qualities of a human-in-the-loop control mechanism: efficiency and robustness. With even a very small number of input values (~4), our model enables users to improve the quality of the output significantly in terms of listener preference (4:1).
comment: 5 pages
♻ ☆ Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation ICLR 2024
Uncertainty estimation is a significant issue for current large language models (LLMs) that are generally poorly calibrated and over-confident, especially with reinforcement learning from human feedback (RLHF). Unlike humans, whose decisions and confidences not only stem from intrinsic beliefs but can also be adjusted through daily observations, existing calibration methods for LLMs focus on estimating or eliciting individual confidence without taking full advantage of the "Collective Wisdom": the interaction among multiple LLMs that can collectively improve both accuracy and calibration. In this work, we propose Collaborative Calibration, a post-hoc training-free calibration strategy that leverages the collaborative and expressive capabilities of multiple tool-augmented LLM agents in a simulated group deliberation process. We demonstrate the effectiveness of Collaborative Calibration on generative QA tasks across various domains, showing its potential in harnessing the rationalization of collectively calibrated confidence assessments and improving the reliability of model predictions.
comment: Accepted at ICLR 2024 Workshop on Reliable and Responsible Foundation Models
♻ ☆ Can Large Language Models Automatically Score Proficiency of Written Essays? LREC
Although several methods were proposed to address the problem of automated essay scoring (AES) in the last 50 years, there is still much to desire in terms of effectiveness. Large Language Models (LLMs) are transformer-based models that demonstrate extraordinary capabilities on various tasks. In this paper, we test the ability of LLMs, given their powerful linguistic knowledge, to analyze and effectively score written essays. We experimented with two popular LLMs, namely ChatGPT and Llama. We aim to check if these models can do this task and, if so, how their performance is positioned among the state-of-the-art (SOTA) models across two levels, holistically and per individual writing trait. We utilized prompt-engineering tactics in designing four different prompts to bring their maximum potential to this task. Our experiments conducted on the ASAP dataset revealed several interesting observations. First, choosing the right prompt depends highly on the model and nature of the task. Second, the two LLMs exhibited comparable average performance in AES, with a slight advantage for ChatGPT. Finally, despite the performance gap between the two LLMs and SOTA models in terms of predictions, they provide feedback to enhance the quality of the essays, which can potentially help both teachers and students.
comment: V2 (published version of LREC-COLING 2024)
♻ ☆ RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs
State-of-the-art large language models (LLMs) have become indispensable tools for various tasks. However, training LLMs to serve as effective assistants for humans requires careful consideration. A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences and mitigate issues like toxicity and hallucinations. Yet, an understanding of RLHF for LLMs is largely entangled with initial design choices that popularized the method and current research focuses on augmenting those choices rather than fundamentally improving the framework. In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals, dedicating substantial focus to the core component of RLHF -- the reward model. Our study investigates modeling choices, caveats of function approximation, and their implications on RLHF training algorithms, highlighting the underlying assumptions made about the expressivity of reward. Our analysis improves the understanding of the role of reward models and methods for their training, concurrently revealing limitations of the current methodology. We characterize these limitations, including incorrect generalization, model misspecification, and the sparsity of feedback, along with their impact on the performance of a language model. The discussion and analysis are substantiated by a categorical review of current literature, serving as a reference for researchers and practitioners to understand the challenges of RLHF and build upon existing efforts.
♻ ☆ Decentralised Moderation for Interoperable Social Networks: A Conversation-based Approach for Pleroma and the Fediverse AAAI
The recent development of decentralised and interoperable social networks (such as the "fediverse") creates new challenges for content moderators. This is because millions of posts generated on one server can easily "spread" to another, even if the recipient server has very different moderation policies. An obvious solution would be to leverage moderation tools to automatically tag (and filter) posts that contravene moderation policies, e.g. related to toxic speech. Recent work has exploited the conversational context of a post to improve this automatic tagging, e.g. using the replies to a post to help classify if it contains toxic speech. This has shown particular potential in environments with large training sets that contain complete conversations. This, however, creates challenges in a decentralised context, as a single conversation may be fragmented across multiple servers. Thus, each server only has a partial view of an entire conversation because conversations are often federated across servers in a non-synchronized fashion. To address this, we propose a decentralised conversation-aware content moderation approach suitable for the fediverse. Our approach employs a graph deep learning model (GraphNLI) trained locally on each server. The model exploits local data to train a model that combines post and conversational information captured through random walks to detect toxicity. We evaluate our approach with data from Pleroma, a major decentralised and interoperable micro-blogging network containing 2 million conversations. Our model effectively detects toxicity on larger instances, exclusively trained using their local post information (0.8837 macro-F1). Our approach has considerable scope to improve moderation in decentralised and interoperable social networks such as Pleroma or Mastodon.
comment: Accepted at International AAAI Conference on Web and Social Media (ICWSM) 2024. Please cite accordingly!
♻ ☆ Information Flow Routes: Automatically Interpreting Language Models at Scale
Information flows by routes inside the network via mechanisms implemented in the model. These routes can be represented as graphs where nodes correspond to token representations and edges to operations inside the network. We automatically build these graphs in a top-down manner, for each prediction leaving only the most important nodes and edges. In contrast to the existing workflows relying on activation patching, we do this through attribution: this allows us to efficiently uncover existing circuits with just a single forward pass. Additionally, the applicability of our method is far beyond patching: we do not need a human to carefully design prediction templates, and we can extract information flow routes for any prediction (not just the ones among the allowed templates). As a result, we can talk about model behavior in general, for specific types of predictions, or different domains. We experiment with Llama 2 and show that the role of some attention heads is overall important, e.g. previous token heads and subword merging heads. Next, we find similarities in Llama 2 behavior when handling tokens of the same part of speech. Finally, we show that some model components can be specialized on domains such as coding or multilingual texts.
♻ ☆ Assessing Logical Puzzle Solving in Large Language Models: Insights from a Minesweeper Case Study NAACL 2024
Large Language Models (LLMs) have shown remarkable proficiency in language understanding and have been successfully applied to a variety of real-world tasks through task-specific fine-tuning or prompt engineering. Despite these advancements, it remains an open question whether LLMs are fundamentally capable of reasoning and planning, or if they primarily rely on recalling and synthesizing information from their training data. In our research, we introduce a novel task -- Minesweeper -- specifically designed in a format unfamiliar to LLMs and absent from their training datasets. This task challenges LLMs to identify the locations of mines based on numerical clues provided by adjacent opened cells. Successfully completing this task requires an understanding of each cell's state, discerning spatial relationships between the clues and mines, and strategizing actions based on logical deductions drawn from the arrangement of the cells. Our experiments, including trials with the advanced GPT-4 model, indicate that while LLMs possess the foundational abilities required for this task, they struggle to integrate these into a coherent, multi-step logical reasoning process needed to solve Minesweeper. These findings highlight the need for further research to understand the nature of reasoning capabilities in LLMs under similar circumstances, and to explore pathways towards more sophisticated AI reasoning and planning models.
comment: 23 pages, 5 figures, 4 tables, in NAACL 2024
♻ ☆ A Survey on Prompting Techniques in LLMs
Autoregressive Large Language Models have transformed the landscape of Natural Language Processing. Pre-train and prompt paradigm has replaced the conventional approach of pre-training and fine-tuning for many downstream NLP tasks. This shift has been possible largely due to LLMs and innovative prompting techniques. LLMs have shown great promise for a variety of downstream tasks owing to their vast parameters and huge datasets that they are pre-trained on. However, in order to fully realize their potential, their outputs must be guided towards the desired outcomes. Prompting, in which a specific input or instruction is provided to guide the LLMs toward the intended output, has become a tool for achieving this goal. In this paper, we discuss the various prompting techniques that have been applied to fully harness the power of LLMs. We present a taxonomy of existing literature on prompting techniques and provide a concise survey based on this taxonomy. Further, we identify some open problems in the realm of prompting in autoregressive LLMs which could serve as a direction for future research.
comment: 10 pages, 4 Figures
♻ ☆ Enabling On-Device Large Language Model Personalization with Self-Supervised Data Selection and Synthesis
After a large language model (LLM) is deployed on edge devices, it is desirable for these devices to learn from user-generated conversation data to generate user-specific and personalized responses in real-time. However, user-generated data usually contains sensitive and private information, and uploading such data to the cloud for annotation is not preferred if not prohibited. While it is possible to obtain annotation locally by directly asking users to provide preferred responses, such annotations have to be sparse to not affect user experience. In addition, the storage of edge devices is usually too limited to enable large-scale fine-tuning with full user-generated data. It remains an open question how to enable on-device LLM personalization, considering sparse annotation and limited on-device storage. In this paper, we propose a novel framework to select and store the most representative data online in a self-supervised way. Such data has a small memory footprint and allows infrequent requests of user annotations for further fine-tuning. To enhance fine-tuning quality, multiple semantically similar pairs of question texts and expected responses are generated using the LLM. Our experiments show that the proposed framework achieves the best user-specific content-generating capability (accuracy) and fine-tuning speed (performance) compared with vanilla baselines. To the best of our knowledge, this is the very first on-device LLM personalization framework.
comment: Accepted by 2024 61th ACM/IEEE Design Automation Conference (DAC)
♻ ☆ Benchmarking ChatGPT on Algorithmic Reasoning
We evaluate ChatGPT's ability to solve algorithm problems from the CLRS benchmark suite that is designed for GNNs. The benchmark requires the use of a specified classical algorithm to solve a given problem. We find that ChatGPT outperforms specialist GNN models, using Python to successfully solve these problems. This raises new points in the discussion about learning algorithms with neural networks and how we think about what out of distribution testing looks like with web scale training data.
♻ ☆ AttentionStore: Cost-effective Attention Reuse across Multi-turn Conversations in Large Language Model Serving
Interacting with humans through multi-turn conversations is a fundamental feature of large language models (LLMs). However, existing LLM serving engines for executing multi-turn conversations are inefficient due to the need to repeatedly compute the key-value (KV) caches of historical tokens, incurring high serving costs. To address the problem, this paper proposes AttentionStore, a new attention mechanism that enables the reuse of KV caches (i.e., attention reuse) across multi-turn conversations, significantly reducing the repetitive computation overheads. AttentionStore maintains a hierarchical KV caching system that leverages cost-effective memory/storage mediums to save KV caches for all requests. To reduce KV cache access overheads from slow mediums, AttentionStore employs layer-wise pre-loading and asynchronous saving schemes to overlap the KV cache access with the GPU computation. To ensure that the KV caches to be accessed are placed in the fastest hierarchy, AttentionStore employs scheduler-aware fetching and eviction schemes to consciously place the KV caches in different layers based on the hints from the inference job scheduler. To avoid the invalidation of the saved KV caches incurred by context window overflow, AttentionStore enables the saved KV caches to remain valid via decoupling the positional encoding and effectively truncating the KV caches. Extensive experimental results demonstrate that AttentionStore significantly decreases the time to the first token (TTFT) by up to 87%, improves the prompt prefilling throughput by 7.8$\times$ for multi-turn conversations, and reduces the end-to-end inference cost by up to 70%. For long sequence inference, AttentionStore reduces the TTFT by up to 95% and improves the prompt prefilling throughput by 22$\times$.
♻ ☆ Automated Evaluation of Classroom Instructional Support with LLMs and BoWs: Connecting Global Predictions to Specific Feedback
With the aim to provide teachers with more specific, frequent, and actionable feedback about their teaching, we explore how Large Language Models (LLMs) can be used to estimate ``Instructional Support'' domain scores of the CLassroom Assessment Scoring System (CLASS), a widely used observation protocol. We design a machine learning architecture that uses either zero-shot prompting of Meta's Llama2, and/or a classic Bag of Words (BoW) model, to classify individual utterances of teachers' speech (transcribed automatically using OpenAI's Whisper) for the presence of Instructional Support. Then, these utterance-level judgments are aggregated over a 15-min observation session to estimate a global CLASS score. Experiments on two CLASS-coded datasets of toddler and pre-kindergarten classrooms indicate that (1) automatic CLASS Instructional Support estimation accuracy using the proposed method (Pearson $R$ up to $0.48$) approaches human inter-rater reliability (up to $R=0.55$); (2) LLMs generally yield slightly greater accuracy than BoW for this task, though the best models often combined features extracted from both LLM and BoW; and (3) for classifying individual utterances, there is still room for improvement of automated methods compared to human-level judgments. Finally, (4) we illustrate how the model's outputs can be visualized at the utterance level to provide teachers with explainable feedback on which utterances were most positively or negatively correlated with specific CLASS dimensions.
♻ ☆ JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval (IR)) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (54.9%) on a medical question-answering dataset. JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement tool for healthcare, demonstrating the potential of integrating IR and LLM training for medical question-answering systems.
♻ ☆ CPL-NoViD: Context-Aware Prompt-based Learning for Norm Violation Detection in Online Communities
Detecting norm violations in online communities is critical to maintaining healthy and safe spaces for online discussions. Existing machine learning approaches often struggle to adapt to the diverse rules and interpretations across different communities due to the inherent challenges of fine-tuning models for such context-specific tasks. In this paper, we introduce Context-aware Prompt-based Learning for Norm Violation Detection (CPL-NoViD), a novel method that employs prompt-based learning to detect norm violations across various types of rules. CPL-NoViD outperforms the baseline by incorporating context through natural language prompts and demonstrates improved performance across different rule types. Significantly, it not only excels in cross-rule-type and cross-community norm violation detection but also exhibits adaptability in few-shot learning scenarios. Most notably, it establishes a new state-of-the-art in norm violation detection, surpassing existing benchmarks. Our work highlights the potential of prompt-based learning for context-sensitive norm violation detection and paves the way for future research on more adaptable, context-aware models to better support online community moderators.
♻ ☆ Retrieval-Augmented Generation: Is Dense Passage Retrieval Retrieving?
Dense passage retrieval (DPR) is the first step in the retrieval augmented generation (RAG) paradigm for improving the performance of large language models (LLM). DPR fine-tunes pre-trained networks to enhance the alignment of the embeddings between queries and relevant textual data. A deeper understanding of DPR fine-tuning will be required to fundamentally unlock the full potential of this approach. In this work, we explore DPR-trained models mechanistically by using a combination of probing, layer activation analysis, and model editing. Our experiments show that DPR training decentralizes how knowledge is stored in the network, creating multiple access pathways to the same information. We also uncover a limitation in this training style: the internal knowledge of the pre-trained model bounds what the retrieval model can retrieve. These findings suggest a few possible directions for dense retrieval: (1) expose the DPR training process to more knowledge so more can be decentralized, (2) inject facts as decentralized representations, (3) model and incorporate knowledge uncertainty in the retrieval process, and (4) directly map internal model knowledge to a knowledge base.
♻ ☆ Gender-specific Machine Translation with Large Language Models
While machine translation (MT) systems have seen significant improvements, it is still common for translations to reflect societal biases, such as gender bias. Decoder-only Large Language Models (LLMs) have demonstrated potential in MT, albeit with performance slightly lagging behind traditional encoder-decoder Neural Machine Translation (NMT) systems. However, LLMs offer a unique advantage: the ability to control the properties of the output through prompts. In this study, we leverage this flexibility to explore LLaMa's capability to produce gender-specific translations. Our results indicate that LLaMa can generate gender-specific translations with translation accuracy and gender bias comparable to NLLB, a state-of-the-art multilingual NMT system. Furthermore, our experiments reveal that LLaMa's gender-specific translations rely on coreference resolution to determine gender, showing higher gender variance in gender-ambiguous datasets but maintaining consistency in less ambiguous contexts. This research investigates the potential and challenges of using LLMs for gender-specific translations as an instance of the controllability of outputs offered by LLMs.
♻ ☆ GenTKG: Generative Forecasting on Temporal Knowledge Graph with Large Language Models NAACL 2024
The rapid advancements in large language models (LLMs) have ignited interest in the temporal knowledge graph (tKG) domain, where conventional embedding-based and rule-based methods dominate. The question remains open of whether pre-trained LLMs can understand structured temporal relational data and replace them as the foundation model for temporal relational forecasting. Therefore, we bring temporal knowledge forecasting into the generative setting. However, challenges occur in the huge chasms between complex temporal graph data structure and sequential natural expressions LLMs can handle, and between the enormous data sizes of tKGs and heavy computation costs of finetuning LLMs. To address these challenges, we propose a novel retrieval-augmented generation framework named GenTKG combining a temporal logical rule-based retrieval strategy and few-shot parameter-efficient instruction tuning to solve the above challenges, respectively. Extensive experiments have shown that GenTKG outperforms conventional methods of temporal relational forecasting with low computation resources using extremely limited training data as few as 16 samples. GenTKG also highlights remarkable cross-domain generalizability with outperforming performance on unseen datasets without re-training, and in-domain generalizability regardless of time split in the same dataset. Our work reveals the huge potential of LLMs in the tKG domain and opens a new frontier for generative forecasting on tKGs. Code and data are released here: https://github.com/mayhugotong/GenTKG.
comment: 14 pages, Findings of NAACL 2024, Spotlight on TGL@NeurIPS2023
♻ ☆ PRompt Optimization in Multi-Step Tasks (PROMST): Integrating Human Feedback and Preference Alignment
Prompt optimization aims to find the best prompt to a large language model (LLM) for a given task. LLMs have been successfully used to help find and improve prompt candidates for single-step tasks. However, realistic tasks for agents are multi-step and introduce new challenges: (1) Prompt content is likely to be more extensive and complex, making it more difficult for LLMs to analyze errors, (2) the impact of an individual step is difficult to evaluate, and (3) different people may have varied preferences about task execution. While humans struggle to optimize prompts, they are good at providing feedback about LLM outputs; we therefore introduce a new LLM-driven discrete prompt optimization framework that incorporates human-designed feedback rules to automatically offer direct suggestions for improvement. We also use an extra learned heuristic model that predicts prompt performance to efficiently sample from prompt candidates. This approach significantly outperforms both human-engineered prompts and several other prompt optimization methods across 11 representative multi-step tasks (an average 10.6%-29.3% improvement to current best methods on five LLMs respectively). We further show that the score function for tasks can be modified to better align with individual preferences. We believe our work can serve as a benchmark for automatic prompt optimization for LLM-driven multi-step tasks.
comment: 58 pages, 13 figures
♻ ☆ Evaluating the Robustness of Machine Reading Comprehension Models to Low Resource Entity Renaming ICLR 2023
Question answering (QA) models have shown compelling results in the task of Machine Reading Comprehension (MRC). Recently these systems have proved to perform better than humans on held-out test sets of datasets e.g. SQuAD, but their robustness is not guaranteed. The QA model's brittleness is exposed when evaluated on adversarial generated examples by a performance drop. In this study, we explore the robustness of MRC models to entity renaming, with entities from low-resource regions such as Africa. We propose EntSwap, a method for test-time perturbations, to create a test set whose entities have been renamed. In particular, we rename entities of type: country, person, nationality, location, organization, and city, to create AfriSQuAD2. Using the perturbed test set, we evaluate the robustness of three popular MRC models. We find that compared to base models, large models perform well comparatively on novel entities. Furthermore, our analysis indicates that entity type person highly challenges the MRC models' performance.
comment: Accepted at The AfricaNLP Workshop 2023 colocated with ICLR 2023
Computer Vision and Pattern Recognition 149
☆ COMBO: Compositional World Models for Embodied Multi-Agent Cooperation
In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only partial egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. To evaluate the efficacy of our methods, we create two challenging embodied multi-agent long-horizon cooperation tasks using the ThreeDWorld simulator and conduct experiments with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed framework. More videos can be found at https://vis-www.cs.umass.edu/combo/.
comment: 23 pages. The first three authors contributed equally
☆ Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes
Recently, 3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis results, while allowing the rendering of high-resolution images in real-time. However, leveraging 3D Gaussians for surface reconstruction poses significant challenges due to the explicit and disconnected nature of 3D Gaussians. In this work, we present Gaussian Opacity Fields (GOF), a novel approach for efficient, high-quality, and compact surface reconstruction in unbounded scenes. Our GOF is derived from ray-tracing-based volume rendering of 3D Gaussians, enabling direct geometry extraction from 3D Gaussians by identifying its levelset, without resorting to Poisson reconstruction or TSDF fusion as in previous work. We approximate the surface normal of Gaussians as the normal of the ray-Gaussian intersection plane, enabling the application of regularization that significantly enhances geometry. Furthermore, we develop an efficient geometry extraction method utilizing marching tetrahedra, where the tetrahedral grids are induced from 3D Gaussians and thus adapt to the scene's complexity. Our evaluations reveal that GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis. Further, it compares favorably to, or even outperforms, neural implicit methods in both quality and speed.
comment: Project page: https://niujinshuchong.github.io/gaussian-opacity-fields
☆ RapidVol: Rapid Reconstruction of 3D Ultrasound Volumes from Sensorless 2D Scans
Two-dimensional (2D) freehand ultrasonography is one of the most commonly used medical imaging modalities, particularly in obstetrics and gynaecology. However, it only captures 2D cross-sectional views of inherently 3D anatomies, losing valuable contextual information. As an alternative to requiring costly and complex 3D ultrasound scanners, 3D volumes can be constructed from 2D scans using machine learning. However this usually requires long computational time. Here, we propose RapidVol: a neural representation framework to speed up slice-to-volume ultrasound reconstruction. We use tensor-rank decomposition, to decompose the typical 3D volume into sets of tri-planes, and store those instead, as well as a small neural network. A set of 2D ultrasound scans, with their ground truth (or estimated) 3D position and orientation (pose) is all that is required to form a complete 3D reconstruction. Reconstructions are formed from real fetal brain scans, and then evaluated by requesting novel cross-sectional views. When compared to prior approaches based on fully implicit representation (e.g. neural radiance fields), our method is over 3x quicker, 46% more accurate, and if given inaccurate poses is more robust. Further speed-up is also possible by reconstructing from a structural prior rather than from scratch.
☆ RefFusion: Reference Adapted Diffusion Models for 3D Scene Inpainting
Neural reconstruction approaches are rapidly emerging as the preferred representation for 3D scenes, but their limited editability is still posing a challenge. In this work, we propose an approach for 3D scene inpainting -- the task of coherently replacing parts of the reconstructed scene with desired content. Scene inpainting is an inherently ill-posed task as there exist many solutions that plausibly replace the missing content. A good inpainting method should therefore not only enable high-quality synthesis but also a high degree of control. Based on this observation, we focus on enabling explicit control over the inpainted content and leverage a reference image as an efficient means to achieve this goal. Specifically, we introduce RefFusion, a novel 3D inpainting method based on a multi-scale personalization of an image inpainting diffusion model to the given reference view. The personalization effectively adapts the prior distribution to the target scene, resulting in a lower variance of score distillation objective and hence significantly sharper details. Our framework achieves state-of-the-art results for object removal while maintaining high controllability. We further demonstrate the generality of our formulation on other downstream tasks such as object insertion, scene outpainting, and sparse view reconstruction.
comment: Project page: https://reffusion.github.io
☆ LaDiC: Are Diffusion Models Really Inferior to Autoregressive Counterparts for Image-to-Text Generation?
Diffusion models have exhibited remarkable capabilities in text-to-image generation. However, their performance in image-to-text generation, specifically image captioning, has lagged behind Auto-Regressive (AR) models, casting doubt on their applicability for such tasks. In this work, we revisit diffusion models, highlighting their capacity for holistic context modeling and parallel decoding. With these benefits, diffusion models can alleviate the inherent limitations of AR methods, including their slow inference speed, error propagation, and unidirectional constraints. Furthermore, we identify the prior underperformance of diffusion models stemming from the absence of an effective latent space for image-text alignment, and the discrepancy between continuous diffusion processes and discrete textual data. In response, we introduce a novel architecture, LaDiC, which utilizes a split BERT to create a dedicated latent space for captions and integrates a regularization module to manage varying text lengths. Our framework also includes a diffuser for semantic image-to-text conversion and a Back&Refine technique to enhance token interactivity during inference. LaDiC achieves state-of-the-art performance for diffusion-based methods on the MS COCO dataset with 38.2 BLEU@4 and 126.2 CIDEr, demonstrating exceptional performance without pre-training or ancillary modules. This indicates strong competitiveness with AR models, revealing the previously untapped potential of diffusion models in image-to-text generation.
☆ Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark
Anomaly detection (AD) is often focused on detecting anomaly areas for industrial quality inspection and medical lesion examination. However, due to the specific scenario targets, the data scale for AD is relatively small, and evaluation metrics are still deficient compared to classic vision tasks, such as object detection and semantic segmentation. To fill these gaps, this work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field. This enables fair evaluation and sustainable development for different methods on this challenging benchmark. Moreover, current metrics such as AU-ROC have nearly reached saturation on simple datasets, which prevents a comprehensive evaluation of different methods. Inspired by the metrics in the segmentation field, we further propose several more practical threshold-dependent AD-specific metrics, ie, m$F_1$$^{.2}_{.8}$, mAcc$^{.2}_{.8}$, mIoU$^{.2}_{.8}$, and mIoU-max. Motivated by GAN inversion's high-quality reconstruction capability, we propose a simple but more powerful InvAD framework to achieve high-quality feature reconstruction. Our method improves the effectiveness of reconstruction-based methods on popular MVTec AD, VisA, and our newly proposed COCO-AD datasets under a multi-class unsupervised setting, where only a single detection model is trained to detect anomalies from different classes. Extensive ablation experiments have demonstrated the effectiveness of each component of our InvAD. Full codes and models are available at https://github.com/zhangzjn/ader.
☆ Watch Your Step: Optimal Retrieval for Continual Learning at Scale
One of the most widely used approaches in continual learning is referred to as replay. Replay methods support interleaved learning by storing past experiences in a replay buffer. Although there are methods for selectively constructing the buffer and reprocessing its contents, there is limited exploration of the problem of selectively retrieving samples from the buffer. Current solutions have been tested in limited settings and, more importantly, in isolation. Existing work has also not explored the impact of duplicate replays on performance. In this work, we propose a framework for evaluating selective retrieval strategies, categorized by simple, independent class- and sample-selective primitives. We evaluated several combinations of existing strategies for selective retrieval and present their performances. Furthermore, we propose a set of strategies to prevent duplicate replays and explore whether new samples with low loss values can be learned without replay. In an effort to match our problem setting to a realistic continual learning pipeline, we restrict our experiments to a setting involving a large, pre-trained, open vocabulary object detection model, which is fully fine-tuned on a sequence of 15 datasets.
☆ GazeHTA: End-to-end Gaze Target Detection with Head-Target Association
We propose an end-to-end approach for gaze target detection: predicting a head-target connection between individuals and the target image regions they are looking at. Most of the existing methods use independent components such as off-the-shelf head detectors or have problems in establishing associations between heads and gaze targets. In contrast, we investigate an end-to-end multi-person Gaze target detection framework with Heads and Targets Association (GazeHTA), which predicts multiple head-target instances based solely on input scene image. GazeHTA addresses challenges in gaze target detection by (1) leveraging a pre-trained diffusion model to extract scene features for rich semantic understanding, (2) re-injecting a head feature to enhance the head priors for improved head understanding, and (3) learning a connection map as the explicit visual associations between heads and gaze targets. Our extensive experimental results demonstrate that GazeHTA outperforms state-of-the-art gaze target detection methods and two adapted diffusion-based baselines on two standard datasets.
☆ Mixed Prototype Consistency Learning for Semi-supervised Medical Image Segmentation
Recently, prototype learning has emerged in semi-supervised medical image segmentation and achieved remarkable performance. However, the scarcity of labeled data limits the expressiveness of prototypes in previous methods, potentially hindering the complete representation of prototypes for class embedding. To address this problem, we propose the Mixed Prototype Consistency Learning (MPCL) framework, which includes a Mean Teacher and an auxiliary network. The Mean Teacher generates prototypes for labeled and unlabeled data, while the auxiliary network produces additional prototypes for mixed data processed by CutMix. Through prototype fusion, mixed prototypes provide extra semantic information to both labeled and unlabeled prototypes. High-quality global prototypes for each class are formed by fusing two enhanced prototypes, optimizing the distribution of hidden embeddings used in consistency learning. Extensive experiments on the left atrium and type B aortic dissection datasets demonstrate MPCL's superiority over previous state-of-the-art approaches, confirming the effectiveness of our framework. The code will be released soon.
comment: 15 pages, 2 figures
☆ MOWA: Multiple-in-One Image Warping Model
While recent image warping approaches achieved remarkable success on existing benchmarks, they still require training separate models for each specific task and cannot generalize well to different camera models or customized manipulations. To address diverse types of warping in practice, we propose a Multiple-in-One image WArping model (named MOWA) in this work. Specifically, we mitigate the difficulty of multi-task learning by disentangling the motion estimation at both the region level and pixel level. To further enable dynamic task-aware image warping, we introduce a lightweight point-based classifier that predicts the task type, serving as prompts to modulate the feature maps for better estimation. To our knowledge, this is the first work that solves multiple practical warping tasks in one single model. Extensive experiments demonstrate that our MOWA, which is trained on six tasks for multiple-in-one image warping, outperforms state-of-the-art task-specific models across most tasks. Moreover, MOWA also exhibits promising potential to generalize into unseen scenes, as evidenced by cross-domain and zero-shot evaluations. The code will be made publicly available.
comment: Project page: https://kangliao929.github.io/projects/mowa/
☆ AV-GAN: Attention-Based Varifocal Generative Adversarial Network for Uneven Medical Image Translation
Different types of staining highlight different structures in organs, thereby assisting in diagnosis. However, due to the impossibility of repeated staining, we cannot obtain different types of stained slides of the same tissue area. Translating the slide that is easy to obtain (e.g., H&E) to slides of staining types difficult to obtain (e.g., MT, PAS) is a promising way to solve this problem. However, some regions are closely connected to other regions, and to maintain this connection, they often have complex structures and are difficult to translate, which may lead to wrong translations. In this paper, we propose the Attention-Based Varifocal Generative Adversarial Network (AV-GAN), which solves multiple problems in pathologic image translation tasks, such as uneven translation difficulty in different regions, mutual interference of multiple resolution information, and nuclear deformation. Specifically, we develop an Attention-Based Key Region Selection Module, which can attend to regions with higher translation difficulty. We then develop a Varifocal Module to translate these regions at multiple resolutions. Experimental results show that our proposed AV-GAN outperforms existing image translation methods with two virtual kidney tissue staining tasks and improves FID values by 15.9 and 4.16 respectively in the H&E-MT and H&E-PAS tasks.
☆ A Plausibility Study of Using Augmented Reality in the Ventriculoperitoneal Shunt Operations
The field of augmented reality (AR) has undergone substantial growth, finding diverse applications in the medical industry. This paper delves into various techniques employed in medical surgeries, scrutinizing factors such as cost, implementation, and accessibility. The focus of this exploration is on AR-based solutions, with a particular emphasis on addressing challenges and proposing an innovative solution for ventriculoperitoneal shunt (VP) operations. The proposed solution introduces a novel flow in the pre-surgery phase, aiming to substantially reduce setup time and operation duration by creating 3D models of the skull and ventricles. Experiments are conducted where the models are visualized on a 3D- printed skull through an AR device, specifically the Microsoft HoloLens 2. The paper then conducts an in-depth analysis of this proposed solution, discussing its feasibility, advantages, limitations,and future implications.
comment: Accepted for the 2024 - 16th International Conference on Knowledge and Smart Technology (KST). To be published in IEEEXplore Digital Library (#61284), ISBN: 979-8-3503-7073-7
☆ Dual Modalities of Text: Visual and Textual Generative Pre-training
Harnessing visual texts represents a burgeoning frontier in the evolution of language modeling. In this paper, we introduce a novel pre-training framework for a suite of pixel-based autoregressive language models, pre-training on a corpus of over 400 million documents rendered as RGB images. Our approach is characterized by a dual-modality training regimen, engaging both visual data through next patch prediction with a regression head and textual data via next token prediction with a classification head. This study is particularly focused on investigating the synergistic interplay between visual and textual modalities of language. Our comprehensive evaluation across a diverse array of benchmarks reveals that the confluence of visual and textual data substantially augments the efficacy of pixel-based language models. Notably, our findings show that a unidirectional pixel-based model, devoid of textual data during training, can match the performance levels of advanced bidirectional pixel-based models on various language understanding benchmarks. This work highlights the considerable untapped potential of integrating visual and textual information for language modeling purposes. We will release our code, data, and checkpoints to inspire further research advancement.
☆ Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs
Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images.
comment: 15 pages, 5 figures
☆ ECLAIR: A High-Fidelity Aerial LiDAR Dataset for Semantic Segmentation
We introduce ECLAIR (Extended Classification of Lidar for AI Recognition), a new outdoor large-scale aerial LiDAR dataset designed specifically for advancing research in point cloud semantic segmentation. As the most extensive and diverse collection of its kind to date, the dataset covers a total area of 10$km^2$ with close to 600 million points and features eleven distinct object categories. To guarantee the dataset's quality and utility, we have thoroughly curated the point labels through an internal team of experts, ensuring accuracy and consistency in semantic labeling. The dataset is engineered to move forward the fields of 3D urban modeling, scene understanding, and utility infrastructure management by presenting new challenges and potential applications. As a benchmark, we report qualitative and quantitative analysis of a voxel-based point cloud segmentation approach based on the Minkowski Engine.
comment: 11 pages, 7 figures
☆ MathWriting: A Dataset For Handwritten Mathematical Expression Recognition
We introduce MathWriting, the largest online handwritten mathematical expression dataset to date. It consists of 230k human-written samples and an additional 400k synthetic ones. MathWriting can also be used for offline HME recognition and is larger than all existing offline HME datasets like IM2LATEX-100K. We introduce a benchmark based on MathWriting data in order to advance research on both online and offline HME recognition.
☆ Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution AAAI 2024
Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.
comment: AAAI 2024
☆ Generating Human Interaction Motions in Scenes with Text Control
We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models. Previous text-to-motion methods focus on characters in isolation without considering scenes due to the limited availability of datasets that include motion, text descriptions, and interactive scenes. Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model, emphasizing goal-reaching constraints on large-scale motion-capture datasets. We then enhance this model with a scene-aware component, fine-tuned using data augmented with detailed scene information, including ground plane and object shapes. To facilitate training, we embed annotated navigation and interaction motions within scenes. The proposed method produces realistic and diverse human-object interactions, such as navigation and sitting, in different scenes with various object shapes, orientations, initial body positions, and poses. Extensive experiments demonstrate that our approach surpasses prior techniques in terms of the plausibility of human-scene interactions, as well as the realism and variety of the generated motions. Code will be released upon publication of this work at https://research.nvidia.com/labs/toronto-ai/tesmo.
comment: Project Page: https://research.nvidia.com/labs/toronto-ai/tesmo/
☆ StyleCity: Large-Scale 3D Urban Scenes Stylization with Vision-and-Text Reference via Progressive Optimization
Creating large-scale virtual urban scenes with variant styles is inherently challenging. To facilitate prototypes of virtual production and bypass the need for complex materials and lighting setups, we introduce the first vision-and-text-driven texture stylization system for large-scale urban scenes, StyleCity. Taking an image and text as references, StyleCity stylizes a 3D textured mesh of a large-scale urban scene in a semantics-aware fashion and generates a harmonic omnidirectional sky background. To achieve that, we propose to stylize a neural texture field by transferring 2D vision-and-text priors to 3D globally and locally. During 3D stylization, we progressively scale the planned training views of the input 3D scene at different levels in order to preserve high-quality scene content. We then optimize the scene style globally by adapting the scale of the style image with the scale of the training views. Moreover, we enhance local semantics consistency by the semantics-aware style loss which is crucial for photo-realistic stylization. Besides texture stylization, we further adopt a generative diffusion model to synthesize a style-consistent omnidirectional sky image, which offers a more immersive atmosphere and assists the semantic stylization process. The stylized neural texture field can be baked into an arbitrary-resolution texture, enabling seamless integration into conventional rendering pipelines and significantly easing the virtual production prototyping process. Extensive experiments demonstrate our stylized scenes' superiority in qualitative and quantitative performance and user preferences.
comment: project page: https://chenyingshu.github.io/stylecity3d/
☆ VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time
We introduce VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip. Our premiere model, VASA-1, is capable of not only producing lip movements that are exquisitely synchronized with the audio, but also capturing a large spectrum of facial nuances and natural head motions that contribute to the perception of authenticity and liveliness. The core innovations include a holistic facial dynamics and head movement generation model that works in a face latent space, and the development of such an expressive and disentangled face latent space using videos. Through extensive experiments including evaluation on a set of new metrics, we show that our method significantly outperforms previous methods along various dimensions comprehensively. Our method not only delivers high video quality with realistic facial and head dynamics but also supports the online generation of 512x512 videos at up to 40 FPS with negligible starting latency. It paves the way for real-time engagements with lifelike avatars that emulate human conversational behaviors.
comment: Tech Report. Project webpage: https://www.microsoft.com/en-us/research/project/vasa-1/
☆ Assessing The Impact of CNN Auto Encoder-Based Image Denoising on Image Classification Tasks
Images captured from the real world are often affected by different types of noise, which can significantly impact the performance of Computer Vision systems and the quality of visual data. This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers. The methodology involves utilizing deep learning models such as VGG16, InceptionV3, and other models in both the spatial and frequency domains to identify noise types and defect status. The research process begins with preprocessing images, followed by applying denoising techniques tailored to specific noise categories. The goal is to enhance the accuracy and robustness of defect detection by integrating noise detection and denoising into the classification pipeline. The study achieved remarkable results using VGG16 for noise type classification in the frequency domain, achieving an accuracy of over 99%. Removal of salt and pepper noise resulted in an average SSIM of 87.9, while Gaussian noise removal had an average SSIM of 64.0, and periodic noise removal yielded an average SSIM of 81.6. This comprehensive approach showcases the effectiveness of the deep AutoEncoder model and median filter, for denoising strategies in real-world industrial applications. Finally, our study reports significant improvements in binary classification accuracy for defect detection compared to previous methods. For the VGG16 classifier, accuracy increased from 94.6% to 97.0%, demonstrating the effectiveness of the proposed noise detection and denoising approach. Similarly, for the InceptionV3 classifier, accuracy improved from 84.7% to 90.0%, further validating the benefits of integrating noise analysis into the classification pipeline.
comment: 13 pages, 13 figures, 13th International conference on innovative technologies in the field of science, engineering and technology
☆ Contextrast: Contextual Contrastive Learning for Semantic Segmentation
Despite great improvements in semantic segmentation, challenges persist because of the lack of local/global contexts and the relationship between them. In this paper, we propose Contextrast, a contrastive learning-based semantic segmentation method that allows to capture local/global contexts and comprehend their relationships. Our proposed method comprises two parts: a) contextual contrastive learning (CCL) and b) boundary-aware negative (BANE) sampling. Contextual contrastive learning obtains local/global context from multi-scale feature aggregation and inter/intra-relationship of features for better discrimination capabilities. Meanwhile, BANE sampling selects embedding features along the boundaries of incorrectly predicted regions to employ them as harder negative samples on our contrastive learning, resolving segmentation issues along the boundary region by exploiting fine-grained details. We demonstrate that our Contextrast substantially enhances the performance of semantic segmentation networks, outperforming state-of-the-art contrastive learning approaches on diverse public datasets, e.g. Cityscapes, CamVid, PASCAL-C, COCO-Stuff, and ADE20K, without an increase in computational cost during inference.
☆ Exploring selective image matching methods for zero-shot and few-sample unsupervised domain adaptation of urban canopy prediction ICLR 2024
We explore simple methods for adapting a trained multi-task UNet which predicts canopy cover and height to a new geographic setting using remotely sensed data without the need of training a domain-adaptive classifier and extensive fine-tuning. Extending previous research, we followed a selective alignment process to identify similar images in the two geographical domains and then tested an array of data-based unsupervised domain adaptation approaches in a zero-shot setting as well as with a small amount of fine-tuning. We find that the selective aligned data-based image matching methods produce promising results in a zero-shot setting, and even more so with a small amount of fine-tuning. These methods outperform both an untransformed baseline and a popular data-based image-to-image translation model. The best performing methods were pixel distribution adaptation and fourier domain adaptation on the canopy cover and height tasks respectively.
comment: ICLR 2024 Machine Learning for Remote Sensing (ML4RS) Workshop
☆ Gaussian Splatting Decoder for 3D-aware Generative Adversarial Networks CVPR
NeRF-based 3D-aware Generative Adversarial Networks (GANs) like EG3D or GIRAFFE have shown very high rendering quality under large representational variety. However, rendering with Neural Radiance Fields poses challenges for 3D applications: First, the significant computational demands of NeRF rendering preclude its use on low-power devices, such as mobiles and VR/AR headsets. Second, implicit representations based on neural networks are difficult to incorporate into explicit 3D scenes, such as VR environments or video games. 3D Gaussian Splatting (3DGS) overcomes these limitations by providing an explicit 3D representation that can be rendered efficiently at high frame rates. In this work, we present a novel approach that combines the high rendering quality of NeRF-based 3D-aware GANs with the flexibility and computational advantages of 3DGS. By training a decoder that maps implicit NeRF representations to explicit 3D Gaussian Splatting attributes, we can integrate the representational diversity and quality of 3D GANs into the ecosystem of 3D Gaussian Splatting for the first time. Additionally, our approach allows for a high resolution GAN inversion and real-time GAN editing with 3D Gaussian Splatting scenes.
comment: CVPRW
☆ PyTorchGeoNodes: Enabling Differentiable Shape Programs for 3D Shape Reconstruction
We propose PyTorchGeoNodes, a differentiable module for reconstructing 3D objects from images using interpretable shape programs. In comparison to traditional CAD model retrieval methods, the use of shape programs for 3D reconstruction allows for reasoning about the semantic properties of reconstructed objects, editing, low memory footprint, etc. However, the utilization of shape programs for 3D scene understanding has been largely neglected in past works. As our main contribution, we enable gradient-based optimization by introducing a module that translates shape programs designed in Blender, for example, into efficient PyTorch code. We also provide a method that relies on PyTorchGeoNodes and is inspired by Monte Carlo Tree Search (MCTS) to jointly optimize discrete and continuous parameters of shape programs and reconstruct 3D objects for input scenes. In our experiments, we apply our algorithm to reconstruct 3D objects in the ScanNet dataset and evaluate our results against CAD model retrieval-based reconstructions. Our experiments indicate that our reconstructions match well the input scenes while enabling semantic reasoning about reconstructed objects.
comment: In Submission
☆ Private Attribute Inference from Images with Vision-Language Models
As large language models (LLMs) become ubiquitous in our daily tasks and digital interactions, associated privacy risks are increasingly in focus. While LLM privacy research has primarily focused on the leakage of model training data, it has recently been shown that the increase in models' capabilities has enabled LLMs to make accurate privacy-infringing inferences from previously unseen texts. With the rise of multimodal vision-language models (VLMs), capable of understanding both images and text, a pertinent question is whether such results transfer to the previously unexplored domain of benign images posted online. To investigate the risks associated with the image reasoning capabilities of newly emerging VLMs, we compile an image dataset with human-annotated labels of the image owner's personal attributes. In order to understand the additional privacy risk posed by VLMs beyond traditional human attribute recognition, our dataset consists of images where the inferable private attributes do not stem from direct depictions of humans. On this dataset, we evaluate the inferential capabilities of 7 state-of-the-art VLMs, finding that they can infer various personal attributes at up to 77.6% accuracy. Concerningly, we observe that accuracy scales with the general capabilities of the models, implying that future models can be misused as stronger adversaries, establishing an imperative for the development of adequate defenses.
☆ Enhancing 3D Fidelity of Text-to-3D using Cross-View Correspondences CVPR 2024
Leveraging multi-view diffusion models as priors for 3D optimization have alleviated the problem of 3D consistency, e.g., the Janus face problem or the content drift problem, in zero-shot text-to-3D models. However, the 3D geometric fidelity of the output remains an unresolved issue; albeit the rendered 2D views are realistic, the underlying geometry may contain errors such as unreasonable concavities. In this work, we propose CorrespondentDream, an effective method to leverage annotation-free, cross-view correspondences yielded from the diffusion U-Net to provide additional 3D prior to the NeRF optimization process. We find that these correspondences are strongly consistent with human perception, and by adopting it in our loss design, we are able to produce NeRF models with geometries that are more coherent with common sense, e.g., more smoothed object surface, yielding higher 3D fidelity. We demonstrate the efficacy of our approach through various comparative qualitative results and a solid user study.
comment: 25 pages, 22 figures, accepted to CVPR 2024
☆ Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning
A positive margin may result in an increased risk of local recurrences after breast retention surgery for any malignant tumour. In order to reduce the number of positive margins would offer surgeon real-time intra-operative information on the presence of positive resection margins. This study aims to design an intra-operative tumour margin evaluation scheme by using specimen mammography in breast-conserving surgery. Total of 30 cases were evaluated and compared with the manually determined contours by experienced physicians and pathology report. The proposed method utilizes image thresholding to extract regions of interest and then performs a deep learning model, i.e. SegNet, to segment tumour tissue. The margin width of normal tissues surrounding it is evaluated as the result. The desired size of margin around the tumor was set for 10 mm. The smallest average difference to manual sketched margin (6.53 mm +- 5.84). In the all case, the SegNet architecture was utilized to obtain tissue specimen boundary and tumor contour, respectively. The simulation results indicated that this technology is helpful in discriminating positive from negative margins in the intra-operative setting. The aim of proposed scheme was a potential procedure in the intra-operative measurement system. The experimental results reveal that deep learning techniques can draw results that are consistent with pathology reports.
comment: 1 pages, 6 figures and 2 tables
☆ Automated Evaluation of Large Vision-Language Models on Self-driving Corner Cases
Large Vision-Language Models (LVLMs), due to the remarkable visual reasoning ability to understand images and videos, have received widespread attention in the autonomous driving domain, which significantly advances the development of interpretable end-to-end autonomous driving. However, current evaluations of LVLMs primarily focus on the multi-faceted capabilities in common scenarios, lacking quantifiable and automated assessment in autonomous driving contexts, let alone severe road corner cases that even the state-of-the-art autonomous driving perception systems struggle to handle. In this paper, we propose CODA-LM, a novel vision-language benchmark for self-driving, which provides the first automatic and quantitative evaluation of LVLMs for interpretable autonomous driving including general perception, regional perception, and driving suggestions. CODA-LM utilizes the texts to describe the road images, exploiting powerful text-only large language models (LLMs) without image inputs to assess the capabilities of LVLMs in autonomous driving scenarios, which reveals stronger alignment with human preferences than LVLM judges. Experiments demonstrate that even the closed-sourced commercial LVLMs like GPT-4V cannot deal with road corner cases well, suggesting that we are still far from a strong LVLM-powered intelligent driving agent, and we hope our CODA-LM can become the catalyst to promote future development.
comment: Project Page: https://coda-dataset.github.io/coda-lm/
☆ Do Counterfactual Examples Complicate Adversarial Training? CVPR'24
We leverage diffusion models to study the robustness-performance tradeoff of robust classifiers. Our approach introduces a simple, pretrained diffusion method to generate low-norm counterfactual examples (CEs): semantically altered data which results in different true class membership. We report that the confidence and accuracy of robust models on their clean training data are associated with the proximity of the data to their CEs. Moreover, robust models perform very poorly when evaluated on the CEs directly, as they become increasingly invariant to the low-norm, semantic changes brought by CEs. The results indicate a significant overlap between non-robust and semantic features, countering the common assumption that non-robust features are not interpretable.
comment: Accepted as a short paper to the GCV Workshop at CVPR'24
☆ ReWiTe: Realistic Wide-angle and Telephoto Dual Camera Fusion Dataset via Beam Splitter Camera Rig
The fusion of images from dual camera systems featuring a wide-angle and a telephoto camera has become a hotspot problem recently. By integrating simultaneously captured wide-angle and telephoto images from these systems, the resulting fused image achieves a wide field of view (FOV) coupled with high-definition quality. Existing approaches are mostly deep learning methods, and predominantly rely on supervised learning, where the training dataset plays a pivotal role. However, current datasets typically adopt a data synthesis approach generate input pairs of wide-angle and telephoto images alongside ground-truth images. Notably, the wide-angle inputs are synthesized rather than captured using real wide-angle cameras, and the ground-truth image is captured by wide-angle camera whose quality is substantially lower than that of input telephoto images captured by telephoto cameras. To address these limitations, we introduce a novel hardware setup utilizing a beam splitter to simultaneously capture three images, i.e. input pairs and ground-truth images, from two authentic cellphones equipped with wide-angle and telephoto dual cameras. Specifically, the wide-angle and telephoto images captured by cellphone 2 serve as the input pair, while the telephoto image captured by cellphone 1, which is calibrated to match the optical path of the wide-angle image from cellphone 2, serves as the ground-truth image, maintaining quality on par with the input telephoto image. Experiments validate the efficacy of our newly introduced dataset, named ReWiTe, significantly enhances the performance of various existing methods for real-world wide-angle and telephoto dual image fusion tasks.
☆ EMC$^2$: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence
A key challenge in contrastive learning is to generate negative samples from a large sample set to contrast with positive samples, for learning better encoding of the data. These negative samples often follow a softmax distribution which are dynamically updated during the training process. However, sampling from this distribution is non-trivial due to the high computational costs in computing the partition function. In this paper, we propose an Efficient Markov Chain Monte Carlo negative sampling method for Contrastive learning (EMC$^2$). We follow the global contrastive learning loss as introduced in SogCLR, and propose EMC$^2$ which utilizes an adaptive Metropolis-Hastings subroutine to generate hardness-aware negative samples in an online fashion during the optimization. We prove that EMC$^2$ finds an $\mathcal{O}(1/\sqrt{T})$-stationary point of the global contrastive loss in $T$ iterations. Compared to prior works, EMC$^2$ is the first algorithm that exhibits global convergence (to stationarity) regardless of the choice of batch size while exhibiting low computation and memory cost. Numerical experiments validate that EMC$^2$ is effective with small batch training and achieves comparable or better performance than baseline algorithms. We report the results for pre-training image encoders on STL-10 and Imagenet-100.
comment: 20 pages
☆ Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation
Standard Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target but usually requires simultaneous access to both source and target data. Moreover, UDA approaches commonly assume that source and target domains share the same labels space. Yet, these two assumptions are hardly satisfied in real-world scenarios. This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting, where both assumptions are dropped. We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes. Starting from an initial clustering-based assignment, our method progressively improves the segregation of target-private samples by refining their pseudo-labels with the guide of an uncertainty-based sample selection module. Additionally, we propose a novel contrastive loss, named NL-InfoNCELoss, that, integrating negative learning into self-supervised contrastive learning, enhances the model robustness to noisy pseudo-labels. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed method over existing approaches, establishing new state-of-the-art performance. Notably, additional analyses show that our method is able to learn the underlying semantics of novel classes, opening the possibility to perform novel class discovery.
☆ Label merge-and-split: A graph-colouring approach for memory-efficient brain parcellation
Whole brain parcellation requires inferring hundreds of segmentation labels in large image volumes and thus presents significant practical challenges for deep learning approaches. We introduce label merge-and-split, a method that first greatly reduces the effective number of labels required for learning-based whole brain parcellation and then recovers original labels. Using a greedy graph colouring algorithm, our method automatically groups and merges multiple spatially separate labels prior to model training and inference. The merged labels may be semantically unrelated. A deep learning model is trained to predict merged labels. At inference time, original labels are restored using atlas-based influence regions. In our experiments, the proposed approach reduces the number of labels by up to 68% while achieving segmentation accuracy comparable to the baseline method without label merging and splitting. Moreover, model training and inference times as well as GPU memory requirements were reduced significantly. The proposed method can be applied to all semantic segmentation tasks with a large number of spatially separate classes within an atlas-based prior.
☆ CMU-Flownet: Exploring Point Cloud Scene Flow Estimation in Occluded Scenario
Occlusions hinder point cloud frame alignment in LiDAR data, a challenge inadequately addressed by scene flow models tested mainly on occlusion-free datasets. Attempts to integrate occlusion handling within networks often suffer accuracy issues due to two main limitations: a) the inadequate use of occlusion information, often merging it with flow estimation without an effective integration strategy, and b) reliance on distance-weighted upsampling that falls short in correcting occlusion-related errors. To address these challenges, we introduce the Correlation Matrix Upsampling Flownet (CMU-Flownet), incorporating an occlusion estimation module within its cost volume layer, alongside an Occlusion-aware Cost Volume (OCV) mechanism. Specifically, we propose an enhanced upsampling approach that expands the sensory field of the sampling process which integrates a Correlation Matrix designed to evaluate point-level similarity. Meanwhile, our model robustly integrates occlusion data within the context of scene flow, deploying this information strategically during the refinement phase of the flow estimation. The efficacy of this approach is demonstrated through subsequent experimental validation. Empirical assessments reveal that CMU-Flownet establishes state-of-the-art performance within the realms of occluded Flyingthings3D and KITTY datasets, surpassing previous methodologies across a majority of evaluated metrics.
comment: 14 pages
☆ Classification of Prostate Cancer in 3D Magnetic Resonance Imaging Data based on Convolutional Neural Networks
Prostate cancer is a commonly diagnosed cancerous disease among men world-wide. Even with modern technology such as multi-parametric magnetic resonance tomography and guided biopsies, the process for diagnosing prostate cancer remains time consuming and requires highly trained professionals. In this paper, different convolutional neural networks (CNN) are evaluated on their abilities to reliably classify whether an MRI sequence contains malignant lesions. Implementations of a ResNet, a ConvNet and a ConvNeXt for 3D image data are trained and evaluated. The models are trained using different data augmentation techniques, learning rates, and optimizers. The data is taken from a private dataset, provided by Cantonal Hospital Aarau. The best result was achieved by a ResNet3D, yielding an average precision score of 0.4583 and AUC ROC score of 0.6214.
comment: Previous version published in Buzug T.M., Handels H., M\"uller S., H\"ubner C., Mertins A., Rostalski P.: Student Conference Proceedings 2023, Infinite Science Publishing, 2023 (ISBN/EAN 978-3-945954-72-0). 7 pages, 2 figures
☆ SPVLoc: Semantic Panoramic Viewport Matching for 6D Camera Localization in Unseen Environments
In this paper, we present SPVLoc, a global indoor localization method that accurately determines the six-dimensional (6D) camera pose of a query image and requires minimal scene-specific prior knowledge and no scene-specific training. Our approach employs a novel matching procedure to localize the perspective camera's viewport, given as an RGB image, within a set of panoramic semantic layout representations of the indoor environment. The panoramas are rendered from an untextured 3D reference model, which only comprises approximate structural information about room shapes, along with door and window annotations. We demonstrate that a straightforward convolutional network structure can successfully achieve image-to-panorama and ultimately image-to-model matching. Through a viewport classification score, we rank reference panoramas and select the best match for the query image. Then, a 6D relative pose is estimated between the chosen panorama and query image. Our experiments demonstrate that this approach not only efficiently bridges the domain gap but also generalizes well to previously unseen scenes that are not part of the training data. Moreover, it achieves superior localization accuracy compared to the state of the art methods and also estimates more degrees of freedom of the camera pose. We will make our source code publicly available at https://github.com/fraunhoferhhi/spvloc .
comment: This submission includes the paper and supplementary material. 24 pages, 11 figures
☆ MobileNetV4 - Universal Models for the Mobile Ecosystem
We present the latest generation of MobileNets, known as MobileNetV4 (MNv4), featuring universally efficient architecture designs for mobile devices. At its core, we introduce the Universal Inverted Bottleneck (UIB) search block, a unified and flexible structure that merges Inverted Bottleneck (IB), ConvNext, Feed Forward Network (FFN), and a novel Extra Depthwise (ExtraDW) variant. Alongside UIB, we present Mobile MQA, an attention block tailored for mobile accelerators, delivering a significant 39% speedup. An optimized neural architecture search (NAS) recipe is also introduced which improves MNv4 search effectiveness. The integration of UIB, Mobile MQA and the refined NAS recipe results in a new suite of MNv4 models that are mostly Pareto optimal across mobile CPUs, DSPs, GPUs, as well as specialized accelerators like Apple Neural Engine and Google Pixel EdgeTPU - a characteristic not found in any other models tested. Finally, to further boost accuracy, we introduce a novel distillation technique. Enhanced by this technique, our MNv4-Hybrid-Large model delivers 87% ImageNet-1K accuracy, with a Pixel 8 EdgeTPU runtime of just 3.8ms.
Self-Supervised Visual Preference Alignment
This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code will be available.
☆ Robust Noisy Label Learning via Two-Stream Sample Distillation
Noisy label learning aims to learn robust networks under the supervision of noisy labels, which plays a critical role in deep learning. Existing work either conducts sample selection or label correction to deal with noisy labels during the model training process. In this paper, we design a simple yet effective sample selection framework, termed Two-Stream Sample Distillation (TSSD), for noisy label learning, which can extract more high-quality samples with clean labels to improve the robustness of network training. Firstly, a novel Parallel Sample Division (PSD) module is designed to generate a certain training set with sufficient reliable positive and negative samples by jointly considering the sample structure in feature space and the human prior in loss space. Secondly, a novel Meta Sample Purification (MSP) module is further designed to mine adequate semi-hard samples from the remaining uncertain training set by learning a strong meta classifier with extra golden data. As a result, more and more high-quality samples will be distilled from the noisy training set to train networks robustly in every iteration. Extensive experiments on four benchmark datasets, including CIFAR-10, CIFAR-100, Tiny-ImageNet, and Clothing-1M, show that our method has achieved state-of-the-art results over its competitors.
☆ LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System
Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.
☆ Teaching Chinese Sign Language with Feedback in Mixed Reality
Traditional sign language teaching methods face challenges such as limited feedback and diverse learning scenarios. Although 2D resources lack real-time feedback, classroom teaching is constrained by a scarcity of teacher. Methods based on VR and AR have relatively primitive interaction feedback mechanisms. This study proposes an innovative teaching model that uses real-time monocular vision and mixed reality technology. First, we introduce an improved hand-posture reconstruction method to achieve sign language semantic retention and real-time feedback. Second, a ternary system evaluation algorithm is proposed for a comprehensive assessment, maintaining good consistency with experts in sign language. Furthermore, we use mixed reality technology to construct a scenario-based 3D sign language classroom and explore the user experience of scenario teaching. Overall, this paper presents a novel teaching method that provides an immersive learning experience, advanced posture reconstruction, and precise feedback, achieving positive feedback on user experience and learning effectiveness.
comment: 8 pages, 6 figures
☆ AbsGS: Recovering Fine Details for 3D Gaussian Splatting
3D Gaussian Splatting (3D-GS) technique couples 3D Gaussian primitives with differentiable rasterization to achieve high-quality novel view synthesis results while providing advanced real-time rendering performance. However, due to the flaw of its adaptive density control strategy in 3D-GS, it frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images. The underlying reason for the flaw has still been under-explored. In this work, we present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision, which prevents large Gaussians in over-reconstructed regions from splitting. To address this issue, we propose the novel homodirectional view-space positional gradient as the criterion for densification. Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting. We evaluate our proposed method on various challenging datasets. The experimental results indicate that our approach achieves the best rendering quality with reduced or similar memory consumption. Our method is easy to implement and can be incorporated into a wide variety of most recent Gaussian Splatting-based methods. We will open source our codes upon formal publication. Our project page is available at: https://ty424.github.io/AbsGS.github.io/
☆ Efficient optimal dispersed Haar-like filters for face detection
This paper introduces a new dispersed Haar-like filter for efficiently detection face. The basic idea for finding the filter is maximising between-class and minimising within-class variance. The proposed filters can be considered as an optimal configuration dispersed Haar-like filters; filters with disjoint black and white parts.
☆ Toward a Realistic Benchmark for Out-of-Distribution Detection
Deep neural networks are increasingly used in a wide range of technologies and services, but remain highly susceptible to out-of-distribution (OOD) samples, that is, drawn from a different distribution than the original training set. A common approach to address this issue is to endow deep neural networks with the ability to detect OOD samples. Several benchmarks have been proposed to design and validate OOD detection techniques. However, many of them are based on far-OOD samples drawn from very different distributions, and thus lack the complexity needed to capture the nuances of real-world scenarios. In this work, we introduce a comprehensive benchmark for OOD detection, based on ImageNet and Places365, that assigns individual classes as in-distribution or out-of-distribution depending on the semantic similarity with the training set. Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties. Experimental results on different OOD detection techniques show how their measured efficacy depends on the selected benchmark and how confidence-based techniques may outperform classifier-based ones on near-OOD samples.
☆ A Computer Vision-Based Quality Assessment Technique for the automatic control of consumables for analytical laboratories
The rapid growth of the Industry 4.0 paradigm is increasing the pressure to develop effective automated monitoring systems. Artificial Intelligence (AI) is a convenient tool to improve the efficiency of industrial processes while reducing errors and waste. In fact, it allows the use of real-time data to increase the effectiveness of monitoring systems, minimize errors, make the production process more sustainable, and save costs. In this paper, a novel automatic monitoring system is proposed in the context of production process of plastic consumables used in analysis laboratories, with the aim to increase the effectiveness of the control process currently performed by a human operator. In particular, we considered the problem of classifying the presence or absence of a transparent anticoagulant substance inside test tubes. Specifically, a hand-designed deep network model is used and compared with some state-of-the-art models for its ability to categorize different images of vials that can be either filled with the anticoagulant or empty. Collected results indicate that the proposed approach is competitive with state-of-the-art models in terms of accuracy. Furthermore, we increased the complexity of the task by training the models on the ability to discriminate not only the presence or absence of the anticoagulant inside the vial, but also the size of the test tube. The analysis performed in the latter scenario confirms the competitiveness of our approach. Moreover, our model is remarkably superior in terms of its generalization ability and requires significantly fewer resources. These results suggest the possibility of successfully implementing such a model in the production process of a plastic consumables company.
comment: 31 pages, 13 figures, 10 tables
☆ 1st Place Solution for ICCV 2023 OmniObject3D Challenge: Sparse-View Reconstruction
In this report, we present the 1st place solution for ICCV 2023 OmniObject3D Challenge: Sparse-View Reconstruction. The challenge aims to evaluate approaches for novel view synthesis and surface reconstruction using only a few posed images of each object. We utilize Pixel-NeRF as the basic model, and apply depth supervision as well as coarse-to-fine positional encoding. The experiments demonstrate the effectiveness of our approach in improving sparse-view reconstruction quality. We ranked first in the final test with a PSNR of 25.44614.
☆ The Unreasonable Effectiveness of Pre-Trained Features for Camera Pose Refinement CVPR2024
Pose refinement is an interesting and practically relevant research direction. Pose refinement can be used to (1) obtain a more accurate pose estimate from an initial prior (e.g., from retrieval), (2) as pre-processing, i.e., to provide a better starting point to a more expensive pose estimator, (3) as post-processing of a more accurate localizer. Existing approaches focus on learning features / scene representations for the pose refinement task. This involves training an implicit scene representation or learning features while optimizing a camera pose-based loss. A natural question is whether training specific features / representations is truly necessary or whether similar results can be already achieved with more generic features. In this work, we present a simple approach that combines pre-trained features with a particle filter and a renderable representation of the scene. Despite its simplicity, it achieves state-of-the-art results, demonstrating that one can easily build a pose refiner without the need for specific training. The code is at https://github.com/ga1i13o/mcloc_poseref
comment: Accepted to CVPR2024 (Highlight)
☆ Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification
Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.
☆ Camera clustering for scalable stream-based active distillation
We present a scalable framework designed to craft efficient lightweight models for video object detection utilizing self-training and knowledge distillation techniques. We scrutinize methodologies for the ideal selection of training images from video streams and the efficacy of model sharing across numerous cameras. By advocating for a camera clustering methodology, we aim to diminish the requisite number of models for training while augmenting the distillation dataset. The findings affirm that proper camera clustering notably amplifies the accuracy of distilled models, eclipsing the methodologies that employ distinct models for each camera or a universal model trained on the aggregate camera data.
comment: This manuscript is currently under review at IEEE Transactions on Circuits and Systems for Video Technology
☆ Adversarial Identity Injection for Semantic Face Image Synthesis CVPR 2024
Nowadays, deep learning models have reached incredible performance in the task of image generation. Plenty of literature works address the task of face generation and editing, with human and automatic systems that struggle to distinguish what's real from generated. Whereas most systems reached excellent visual generation quality, they still face difficulties in preserving the identity of the starting input subject. Among all the explored techniques, Semantic Image Synthesis (SIS) methods, whose goal is to generate an image conditioned on a semantic segmentation mask, are the most promising, even though preserving the perceived identity of the input subject is not their main concern. Therefore, in this paper, we investigate the problem of identity preservation in face image generation and present an SIS architecture that exploits a cross-attention mechanism to merge identity, style, and semantic features to generate faces whose identities are as similar as possible to the input ones. Experimental results reveal that the proposed method is not only suitable for preserving the identity but is also effective in the face recognition adversarial attack, i.e. hiding a second identity in the generated faces.
comment: Paper accepted at CVPR 2024 Biometrics Workshop
☆ Comprehensive Survey of Model Compression and Speed up for Vision Transformers
Vision Transformers (ViT) have marked a paradigm shift in computer vision, outperforming state-of-the-art models across diverse tasks. However, their practical deployment is hampered by high computational and memory demands. This study addresses the challenge by evaluating four primary model compression techniques: quantization, low-rank approximation, knowledge distillation, and pruning. We methodically analyze and compare the efficacy of these techniques and their combinations in optimizing ViTs for resource-constrained environments. Our comprehensive experimental evaluation demonstrates that these methods facilitate a balanced compromise between model accuracy and computational efficiency, paving the way for wider application in edge computing devices.
☆ Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition CCS 2024
Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.
comment: Accepted by ICCS 2024
☆ Portrait3D: Text-Guided High-Quality 3D Portrait Generation Using Pyramid Representation and GANs Prior
Existing neural rendering-based text-to-3D-portrait generation methods typically make use of human geometry prior and diffusion models to obtain guidance. However, relying solely on geometry information introduces issues such as the Janus problem, over-saturation, and over-smoothing. We present Portrait3D, a novel neural rendering-based framework with a novel joint geometry-appearance prior to achieve text-to-3D-portrait generation that overcomes the aforementioned issues. To accomplish this, we train a 3D portrait generator, 3DPortraitGAN-Pyramid, as a robust prior. This generator is capable of producing 360{\deg} canonical 3D portraits, serving as a starting point for the subsequent diffusion-based generation process. To mitigate the "grid-like" artifact caused by the high-frequency information in the feature-map-based 3D representation commonly used by most 3D-aware GANs, we integrate a novel pyramid tri-grid 3D representation into 3DPortraitGAN-Pyramid. To generate 3D portraits from text, we first project a randomly generated image aligned with the given prompt into the pre-trained 3DPortraitGAN-Pyramid's latent space. The resulting latent code is then used to synthesize a pyramid tri-grid. Beginning with the obtained pyramid tri-grid, we use score distillation sampling to distill the diffusion model's knowledge into the pyramid tri-grid. Following that, we utilize the diffusion model to refine the rendered images of the 3D portrait and then use these refined images as training data to further optimize the pyramid tri-grid, effectively eliminating issues with unrealistic color and unnatural artifacts. Our experimental results show that Portrait3D can produce realistic, high-quality, and canonical 3D portraits that align with the prompt.
☆ CNN-based explanation ensembling for dataset, representation and explanations evaluation
Explainable Artificial Intelligence has gained significant attention due to the widespread use of complex deep learning models in high-stake domains such as medicine, finance, and autonomous cars. However, different explanations often present different aspects of the model's behavior. In this research manuscript, we explore the potential of ensembling explanations generated by deep classification models using convolutional model. Through experimentation and analysis, we aim to investigate the implications of combining explanations to uncover a more coherent and reliable patterns of the model's behavior, leading to the possibility of evaluating the representation learned by the model. With our method, we can uncover problems of under-representation of images in a certain class. Moreover, we discuss other side benefits like features' reduction by replacing the original image with its explanations resulting in the removal of some sensitive information. Through the use of carefully selected evaluation metrics from the Quantus library, we demonstrated the method's superior performance in terms of Localisation and Faithfulness, compared to individual explanations.
comment: accepted at 2nd World Conference on eXplainable Artificial Intelligence
☆ Learning to Score Sign Language with Two-stage Method
Human action recognition and performance assessment have been hot research topics in recent years. Recognition problems have mature solutions in the field of sign language, but past research in performance analysis has focused on competitive sports and medical training, overlooking the scoring assessment ,which is an important part of sign language teaching digitalization. In this paper, we analyze the existing technologies for performance assessment and adopt methods that perform well in human pose reconstruction tasks combined with motion rotation embedded expressions, proposing a two-stage sign language performance evaluation pipeline. Our analysis shows that choosing reconstruction tasks in the first stage can provide more expressive features, and using smoothing methods can provide an effective reference for assessment. Experiments show that our method provides good score feedback mechanisms and high consistency with professional assessments compared to end-to-end evaluations.
comment: 9 pages, 7 figures
☆ Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
comment: arXiv admin note: text overlap with arXiv:2311.10476
☆ Know Yourself Better: Diverse Discriminative Feature Learning Improves Open Set Recognition
Open set recognition (OSR) is a critical aspect of machine learning, addressing the challenge of detecting novel classes during inference. Within the realm of deep learning, neural classifiers trained on a closed set of data typically struggle to identify novel classes, leading to erroneous predictions. To address this issue, various heuristic methods have been proposed, allowing models to express uncertainty by stating "I don't know." However, a gap in the literature remains, as there has been limited exploration of the underlying mechanisms of these methods. In this paper, we conduct an analysis of open set recognition methods, focusing on the aspect of feature diversity. Our research reveals a significant correlation between learning diverse discriminative features and enhancing OSR performance. Building on this insight, we propose a novel OSR approach that leverages the advantages of feature diversity. The efficacy of our method is substantiated through rigorous evaluation on a standard OSR testbench, demonstrating a substantial improvement over state-of-the-art methods.
☆ Improving Bracket Image Restoration and Enhancement with Flow-guided Alignment and Enhanced Feature Aggregation
In this paper, we address the Bracket Image Restoration and Enhancement (BracketIRE) task using a novel framework, which requires restoring a high-quality high dynamic range (HDR) image from a sequence of noisy, blurred, and low dynamic range (LDR) multi-exposure RAW inputs. To overcome this challenge, we present the IREANet, which improves the multiple exposure alignment and aggregation with a Flow-guide Feature Alignment Module (FFAM) and an Enhanced Feature Aggregation Module (EFAM). Specifically, the proposed FFAM incorporates the inter-frame optical flow as guidance to facilitate the deformable alignment and spatial attention modules for better feature alignment. The EFAM further employs the proposed Enhanced Residual Block (ERB) as a foundational component, wherein a unidirectional recurrent network aggregates the aligned temporal features to better reconstruct the results. To improve model generalization and performance, we additionally employ the Bayer preserving augmentation (BayerAug) strategy to augment the multi-exposure RAW inputs. Our experimental evaluations demonstrate that the proposed IREANet shows state-of-the-art performance compared with previous methods.
☆ Optimization of Prompt Learning via Multi-Knowledge Representation for Vision-Language Models
Vision-Language Models (VLMs), such as CLIP, play a foundational role in various cross-modal applications. To fully leverage VLMs' potential in adapting to downstream tasks, context optimization methods like Prompt Tuning are essential. However, one key limitation is the lack of diversity in prompt templates, whether they are hand-crafted or learned through additional modules. This limitation restricts the capabilities of pretrained VLMs and can result in incorrect predictions in downstream tasks. To address this challenge, we propose Context Optimization with Multi-Knowledge Representation (CoKnow), a framework that enhances Prompt Learning for VLMs with rich contextual knowledge. To facilitate CoKnow during inference, we trained lightweight semantic knowledge mappers, which are capable of generating Multi-Knowledge Representation for an input image without requiring additional priors. Experimentally, We conducted extensive experiments on 11 publicly available datasets, demonstrating that CoKnow outperforms a series of previous methods. We will make all resources open-source: https://github.com/EMZucas/CoKnow.
☆ The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report CVPR
This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor of x4 based on pairs of low and corresponding high-resolution images. The primary objective is to develop networks that optimize various aspects such as runtime, parameters, and FLOPs, while still maintaining a peak signal-to-noise ratio (PSNR) of approximately 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. In addition, this challenge has 4 tracks including the main track (overall performance), sub-track 1 (runtime), sub-track 2 (FLOPs), and sub-track 3 (parameters). In the main track, all three metrics (ie runtime, FLOPs, and parameter count) were considered. The ranking of the main track is calculated based on a weighted sum-up of the scores of all other sub-tracks. In sub-track 1, the practical runtime performance of the submissions was evaluated, and the corresponding score was used to determine the ranking. In sub-track 2, the number of FLOPs was considered. The score calculated based on the corresponding FLOPs was used to determine the ranking. In sub-track 3, the number of parameters was considered. The score calculated based on the corresponding parameters was used to determine the ranking. RLFN is set as the baseline for efficiency measurement. The challenge had 262 registered participants, and 34 teams made valid submissions. They gauge the state-of-the-art in efficient single-image super-resolution. To facilitate the reproducibility of the challenge and enable other researchers to build upon these findings, the code and the pre-trained model of validated solutions are made publicly available at https://github.com/Amazingren/NTIRE2024_ESR/.
comment: The report paper of NTIRE2024 Efficient Super-resolution, accepted by CVPRW2024
☆ Referring Flexible Image Restoration
In reality, images often exhibit multiple degradations, such as rain and fog at night (triple degradations). However, in many cases, individuals may not want to remove all degradations, for instance, a blurry lens revealing a beautiful snowy landscape (double degradations). In such scenarios, people may only desire to deblur. These situations and requirements shed light on a new challenge in image restoration, where a model must perceive and remove specific degradation types specified by human commands in images with multiple degradations. We term this task Referring Flexible Image Restoration (RFIR). To address this, we first construct a large-scale synthetic dataset called RFIR, comprising 153,423 samples with the degraded image, text prompt for specific degradation removal and restored image. RFIR consists of five basic degradation types: blur, rain, haze, low light and snow while six main sub-categories are included for varying degrees of degradation removal. To tackle the challenge, we propose a novel transformer-based multi-task model named TransRFIR, which simultaneously perceives degradation types in the degraded image and removes specific degradation upon text prompt. TransRFIR is based on two devised attention modules, Multi-Head Agent Self-Attention (MHASA) and Multi-Head Agent Cross Attention (MHACA), where MHASA and MHACA introduce the agent token and reach the linear complexity, achieving lower computation cost than vanilla self-attention and cross-attention and obtaining competitive performances. Our TransRFIR achieves state-of-the-art performances compared with other counterparts and is proven as an effective architecture for image restoration. We release our project at https://github.com/GuanRunwei/FIR-CP.
comment: 15 pages, 19 figures
☆ Efficiently Adversarial Examples Generation for Visual-Language Models under Targeted Transfer Scenarios using Diffusion Models
Targeted transfer-based attacks involving adversarial examples pose a significant threat to large visual-language models (VLMs). However, the state-of-the-art (SOTA) transfer-based attacks incur high costs due to excessive iteration counts. Furthermore, the generated adversarial examples exhibit pronounced adversarial noise and demonstrate limited efficacy in evading defense methods such as DiffPure. To address these issues, inspired by score matching, we introduce AdvDiffVLM, which utilizes diffusion models to generate natural, unrestricted adversarial examples. Specifically, AdvDiffVLM employs Adaptive Ensemble Gradient Estimation to modify the score during the diffusion model's reverse generation process, ensuring the adversarial examples produced contain natural adversarial semantics and thus possess enhanced transferability. Simultaneously, to enhance the quality of adversarial examples further, we employ the GradCAM-guided Mask method to disperse adversarial semantics throughout the image, rather than concentrating them in a specific area. Experimental results demonstrate that our method achieves a speedup ranging from 10X to 30X compared to existing transfer-based attack methods, while maintaining superior quality of adversarial examples. Additionally, the generated adversarial examples possess strong transferability and exhibit increased robustness against adversarial defense methods. Notably, AdvDiffVLM can successfully attack commercial VLMs, including GPT-4V, in a black-box manner.
☆ Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning
Despite achieving outstanding performance on various cross-modal tasks, current large vision-language models (LVLMs) still suffer from hallucination issues, manifesting as inconsistencies between their generated responses and the corresponding images. Prior research has implicated that the low quality of instruction data, particularly the skewed balance between positive and negative samples, is a significant contributor to model hallucinations. Recently, researchers have proposed high-quality instruction datasets, such as LRV-Instruction, to mitigate model hallucination. Nonetheless, our investigation reveals that hallucinatory concepts from different LVLMs exhibit specificity, i.e. the distribution of hallucinatory concepts varies significantly across models. Existing datasets did not consider the hallucination specificity of different models in the design processes, thereby diminishing their efficacy in mitigating model hallucination. In this paper, we propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models. Concretely, DFTG consists of two stages: hallucination diagnosis, which extracts the necessary information from the model's responses and images for hallucination diagnosis; and targeted data generation, which generates targeted instruction data based on diagnostic results. The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
☆ Domain-Rectifying Adapter for Cross-Domain Few-Shot Segmentation CVPR 2024
Few-shot semantic segmentation (FSS) has achieved great success on segmenting objects of novel classes, supported by only a few annotated samples. However, existing FSS methods often underperform in the presence of domain shifts, especially when encountering new domain styles that are unseen during training. It is suboptimal to directly adapt or generalize the entire model to new domains in the few-shot scenario. Instead, our key idea is to adapt a small adapter for rectifying diverse target domain styles to the source domain. Consequently, the rectified target domain features can fittingly benefit from the well-optimized source domain segmentation model, which is intently trained on sufficient source domain data. Training domain-rectifying adapter requires sufficiently diverse target domains. We thus propose a novel local-global style perturbation method to simulate diverse potential target domains by perturbating the feature channel statistics of the individual images and collective statistics of the entire source domain, respectively. Additionally, we propose a cyclic domain alignment module to facilitate the adapter effectively rectifying domains using a reverse domain rectification supervision. The adapter is trained to rectify the image features from diverse synthesized target domains to align with the source domain. During testing on target domains, we start by rectifying the image features and then conduct few-shot segmentation on the domain-rectified features. Extensive experiments demonstrate the effectiveness of our method, achieving promising results on cross-domain few-shot semantic segmentation tasks. Our code is available at https://github.com/Matt-Su/DR-Adapter.
comment: Accepted by CVPR 2024
☆ Application of Deep Learning Methods to Processing of Noisy Medical Video Data
Cells count become a challenging problem when the cells move in a continuous stream, and their boundaries are difficult for visual detection. To resolve this problem we modified the training and decision making processes using curriculum learning and multi-view predictions techniques, respectively.
☆ SRGS: Super-Resolution 3D Gaussian Splatting ACM MM 2024
Recently, 3D Gaussian Splatting (3DGS) has gained popularity as a novel explicit 3D representation. This approach relies on the representation power of Gaussian primitives to provide a high-quality rendering. However, primitives optimized at low resolution inevitably exhibit sparsity and texture deficiency, posing a challenge for achieving high-resolution novel view synthesis (HRNVS). To address this problem, we propose Super-Resolution 3D Gaussian Splatting (SRGS) to perform the optimization in a high-resolution (HR) space. The sub-pixel constraint is introduced for the increased viewpoints in HR space, exploiting the sub-pixel cross-view information of the multiple low-resolution (LR) views. The gradient accumulated from more viewpoints will facilitate the densification of primitives. Furthermore, a pre-trained 2D super-resolution model is integrated with the sub-pixel constraint, enabling these dense primitives to learn faithful texture features. In general, our method focuses on densification and texture learning to effectively enhance the representation ability of primitives. Experimentally, our method achieves high rendering quality on HRNVS only with LR inputs, outperforming state-of-the-art methods on challenging datasets such as Mip-NeRF 360 and Tanks & Temples. Related codes will be released upon acceptance.
comment: submit ACM MM 2024
☆ Awareness of uncertainty in classification using a multivariate model and multi-views
One of the ways to make artificial intelligence more natural is to give it some room for doubt. Two main questions should be resolved in that way. First, how to train a model to estimate uncertainties of its own predictions? And then, what to do with the uncertain predictions if they appear? First, we proposed an uncertainty-aware negative log-likelihood loss for the case of N-dimensional multivariate normal distribution with spherical variance matrix to the solution of N-classes classification tasks. The loss is similar to the heteroscedastic regression loss. The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations. The model fits well with the label smoothing technique. Second, we expanded the limits of data augmentation at the training and test stages, and made the trained model to give multiple predictions for a given number of augmented versions of each test sample. Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions, including mode values and bin counts with soft and hard weights. For the latter method, we formalized the model tuning task in the form of multimodal optimization with non-differentiable criteria of maximum accuracy, and applied particle swarm optimization to solve the tuning task. The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels and demonstrated good results in comparison with other uncertainty estimation methods related to sample selection, co-teaching, and label smoothing.
☆ OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model
Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.
☆ Learnable Prompt for Few-Shot Semantic Segmentation in Remote Sensing Domain CVPR
Few-shot segmentation is a task to segment objects or regions of novel classes within an image given only a few annotated examples. In the generalized setting, the task extends to segment both the base and the novel classes. The main challenge is how to train the model such that the addition of novel classes does not hurt the base classes performance, also known as catastrophic forgetting. To mitigate this issue, we use SegGPT as our base model and train it on the base classes. Then, we use separate learnable prompts to handle predictions for each novel class. To handle various object sizes which typically present in remote sensing domain, we perform patch-based prediction. To address the discontinuities along patch boundaries, we propose a patch-and-stitch technique by re-framing the problem as an image inpainting task. During inference, we also utilize image similarity search over image embeddings for prompt selection and novel class filtering to reduce false positive predictions. Based on our experiments, our proposed method boosts the weighted mIoU of a simple fine-tuned SegGPT from 15.96 to 35.08 on the validation set of few-shot OpenEarthMap dataset given in the challenge.
comment: Accepted to CVPRW 2024
☆ TC-OCR: TableCraft OCR for Efficient Detection & Recognition of Table Structure & Content
The automatic recognition of tabular data in document images presents a significant challenge due to the diverse range of table styles and complex structures. Tables offer valuable content representation, enhancing the predictive capabilities of various systems such as search engines and Knowledge Graphs. Addressing the two main problems, namely table detection (TD) and table structure recognition (TSR), has traditionally been approached independently. In this research, we propose an end-to-end pipeline that integrates deep learning models, including DETR, CascadeTabNet, and PP OCR v2, to achieve comprehensive image-based table recognition. This integrated approach effectively handles diverse table styles, complex structures, and image distortions, resulting in improved accuracy and efficiency compared to existing methods like Table Transformers. Our system achieves simultaneous table detection (TD), table structure recognition (TSR), and table content recognition (TCR), preserving table structures and accurately extracting tabular data from document images. The integration of multiple models addresses the intricacies of table recognition, making our approach a promising solution for image-based table understanding, data extraction, and information retrieval applications. Our proposed approach achieves an IOU of 0.96 and an OCR Accuracy of 78%, showcasing a remarkable improvement of approximately 25% in the OCR Accuracy compared to the previous Table Transformer approach.
comment: 8 pages, 2 figures, Workshop of 1st MMIR Deep Multimodal Learning for Information Retrieval
☆ From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.
☆ NeuroMorphix: A Novel Brain MRI Asymmetry-specific Feature Construction Approach For Seizure Recurrence Prediction
Seizure recurrence is an important concern after an initial unprovoked seizure; without drug treatment, it occurs within 2 years in 40-50% of cases. The decision to treat currently relies on predictors of seizure recurrence risk that are inaccurate, resulting in unnecessary, possibly harmful, treatment in some patients and potentially preventable seizures in others. Because of the link between brain lesions and seizure recurrence, we developed a recurrence prediction tool using machine learning and clinical 3T brain MRI. We developed NeuroMorphix, a feature construction approach based on MRI brain anatomy. Each of seven NeuroMorphix features measures the absolute or relative difference between corresponding regions in each cerebral hemisphere. FreeSurfer was used to segment brain regions and to generate values for morphometric parameters (8 for each cortical region and 5 for each subcortical region). The parameters were then mapped to whole brain NeuroMorphix features, yielding a total of 91 features per subject. Features were generated for a first seizure patient cohort (n = 169) categorised into seizure recurrence and non-recurrence subgroups. State-of-the-art classification algorithms were trained and tested using NeuroMorphix features to predict seizure recurrence. Classification models using the top 5 features, ranked by sequential forward selection, demonstrated excellent performance in predicting seizure recurrence, with area under the ROC curve of 88-93%, accuracy of 83-89%, and F1 score of 83-90%. Highly ranked features aligned with structural alterations known to be associated with epilepsy. This study highlights the potential for targeted, data-driven approaches to aid clinical decision-making in brain disorders.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning
Inductive biases are crucial in disentangled representation learning for narrowing down an underspecified solution set. In this work, we consider endowing a neural network autoencoder with three select inductive biases from the literature: data compression into a grid-like latent space via quantization, collective independence amongst latents, and minimal functional influence of any latent on how other latents determine data generation. In principle, these inductive biases are deeply complementary: they most directly specify properties of the latent space, encoder, and decoder, respectively. In practice, however, naively combining existing techniques instantiating these inductive biases fails to yield significant benefits. To address this, we propose adaptations to the three techniques that simplify the learning problem, equip key regularization terms with stabilizing invariances, and quash degenerate incentives. The resulting model, Tripod, achieves state-of-the-art results on a suite of four image disentanglement benchmarks. We also verify that Tripod significantly improves upon its naive incarnation and that all three of its "legs" are necessary for best performance.
comment: 22 pages, 10 figures, code available at https://github.com/kylehkhsu/tripod
☆ EucliDreamer: Fast and High-Quality Texturing for 3D Models with Depth-Conditioned Stable Diffusion
We present EucliDreamer, a simple and effective method to generate textures for 3D models given text prompts and meshes. The texture is parametrized as an implicit function on the 3D surface, which is optimized with the Score Distillation Sampling (SDS) process and differentiable rendering. To generate high-quality textures, we leverage a depth-conditioned Stable Diffusion model guided by the depth image rendered from the mesh. We test our approach on 3D models in Objaverse and conducted a user study, which shows its superior quality compared to existing texturing methods like Text2Tex. In addition, our method converges 2 times faster than DreamFusion. Through text prompting, textures of diverse art styles can be produced. We hope Euclidreamer proides a viable solution to automate a labor-intensive stage in 3D content creation.
comment: Short version of arXiv:2311.15573
☆ Plug-and-Play Acceleration of Occupancy Grid-based NeRF Rendering using VDB Grid and Hierarchical Ray Traversal CVPR
Transmittance estimators such as Occupancy Grid (OG) can accelerate the training and rendering of Neural Radiance Field (NeRF) by predicting important samples that contributes much to the generated image. However, OG manages occupied regions in the form of the dense binary grid, in which there are many blocks with the same values that cause redundant examination of voxels' emptiness in ray-tracing. In our work, we introduce two techniques to improve the efficiency of ray-tracing in trained OG without fine-tuning. First, we replace the dense grids with VDB grids to reduce the spatial redundancy. Second, we use hierarchical digital differential analyzer (HDDA) to efficiently trace voxels in the VDB grids. Our experiments on NeRF-Synthetic and Mip-NeRF 360 datasets show that our proposed method successfully accelerates rendering NeRF-Synthetic dataset by 12% in average and Mip-NeRF 360 dataset by 4% in average, compared to a fast implementation of OG, NerfAcc, without losing the quality of rendered images.
comment: Short paper for CVPR Neural Rendering Intelligence Workshop 2024. Code: https://github.com/Yosshi999/faster-occgrid
☆ OneActor: Consistent Character Generation via Cluster-Conditioned Guidance
Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.
☆ PreGSU-A Generalized Traffic Scene Understanding Model for Autonomous Driving based on Pre-trained Graph Attention Network
Scene understanding, defined as learning, extraction, and representation of interactions among traffic elements, is one of the critical challenges toward high-level autonomous driving (AD). Current scene understanding methods mainly focus on one concrete single task, such as trajectory prediction and risk level evaluation. Although they perform well on specific metrics, the generalization ability is insufficient to adapt to the real traffic complexity and downstream demand diversity. In this study, we propose PreGSU, a generalized pre-trained scene understanding model based on graph attention network to learn the universal interaction and reasoning of traffic scenes to support various downstream tasks. After the feature engineering and sub-graph module, all elements are embedded as nodes to form a dynamic weighted graph. Then, four graph attention layers are applied to learn the relationships among agents and lanes. In the pre-train phase, the understanding model is trained on two self-supervised tasks: Virtual Interaction Force (VIF) modeling and Masked Road Modeling (MRM). Based on the artificial potential field theory, VIF modeling enables PreGSU to capture the agent-to-agent interactions while MRM extracts agent-to-road connections. In the fine-tuning process, the pre-trained parameters are loaded to derive detailed understanding outputs. We conduct validation experiments on two downstream tasks, i.e., trajectory prediction in urban scenario, and intention recognition in highway scenario, to verify the generalized ability and understanding ability. Results show that compared with the baselines, PreGSU achieves better accuracy on both tasks, indicating the potential to be generalized to various scenes and targets. Ablation study shows the effectiveness of pre-train task design.
comment: 12 pages
☆ Masked Autoencoders for Microscopy are Scalable Learners of Cellular Biology CVPR 2024
Featurizing microscopy images for use in biological research remains a significant challenge, especially for large-scale experiments spanning millions of images. This work explores the scaling properties of weakly supervised classifiers and self-supervised masked autoencoders (MAEs) when training with increasingly larger model backbones and microscopy datasets. Our results show that ViT-based MAEs outperform weakly supervised classifiers on a variety of tasks, achieving as much as a 11.5% relative improvement when recalling known biological relationships curated from public databases. Additionally, we develop a new channel-agnostic MAE architecture (CA-MAE) that allows for inputting images of different numbers and orders of channels at inference time. We demonstrate that CA-MAEs effectively generalize by inferring and evaluating on a microscopy image dataset (JUMP-CP) generated under different experimental conditions with a different channel structure than our pretraining data (RPI-93M). Our findings motivate continued research into scaling self-supervised learning on microscopy data in order to create powerful foundation models of cellular biology that have the potential to catalyze advancements in drug discovery and beyond.
comment: CVPR 2024 Highlight. arXiv admin note: text overlap with arXiv:2309.16064
☆ Vision-and-Language Navigation via Causal Learning
In the pursuit of robust and generalizable environment perception and language understanding, the ubiquitous challenge of dataset bias continues to plague vision-and-language navigation (VLN) agents, hindering their performance in unseen environments. This paper introduces the generalized cross-modal causal transformer (GOAT), a pioneering solution rooted in the paradigm of causal inference. By delving into both observable and unobservable confounders within vision, language, and history, we propose the back-door and front-door adjustment causal learning (BACL and FACL) modules to promote unbiased learning by comprehensively mitigating potential spurious correlations. Additionally, to capture global confounder features, we propose a cross-modal feature pooling (CFP) module supervised by contrastive learning, which is also shown to be effective in improving cross-modal representations during pre-training. Extensive experiments across multiple VLN datasets (R2R, REVERIE, RxR, and SOON) underscore the superiority of our proposed method over previous state-of-the-art approaches. Code is available at https://github.com/CrystalSixone/VLN-GOAT.
☆ MoE-TinyMed: Mixture of Experts for Tiny Medical Large Vision-Language Models
Mixture of Expert Tuning (MoE-Tuning) has effectively enhanced the performance of general MLLMs with fewer parameters, yet its application in resource-limited medical settings has not been fully explored. To address this gap, we developed MoE-TinyMed, a model tailored for medical applications that significantly lowers parameter demands. In evaluations on the VQA-RAD, SLAKE, and Path-VQA datasets, MoE-TinyMed outperformed LLaVA-Med in all Med-VQA closed settings with just 3.6B parameters. Additionally, a streamlined version with 2B parameters surpassed LLaVA-Med's performance in PathVQA, showcasing its effectiveness in resource-limited healthcare settings.
☆ Compressible and Searchable: AI-native Multi-Modal Retrieval System with Learned Image Compression
The burgeoning volume of digital content across diverse modalities necessitates efficient storage and retrieval methods. Conventional approaches struggle to cope with the escalating complexity and scale of multimedia data. In this paper, we proposed framework addresses this challenge by fusing AI-native multi-modal search capabilities with neural image compression. First we analyze the intricate relationship between compressibility and searchability, recognizing the pivotal role each plays in the efficiency of storage and retrieval systems. Through the usage of simple adapter is to bridge the feature of Learned Image Compression(LIC) and Contrastive Language-Image Pretraining(CLIP) while retaining semantic fidelity and retrieval of multi-modal data. Experimental evaluations on Kodak datasets demonstrate the efficacy of our approach, showcasing significant enhancements in compression efficiency and search accuracy compared to existing methodologies. Our work marks a significant advancement towards scalable and efficient multi-modal search systems in the era of big data.
☆ MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints CVPR 2024
This work proposes a novel learning framework for visual hand dynamics analysis that takes into account the physiological aspects of hand motion. The existing models, which are simplified joint-actuated systems, often produce unnatural motions. To address this, we integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create a new model, MS-MANO. This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories. We further propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron (MLP) network. Our evaluation of the accuracy of MS-MANO and the efficacy of the BioPR is conducted in two separate parts. The accuracy of MS-MANO is compared with MyoSuite, while the efficacy of BioPR is benchmarked against two large-scale public datasets and two recent state-of-the-art methods. The results demonstrate that our approach consistently improves the baseline methods both quantitatively and qualitatively.
comment: 11 pages, 5 figures; CVPR 2024
☆ Find The Gap: Knowledge Base Reasoning For Visual Question Answering
We analyze knowledge-based visual question answering, for which given a question, the models need to ground it into the visual modality and retrieve the relevant knowledge from a given large knowledge base (KB) to be able to answer. Our analysis has two folds, one based on designing neural architectures and training them from scratch, and another based on large pre-trained language models (LLMs). Our research questions are: 1) Can we effectively augment models by explicit supervised retrieval of the relevant KB information to solve the KB-VQA problem? 2) How do task-specific and LLM-based models perform in the integration of visual and external knowledge, and multi-hop reasoning over both sources of information? 3) Is the implicit knowledge of LLMs sufficient for KB-VQA and to what extent it can replace the explicit KB? Our results demonstrate the positive impact of empowering task-specific and LLM models with supervised external and visual knowledge retrieval models. Our findings show that though LLMs are stronger in 1-hop reasoning, they suffer in 2-hop reasoning in comparison with our fine-tuned NN model even if the relevant information from both modalities is available to the model. Moreover, we observed that LLM models outperform the NN model for KB-related questions which confirms the effectiveness of implicit knowledge in LLMs however, they do not alleviate the need for external KB.
☆ Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V
Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. We present COME-robot, the first closed-loop framework utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios. We meticulously construct a library of action primitives for robot exploration, navigation, and manipulation, serving as callable execution modules for GPT-4V in task planning. On top of these modules, GPT-4V serves as the brain that can accomplish multimodal reasoning, generate action policy with code, verify the task progress, and provide feedback for replanning. Such design enables COME-robot to (i) actively perceive the environments, (ii) perform situated reasoning, and (iii) recover from failures. Through comprehensive experiments involving 8 challenging real-world tabletop and manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~25%) compared to state-of-the-art baseline methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
☆ GaitPoint+: A Gait Recognition Network Incorporating Point Cloud Analysis and Recycling
Gait is a behavioral biometric modality that can be used to recognize individuals by the way they walk from a far distance. Most existing gait recognition approaches rely on either silhouettes or skeletons, while their joint use is underexplored. Features from silhouettes and skeletons can provide complementary information for more robust recognition against appearance changes or pose estimation errors. To exploit the benefits of both silhouette and skeleton features, we propose a new gait recognition network, referred to as the GaitPoint+. Our approach models skeleton key points as a 3D point cloud, and employs a computational complexity-conscious 3D point processing approach to extract skeleton features, which are then combined with silhouette features for improved accuracy. Since silhouette- or CNN-based methods already require considerable amount of computational resources, it is preferable that the key point learning module is faster and more lightweight. We present a detailed analysis of the utilization of every human key point after the use of traditional max-pooling, and show that while elbow and ankle points are used most commonly, many useful points are discarded by max-pooling. Thus, we present a method to recycle some of the discarded points by a Recycling Max-Pooling module, during processing of skeleton point clouds, and achieve further performance improvement. We provide a comprehensive set of experimental results showing that (i) incorporating skeleton features obtained by a point-based 3D point cloud processing approach boosts the performance of three different state-of-the-art silhouette- and CNN-based baselines; (ii) recycling the discarded points increases the accuracy further. Ablation studies are also provided to show the effectiveness and contribution of different components of our approach.
☆ LWIRPOSE: A novel LWIR Thermal Image Dataset and Benchmark ICIP2024
Human pose estimation faces hurdles in real-world applications due to factors like lighting changes, occlusions, and cluttered environments. We introduce a unique RGB-Thermal Nearly Paired and Annotated 2D Pose Dataset, comprising over 2,400 high-quality LWIR (thermal) images. Each image is meticulously annotated with 2D human poses, offering a valuable resource for researchers and practitioners. This dataset, captured from seven actors performing diverse everyday activities like sitting, eating, and walking, facilitates pose estimation on occlusion and other challenging scenarios. We benchmark state-of-the-art pose estimation methods on the dataset to showcase its potential, establishing a strong baseline for future research. Our results demonstrate the dataset's effectiveness in promoting advancements in pose estimation for various applications, including surveillance, healthcare, and sports analytics. The dataset and code are available at https://github.com/avinres/LWIRPOSE
comment: Submitted in ICIP2024
☆ MK-SGN: A Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation for Skeleton-based Action Recognition
In recent years, skeleton-based action recognition, leveraging multimodal Graph Convolutional Networks (GCN), has achieved remarkable results. However, due to their deep structure and reliance on continuous floating-point operations, GCN-based methods are energy-intensive. To address this issue, we propose an innovative Spiking Graph Convolutional Network with Multimodal Fusion and Knowledge Distillation (MK-SGN). By merging the energy efficiency of Spiking Neural Network (SNN) with the graph representation capability of GCN, the proposed MK-SGN reduces energy consumption while maintaining recognition accuracy. Firstly, we convert GCN into Spiking Graph Convolutional Network (SGN) and construct a foundational Base-SGN for skeleton-based action recognition, establishing a new benchmark and paving the way for future research exploration. Secondly, we further propose a Spiking Multimodal Fusion module (SMF), leveraging mutual information to process multimodal data more efficiently. Additionally, we introduce a spiking attention mechanism and design a Spatio Graph Convolution module with a Spatial Global Spiking Attention mechanism (SA-SGC), enhancing feature learning capability. Furthermore, we delve into knowledge distillation methods from multimodal GCN to SGN and propose a novel, integrated method that simultaneously focuses on both intermediate layer distillation and soft label distillation to improve the performance of SGN. On two challenging datasets for skeleton-based action recognition, MK-SGN outperforms the state-of-the-art GCN-like frameworks in reducing computational load and energy consumption. In contrast, typical GCN methods typically consume more than 35mJ per action sample, while MK-SGN reduces energy consumption by more than 98%.
☆ Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box Vision-Language Models for Selective Visual Question Answering CVPR 2024
The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction typically require access to the internals of a model, require retraining a model or study only unimodal models. However, the most powerful models (e.g. GPT-4) are typically only available as black boxes with inaccessible internals, are not retrainable by end-users, and are frequently used for multimodal tasks. We study the possibility of selective prediction for vision-language models in a realistic, black-box setting. We propose using the principle of \textit{neighborhood consistency} to identify unreliable responses from a black-box vision-language model in question answering tasks. We hypothesize that given only a visual question and model response, the consistency of the model's responses over the neighborhood of a visual question will indicate reliability. It is impossible to directly sample neighbors in feature space in a black-box setting. Instead, we show that it is possible to use a smaller proxy model to approximately sample from the neighborhood. We find that neighborhood consistency can be used to identify model responses to visual questions that are likely unreliable, even in adversarial settings or settings that are out-of-distribution to the proxy model.
comment: CVPR 2024
♻ ☆ GROUNDHOG: Grounding Large Language Models to Holistic Segmentation CVPR 2024
Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm lacks pixel-level representations that are important for fine-grained visual understanding and diagnosis. In this work, we introduce GROUNDHOG, an MLLM developed by grounding Large Language Models to holistic segmentation. GROUNDHOG incorporates a masked feature extractor and converts extracted features into visual entity tokens for the MLLM backbone, which then connects groundable phrases to unified grounding masks by retrieving and merging the entity masks. To train GROUNDHOG, we carefully curated M3G2, a grounded visual instruction tuning dataset with Multi-Modal Multi-Grained Grounding, by harvesting a collection of segmentation-grounded datasets with rich annotations. Our experimental results show that GROUNDHOG achieves superior performance on various language grounding tasks without task-specific fine-tuning, and significantly reduces object hallucination. GROUNDHOG also demonstrates better grounding towards complex forms of visual input and provides easy-to-understand diagnosis in failure cases.
comment: Accepted to CVPR 2024. Website: https://groundhog-mllm.github.io/
♻ ☆ Splatter Image: Ultra-Fast Single-View 3D Reconstruction CVPR 2024
We introduce the \method, an ultra-efficient approach for monocular 3D object reconstruction. Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images. We apply Gaussian Splatting to monocular reconstruction by learning a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS. Our main innovation is the surprisingly straightforward design of this network, which, using 2D operators, maps the input image to one 3D Gaussian per pixel. The resulting set of Gaussians thus has the form an image, the Splatter Image. We further extend the method take several images as input via cross-view attention. Owning to the speed of the renderer (588 FPS), we use a single GPU for training while generating entire images at each iteration to optimize perceptual metrics like LPIPS. On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works. Code, models, demo and more results are available at https://szymanowiczs.github.io/splatter-image.
comment: CVPR 2024. Project page: https://szymanowiczs.github.io/splatter-image.html . Code: https://github.com/szymanowiczs/splatter-image , Demo: https://huggingface.co/spaces/szymanowiczs/splatter_image
♻ ☆ Hunting imaging biomarkers in pulmonary fibrosis: Benchmarks of the AIIB23 challenge
Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway trees remains prohibitively time-consuming. While significant efforts have been made towards enhancing airway modelling, current public-available datasets concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for prognosis, a strong airway-derived biomarker (Hazard ratio>1.5, p<0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.
comment: 19 pages
♻ ☆ Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation
Understanding terrain topology at long-range is crucial for the success of off-road robotic missions, especially when navigating at high-speeds. LiDAR sensors, which are currently heavily relied upon for geometric mapping, provide sparse measurements when mapping at greater distances. To address this challenge, we present a novel learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time. Our proposed method is comprised of three main elements. First, a transformer-based encoder is introduced that learns cross-view associations between the egocentric views and prior bird-eye-view elevation map predictions. Second, an orientation-aware positional encoding is proposed to incorporate the 3D vehicle pose information over complex unstructured terrain with multi-view visual image features. Lastly, a history-augmented learn-able map embedding is proposed to achieve better temporal consistency between elevation map predictions to facilitate the downstream navigational tasks. We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain using real-world offroad driving data. Furthermore, the method is qualitatively and quantitatively compared against the current state-of-the-art methods. Extensive field experiments demonstrate that our method surpasses baseline models in accurately predicting terrain elevation while effectively capturing the overall terrain topology at long-ranges. Finally, ablation studies are conducted to highlight and understand the effect of key components of the proposed approach and validate their suitability to improve offroad robotic navigation capabilities.
comment: 8 pages, 6 figures, Accepted in IEEE Robotics and Automation Letters
♻ ☆ A Survey and Benchmark of Automatic Surface Reconstruction from Point Clouds
We present a comprehensive survey and benchmark of both traditional and learning-based methods for surface reconstruction from point clouds. This task is particularly challenging for real-world acquisitions due to factors like noise, outliers, non-uniform sampling, and missing data. Traditional approaches often simplify the problem by imposing handcrafted priors on either the input point clouds or the resulting surface, a process that can necessitate tedious hyperparameter tuning. Conversely, deep learning models have the capability to directly learn the properties of input point clouds and desired surfaces from data. We study the influence of these handcrafted and learned priors on the precision and robustness of surface reconstruction techniques. We evaluate various time-tested and contemporary methods in a standardized manner. When both trained and evaluated on point clouds with identical characteristics, the learning-based models consistently produce superior surfaces compared to their traditional counterparts$\unicode{x2013}$even in scenarios involving novel shape categories. However, traditional methods demonstrate greater resilience to the diverse array of point cloud anomalies commonly found in real-world 3D acquisitions. For the benefit of the research community, we make our code and datasets available, inviting further enhancements to learning-based surface reconstruction. This can be accessed at https://github.com/raphaelsulzer/dsr-benchmark .
comment: 20 pages
♻ ☆ Ghost-dil-NetVLAD: A Lightweight Neural Network for Visual Place Recognition
Visual place recognition (VPR) is a challenging task with the unbalance between enormous computational cost and high recognition performance. Thanks to the practical feature extraction ability of the lightweight convolution neural networks (CNNs) and the train-ability of the vector of locally aggregated descriptors (VLAD) layer, we propose a lightweight weakly supervised end-to-end neural network consisting of a front-ended perception model called GhostCNN and a learnable VLAD layer as a back-end. GhostCNN is based on Ghost modules that are lightweight CNN-based architectures. They can generate redundant feature maps using linear operations instead of the traditional convolution process, making a good trade-off between computation resources and recognition accuracy. To enhance our proposed lightweight model further, we add dilated convolutions to the Ghost module to get features containing more spatial semantic information, improving accuracy. Finally, rich experiments conducted on a commonly used public benchmark and our private dataset validate that the proposed neural network reduces the FLOPs and parameters of VGG16-NetVLAD by 99.04% and 80.16%, respectively. Besides, both models achieve similar accuracy.
♻ ☆ VehicleGAN: Pair-flexible Pose Guided Image Synthesis for Vehicle Re-identification
Vehicle Re-identification (Re-ID) has been broadly studied in the last decade; however, the different camera view angle leading to confused discrimination in the feature subspace for the vehicles of various poses, is still challenging for the Vehicle Re-ID models in the real world. To promote the Vehicle Re-ID models, this paper proposes to synthesize a large number of vehicle images in the target pose, whose idea is to project the vehicles of diverse poses into the unified target pose so as to enhance feature discrimination. Considering that the paired data of the same vehicles in different traffic surveillance cameras might be not available in the real world, we propose the first Pair-flexible Pose Guided Image Synthesis method for Vehicle Re-ID, named as VehicleGAN in this paper, which works for both supervised and unsupervised settings without the knowledge of geometric 3D models. Because of the feature distribution difference between real and synthetic data, simply training a traditional metric learning based Re-ID model with data-level fusion (i.e., data augmentation) is not satisfactory, therefore we propose a new Joint Metric Learning (JML) via effective feature-level fusion from both real and synthetic data. Intensive experimental results on the public VeRi-776 and VehicleID datasets prove the accuracy and effectiveness of our proposed VehicleGAN and JML.
♻ ☆ SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM CVPR 2024
Dense simultaneous localization and mapping (SLAM) is crucial for robotics and augmented reality applications. However, current methods are often hampered by the non-volumetric or implicit way they represent a scene. This work introduces SplaTAM, an approach that, for the first time, leverages explicit volumetric representations, i.e., 3D Gaussians, to enable high-fidelity reconstruction from a single unposed RGB-D camera, surpassing the capabilities of existing methods. SplaTAM employs a simple online tracking and mapping system tailored to the underlying Gaussian representation. It utilizes a silhouette mask to elegantly capture the presence of scene density. This combination enables several benefits over prior representations, including fast rendering and dense optimization, quickly determining if areas have been previously mapped, and structured map expansion by adding more Gaussians. Extensive experiments show that SplaTAM achieves up to 2x superior performance in camera pose estimation, map construction, and novel-view synthesis over existing methods, paving the way for more immersive high-fidelity SLAM applications.
comment: CVPR 2024. Website: https://spla-tam.github.io/
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ LoopAnimate: Loopable Salient Object Animation
Research on diffusion model-based video generation has advanced rapidly. However, limitations in object fidelity and generation length hinder its practical applications. Additionally, specific domains like animated wallpapers require seamless looping, where the first and last frames of the video match seamlessly. To address these challenges, this paper proposes LoopAnimate, a novel method for generating videos with consistent start and end frames. To enhance object fidelity, we introduce a framework that decouples multi-level image appearance and textual semantic information. Building upon an image-to-image diffusion model, our approach incorporates both pixel-level and feature-level information from the input image, injecting image appearance and textual semantic embeddings at different positions of the diffusion model. Existing UNet-based video generation models require to input the entire videos during training to encode temporal and positional information at once. However, due to limitations in GPU memory, the number of frames is typically restricted to 16. To address this, this paper proposes a three-stage training strategy with progressively increasing frame numbers and reducing fine-tuning modules. Additionally, we introduce the Temporal E nhanced Motion Module(TEMM) to extend the capacity for encoding temporal and positional information up to 36 frames. The proposed LoopAnimate, which for the first time extends the single-pass generation length of UNet-based video generation models to 35 frames while maintaining high-quality video generation. Experiments demonstrate that LoopAnimate achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.
♻ ☆ CoBra: Complementary Branch Fusing Class and Semantic Knowledge for Robust Weakly Supervised Semantic Segmentation
Leveraging semantically precise pseudo masks derived from image-level class knowledge for segmentation, namely image-level Weakly Supervised Semantic Segmentation (WSSS), still remains challenging. While Class Activation Maps (CAMs) using CNNs have steadily been contributing to the success of WSSS, the resulting activation maps often narrowly focus on class-specific parts (e.g., only face of human). On the other hand, recent works based on vision transformers (ViT) have shown promising results based on their self-attention mechanism to capture the semantic parts but fail in capturing complete class-specific details (e.g., entire body parts of human but also with a dog nearby). In this work, we propose Complementary Branch (CoBra), a novel dual branch framework consisting of two distinct architectures which provide valuable complementary knowledge of class (from CNN) and semantic (from ViT) to each branch. In particular, we learn Class-Aware Projection (CAP) for the CNN branch and Semantic-Aware Projection (SAP) for the ViT branch to explicitly fuse their complementary knowledge and facilitate a new type of extra patch-level supervision. Our model, through CoBra, fuses CNN and ViT's complementary outputs to create robust pseudo masks that integrate both class and semantic information effectively. Extensive experiments qualitatively and quantitatively investigate how CNN and ViT complement each other on the PASCAL VOC 2012 dataset, showing a state-of-the-art WSSS result. This includes not only the masks generated by our model, but also the segmentation results derived from utilizing these masks as pseudo labels.
♻ ☆ A Systematic Review of Low-Rank and Local Low-Rank Matrix Approximation in Big Data Medical Imaging
The large volume and complexity of medical imaging datasets are bottlenecks for storage, transmission, and processing. To tackle these challenges, the application of low-rank matrix approximation (LRMA) and its derivative, local LRMA (LLRMA) has demonstrated potential. A detailed analysis of the literature identifies LRMA and LLRMA methods applied to various imaging modalities, and the challenges and limitations associated with existing LRMA and LLRMA methods are addressed. We note a significant shift towards a preference for LLRMA in the medical imaging field since 2015, demonstrating its potential and effectiveness in capturing complex structures in medical data compared to LRMA. Acknowledging the limitations of shallow similarity methods used with LLRMA, we suggest advanced semantic image segmentation for similarity measure, explaining in detail how it can measure similar patches and their feasibility. We note that LRMA and LLRMA are mainly applied to unstructured medical data, and we propose extending their application to different medical data types, including structured and semi-structured. This paper also discusses how LRMA and LLRMA can be applied to regular data with missing entries and the impact of inaccuracies in predicting missing values and their effects. We discuss the impact of patch size and propose the use of random search (RS) to determine the optimal patch size. To enhance feasibility, a hybrid approach using Bayesian optimization and RS is proposed, which could improve the application of LRMA and LLRMA in medical imaging.
♻ ☆ Slide-SAM: Medical SAM Meets Sliding Window
The Segment Anything Model (SAM) has achieved a notable success in two-dimensional image segmentation in natural images. However, the substantial gap between medical and natural images hinders its direct application to medical image segmentation tasks. Particularly in 3D medical images, SAM struggles to learn contextual relationships between slices, limiting its practical applicability. Moreover, applying 2D SAM to 3D images requires prompting the entire volume, which is time- and label-consuming. To address these problems, we propose Slide-SAM, which treats a stack of three adjacent slices as a prediction window. It firstly takes three slices from a 3D volume and point- or bounding box prompts on the central slice as inputs to predict segmentation masks for all three slices. Subsequently, the masks of the top and bottom slices are then used to generate new prompts for adjacent slices. Finally, step-wise prediction can be achieved by sliding the prediction window forward or backward through the entire volume. Our model is trained on multiple public and private medical datasets and demonstrates its effectiveness through extensive 3D segmetnation experiments, with the help of minimal prompts. Code is available at \url{https://github.com/Curli-quan/Slide-SAM}.
♻ ☆ E3: Ensemble of Expert Embedders for Adapting Synthetic Image Detectors to New Generators Using Limited Data CVPR
As generative AI progresses rapidly, new synthetic image generators continue to emerge at a swift pace. Traditional detection methods face two main challenges in adapting to these generators: the forensic traces of synthetic images from new techniques can vastly differ from those learned during training, and access to data for these new generators is often limited. To address these issues, we introduce the Ensemble of Expert Embedders (E3), a novel continual learning framework for updating synthetic image detectors. E3 enables the accurate detection of images from newly emerged generators using minimal training data. Our approach does this by first employing transfer learning to develop a suite of expert embedders, each specializing in the forensic traces of a specific generator. Then, all embeddings are jointly analyzed by an Expert Knowledge Fusion Network to produce accurate and reliable detection decisions. Our experiments demonstrate that E3 outperforms existing continual learning methods, including those developed specifically for synthetic image detection.
comment: 11 pages, 4 figures, To be published in CVPRWMF24
♻ ☆ DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Text-to-image diffusion models have been shown to suffer from sample-level memorization, possibly reproducing near-perfect replica of images that they are trained on, which may be undesirable. To remedy this issue, we develop the first differentially private (DP) retrieval-augmented generation algorithm that is capable of generating high-quality image samples while providing provable privacy guarantees. Specifically, we assume access to a text-to-image diffusion model trained on a small amount of public data, and design a DP retrieval mechanism to augment the text prompt with samples retrieved from a private retrieval dataset. Our \emph{differentially private retrieval-augmented diffusion model} (DP-RDM) requires no fine-tuning on the retrieval dataset to adapt to another domain, and can use state-of-the-art generative models to generate high-quality image samples while satisfying rigorous DP guarantees. For instance, when evaluated on MS-COCO, our DP-RDM can generate samples with a privacy budget of $\epsilon=10$, while providing a $3.5$ point improvement in FID compared to public-only retrieval for up to $10,000$ queries.
♻ ☆ LoopGaussian: Creating 3D Cinemagraph with Multi-view Images via Eulerian Motion Field
Cinemagraph is a unique form of visual media that combines elements of still photography and subtle motion to create a captivating experience. However, the majority of videos generated by recent works lack depth information and are confined to the constraints of 2D image space. In this paper, inspired by significant progress in the field of novel view synthesis (NVS) achieved by 3D Gaussian Splatting (3D-GS), we propose LoopGaussian to elevate cinemagraph from 2D image space to 3D space using 3D Gaussian modeling. To achieve this, we first employ the 3D-GS method to reconstruct 3D Gaussian point clouds from multi-view images of static scenes,incorporating shape regularization terms to prevent blurring or artifacts caused by object deformation. We then adopt an autoencoder tailored for 3D Gaussian to project it into feature space. To maintain the local continuity of the scene, we devise SuperGaussian for clustering based on the acquired features. By calculating the similarity between clusters and employing a two-stage estimation method, we derive an Eulerian motion field to describe velocities across the entire scene. The 3D Gaussian points then move within the estimated Eulerian motion field. Through bidirectional animation techniques, we ultimately generate a 3D Cinemagraph that exhibits natural and seamlessly loopable dynamics. Experiment results validate the effectiveness of our approach, demonstrating high-quality and visually appealing scene generation. The project is available at https://pokerlishao.github.io/LoopGaussian/.
comment: 10 pages
♻ ☆ Using Multi-scale SwinTransformer-HTC with Data augmentation in CoNIC Challenge
Colorectal cancer is one of the most common cancers worldwide, so early pathological examination is very important. However, it is time-consuming and labor-intensive to identify the number and type of cells on H&E images in clinical. Therefore, automatic segmentation and classification task and counting the cellular composition of H&E images from pathological sections is proposed by CoNIC Challenge 2022. We proposed a multi-scale Swin transformer with HTC for this challenge, and also applied the known normalization methods to generate more augmentation data. Finally, our strategy showed that the multi-scale played a crucial role to identify different scale features and the augmentation arose the recognition of model.
comment: Errors have been identified in the analysis
♻ ☆ 2S-UDF: A Novel Two-stage UDF Learning Method for Robust Non-watertight Model Reconstruction from Multi-view Images CVPR 2024
Recently, building on the foundation of neural radiance field, various techniques have emerged to learn unsigned distance fields (UDF) to reconstruct 3D non-watertight models from multi-view images. Yet, a central challenge in UDF-based volume rendering is formulating a proper way to convert unsigned distance values into volume density, ensuring that the resulting weight function remains unbiased and sensitive to occlusions. Falling short on these requirements often results in incorrect topology or large reconstruction errors in resulting models. This paper addresses this challenge by presenting a novel two-stage algorithm, 2S-UDF, for learning a high-quality UDF from multi-view images. Initially, the method applies an easily trainable density function that, while slightly biased and transparent, aids in coarse reconstruction. The subsequent stage then refines the geometry and appearance of the object to achieve a high-quality reconstruction by directly adjusting the weight function used in volume rendering to ensure that it is unbiased and occlusion-aware. Decoupling density and weight in two stages makes our training stable and robust, distinguishing our technique from existing UDF learning approaches. Evaluations on the DeepFashion3D, DTU, and BlendedMVS datasets validate the robustness and effectiveness of our proposed approach. In both quantitative metrics and visual quality, the results indicate our superior performance over other UDF learning techniques in reconstructing 3D non-watertight models from multi-view images. Our code is available at https://bitbucket.org/jkdeng/2sudf/.
comment: accepted to CVPR 2024
♻ ☆ Deep Video Codec Control for Vision Models CVPR 2024
Standardized lossy video coding is at the core of almost all real-world video processing pipelines. Rate control is used to enable standard codecs to adapt to different network bandwidth conditions or storage constraints. However, standard video codecs (e.g., H.264) and their rate control modules aim to minimize video distortion w.r.t. human quality assessment. We demonstrate empirically that standard-coded videos vastly deteriorate the performance of deep vision models. To overcome the deterioration of vision performance, this paper presents the first end-to-end learnable deep video codec control that considers both bandwidth constraints and downstream deep vision performance, while adhering to existing standardization. We demonstrate that our approach better preserves downstream deep vision performance than traditional standard video coding.
comment: Accepted at CVPR 2024 Workshop on AI for Streaming (AIS)
♻ ☆ Absolute-Unified Multi-Class Anomaly Detection via Class-Agnostic Distribution Alignment
Conventional unsupervised anomaly detection (UAD) methods build separate models for each object category. Recent studies have proposed to train a unified model for multiple classes, namely model-unified UAD. However, such methods still implement the unified model separately on each class during inference with respective anomaly decision thresholds, which hinders their application when the image categories are entirely unavailable. In this work, we present a simple yet powerful method to address multi-class anomaly detection without any class information, namely \textit{absolute-unified} UAD. We target the crux of prior works in this challenging setting: different objects have mismatched anomaly score distributions. We propose Class-Agnostic Distribution Alignment (CADA) to align the mismatched score distribution of each implicit class without knowing class information, which enables unified anomaly detection for all classes and samples. The essence of CADA is to predict each class's score distribution of normal samples given any image, normal or anomalous, of this class. As a general component, CADA can activate the potential of nearly all UAD methods under absolute-unified setting. Our approach is extensively evaluated under the proposed setting on two popular UAD benchmark datasets, MVTec AD and VisA, where we exceed previous state-of-the-art by a large margin.
♻ ☆ Pixel-Wise Contrastive Distillation ICCV 2023
We present a simple but effective pixel-level self-supervised distillation framework friendly to dense prediction tasks. Our method, called Pixel-Wise Contrastive Distillation (PCD), distills knowledge by attracting the corresponding pixels from student's and teacher's output feature maps. PCD includes a novel design called SpatialAdaptor which ``reshapes'' a part of the teacher network while preserving the distribution of its output features. Our ablation experiments suggest that this reshaping behavior enables more informative pixel-to-pixel distillation. Moreover, we utilize a plug-in multi-head self-attention module that explicitly relates the pixels of student's feature maps to enhance the effective receptive field, leading to a more competitive student. PCD \textbf{outperforms} previous self-supervised distillation methods on various dense prediction tasks. A backbone of \mbox{ResNet-18-FPN} distilled by PCD achieves $37.4$ AP$^\text{bbox}$ and $34.0$ AP$^\text{mask}$ on COCO dataset using the detector of \mbox{Mask R-CNN}. We hope our study will inspire future research on how to pre-train a small model friendly to dense prediction tasks in a self-supervised fashion.
comment: ICCV 2023 camera-ready
♻ ☆ About latent roles in forecasting players in team sports
Forecasting players in sports has grown in popularity due to the potential for a tactical advantage and the applicability of such research to multi-agent interaction systems. Team sports contain a significant social component that influences interactions between teammates and opponents. However, it still needs to be fully exploited. In this work, we hypothesize that each participant has a specific function in each action and that role-based interaction is critical for predicting players' future moves. We create RolFor, a novel end-to-end model for Role-based Forecasting. RolFor uses a new module we developed called Ordering Neural Networks (OrderNN) to permute the order of the players such that each player is assigned to a latent role. The latent role is then modeled with a RoleGCN. Thanks to its graph representation, it provides a fully learnable adjacency matrix that captures the relationships between roles and is subsequently used to forecast the players' future trajectories. Extensive experiments on a challenging NBA basketball dataset back up the importance of roles and justify our goal of modeling them using optimizable models. When an oracle provides roles, the proposed RolFor compares favorably to the current state-of-the-art (it ranks first in terms of ADE and second in terms of FDE errors). However, training the end-to-end RolFor incurs the issues of differentiability of permutation methods, which we experimentally review. Finally, this work restates differentiable ranking as a difficult open problem and its great potential in conjunction with graph-based interaction models. Project is available at: https://www.pinlab.org/aboutlatentroles
♻ ☆ Regularization by Texts for Latent Diffusion Inverse Solvers
The recent advent of diffusion models has led to significant progress in solving inverse problems, leveraging these models as effective generative priors. Nonetheless, there remain challenges related to the ill-posed nature of such problems, often due to inherent ambiguities in measurements or intrinsic system symmetries. To address this, drawing inspiration from the human ability to resolve visual ambiguities through perceptual biases, here we introduce a novel latent diffusion inverse solver by regularization by texts (TReg). Specifically, TReg applies the textual description of the preconception of the solution during the reverse diffusion sampling, of which the description is dynamically reinforced through null-text optimization for adaptive negation. Our comprehensive experimental results demonstrate that TReg successfully mitigates ambiguity in the inverse problems, enhancing their effectiveness and accuracy.
♻ ☆ GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis CVPR 2024
We present a new approach, termed GPS-Gaussian, for synthesizing novel views of a character in a real-time manner. The proposed method enables 2K-resolution rendering under a sparse-view camera setting. Unlike the original Gaussian Splatting or neural implicit rendering methods that necessitate per-subject optimizations, we introduce Gaussian parameter maps defined on the source views and regress directly Gaussian Splatting properties for instant novel view synthesis without any fine-tuning or optimization. To this end, we train our Gaussian parameter regression module on a large amount of human scan data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable and experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
comment: Accepted by CVPR 2024 (Highlight). Project page: https://shunyuanzheng.github.io/GPS-Gaussian
♻ ☆ Leveraging Image Matching Toward End-to-End Relative Camera Pose Regression
This paper proposes a generalizable, end-to-end deep learning-based method for relative pose regression between two images. Given two images of the same scene captured from different viewpoints, our method predicts the relative rotation and translation (including direction and scale) between the two respective cameras. Inspired by the classical pipeline, our method leverages Image Matching (IM) as a pre-trained task for relative pose regression. Specifically, we use LoFTR, an architecture that utilizes an attention-based network pre-trained on Scannet, to extract semi-dense feature maps, which are then warped and fed into a pose regression network. Notably, we use a loss function that utilizes separate terms to account for the translation direction and scale. We believe such a separation is important because translation direction is determined by point correspondences while the scale is inferred from prior on shape sizes. Our ablations further support this choice. We evaluate our method on several datasets and show that it outperforms previous end-to-end methods. The method also generalizes well to unseen datasets.
comment: Project webpage: https://fadikhatib.github.io/GRelPose
♻ ☆ Deep Generative Data Assimilation in Multimodal Setting CVPR2024
Robust integration of physical knowledge and data is key to improve computational simulations, such as Earth system models. Data assimilation is crucial for achieving this goal because it provides a systematic framework to calibrate model outputs with observations, which can include remote sensing imagery and ground station measurements, with uncertainty quantification. Conventional methods, including Kalman filters and variational approaches, inherently rely on simplifying linear and Gaussian assumptions, and can be computationally expensive. Nevertheless, with the rapid adoption of data-driven methods in many areas of computational sciences, we see the potential of emulating traditional data assimilation with deep learning, especially generative models. In particular, the diffusion-based probabilistic framework has large overlaps with data assimilation principles: both allows for conditional generation of samples with a Bayesian inverse framework. These models have shown remarkable success in text-conditioned image generation or image-controlled video synthesis. Likewise, one can frame data assimilation as observation-conditioned state calibration. In this work, we propose SLAMS: Score-based Latent Assimilation in Multimodal Setting. Specifically, we assimilate in-situ weather station data and ex-situ satellite imagery to calibrate the vertical temperature profiles, globally. Through extensive ablation, we demonstrate that SLAMS is robust even in low-resolution, noisy, and sparse data settings. To our knowledge, our work is the first to apply deep generative framework for multimodal data assimilation using real-world datasets; an important step for building robust computational simulators, including the next-generation Earth system models. Our code is available at: https://github.com/yongquan-qu/SLAMS
comment: CVPR2024 EarthVision
♻ ☆ Open-Pose 3D Zero-Shot Learning: Benchmark and Challenges
With the explosive 3D data growth, the urgency of utilizing zero-shot learning to facilitate data labeling becomes evident. Recently, methods transferring language or language-image pre-training models like Contrastive Language-Image Pre-training (CLIP) to 3D vision have made significant progress in the 3D zero-shot classification task. These methods primarily focus on 3D object classification with an aligned pose; such a setting is, however, rather restrictive, which overlooks the recognition of 3D objects with open poses typically encountered in real-world scenarios, such as an overturned chair or a lying teddy bear. To this end, we propose a more realistic and challenging scenario named open-pose 3D zero-shot classification, focusing on the recognition of 3D objects regardless of their orientation. First, we revisit the current research on 3D zero-shot classification, and propose two benchmark datasets specifically designed for the open-pose setting. We empirically validate many of the most popular methods in the proposed open-pose benchmark. Our investigations reveal that most current 3D zero-shot classification models suffer from poor performance, indicating a substantial exploration room towards the new direction. Furthermore, we study a concise pipeline with an iterative angle refinement mechanism that automatically optimizes one ideal angle to classify these open-pose 3D objects. In particular, to make validation more compelling and not just limited to existing CLIP-based methods, we also pioneer the exploration of knowledge transfer based on Diffusion models. While the proposed solutions can serve as a new benchmark for open-pose 3D zero-shot classification, we discuss the complexities and challenges of this scenario that remain for further research development. The code is available publicly at https://github.com/weiguangzhao/Diff-OP3D.
♻ ☆ PartDistill: 3D Shape Part Segmentation by Vision-Language Model Distillation CVPR 2024
This paper proposes a cross-modal distillation framework, PartDistill, which transfers 2D knowledge from vision-language models (VLMs) to facilitate 3D shape part segmentation. PartDistill addresses three major challenges in this task: the lack of 3D segmentation in invisible or undetected regions in the 2D projections, inconsistent 2D predictions by VLMs, and the lack of knowledge accumulation across different 3D shapes. PartDistill consists of a teacher network that uses a VLM to make 2D predictions and a student network that learns from the 2D predictions while extracting geometrical features from multiple 3D shapes to carry out 3D part segmentation. A bi-directional distillation, including forward and backward distillations, is carried out within the framework, where the former forward distills the 2D predictions to the student network, and the latter improves the quality of the 2D predictions, which subsequently enhances the final 3D segmentation. Moreover, PartDistill can exploit generative models that facilitate effortless 3D shape creation for generating knowledge sources to be distilled. Through extensive experiments, PartDistill boosts the existing methods with substantial margins on widely used ShapeNetPart and PartNetE datasets, by more than 15% and 12% higher mIoU scores, respectively. The code for this work is available at https://github.com/ardianumam/PartDistill.
comment: CVPR 2024 Accepted
♻ ☆ Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation
Image segmentation holds a vital position in the realms of diagnosis and treatment within the medical domain. Traditional convolutional neural networks (CNNs) and Transformer models have made significant advancements in this realm, but they still encounter challenges because of limited receptive field or high computing complexity. Recently, State Space Models (SSMs), particularly Mamba and its variants, have demonstrated notable performance in the field of vision. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. Motivated by previous spatial and channel attention methods, we propose Triplet Mamba-UNet. The method leverages residual VSS Blocks to extract intensive contextual features, while Triplet SSM is employed to fuse features across spatial and channel dimensions. We conducted experiments on ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and Kvasir-Instrument datasets, demonstrating the superior segmentation performance of our proposed TM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters.
♻ ☆ GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection
Large Multimodal Model (LMM) GPT-4V(ision) endows GPT-4 with visual grounding capabilities, making it possible to handle certain tasks through the Visual Question Answering (VQA) paradigm. This paper explores the potential of VQA-oriented GPT-4V in the recently popular visual Anomaly Detection (AD) and is the first to conduct qualitative and quantitative evaluations on the popular MVTec AD and VisA datasets. Considering that this task requires both image-/pixel-level evaluations, the proposed GPT-4V-AD framework contains three components: \textbf{\textit{1)}} Granular Region Division, \textbf{\textit{2)}} Prompt Designing, \textbf{\textit{3)}} Text2Segmentation for easy quantitative evaluation, and have made some different attempts for comparative analysis. The results show that GPT-4V can achieve certain results in the zero-shot AD task through a VQA paradigm, such as achieving image-level 77.1/88.0 and pixel-level 68.0/76.6 AU-ROCs on MVTec AD and VisA datasets, respectively. However, its performance still has a certain gap compared to the state-of-the-art zero-shot method, \eg, WinCLIP and CLIP-AD, and further researches are needed. This study provides a baseline reference for the research of VQA-oriented LMM in the zero-shot AD task, and we also post several possible future works. Code is available at \url{https://github.com/zhangzjn/GPT-4V-AD}.
♻ ☆ RemoteCLIP: A Vision Language Foundation Model for Remote Sensing
General-purpose foundation models have led to recent breakthroughs in artificial intelligence. In remote sensing, self-supervised learning (SSL) and Masked Image Modeling (MIM) have been adopted to build foundation models. However, these models primarily learn low-level features and require annotated data for fine-tuning. Moreover, they are inapplicable for retrieval and zero-shot applications due to the lack of language understanding. To address these limitations, we propose RemoteCLIP, the first vision-language foundation model for remote sensing that aims to learn robust visual features with rich semantics and aligned text embeddings for seamless downstream application. To address the scarcity of pre-training data, we leverage data scaling which converts heterogeneous annotations into a unified image-caption data format based on Box-to-Caption (B2C) and Mask-to-Box (M2B) conversion. By further incorporating UAV imagery, we produce a 12 $\times$ larger pretraining dataset than the combination of all available datasets. RemoteCLIP can be applied to a variety of downstream tasks, including zero-shot image classification, linear probing, $\textit{k}$-NN classification, few-shot classification, image-text retrieval, and object counting in remote sensing images. Evaluation on 16 datasets, including a newly introduced RemoteCount benchmark to test the object counting ability, shows that RemoteCLIP consistently outperforms baseline foundation models across different model scales. Impressively, RemoteCLIP beats the state-of-the-art method by 9.14% mean recall on the RSITMD dataset and 8.92% on the RSICD dataset. For zero-shot classification, our RemoteCLIP outperforms the CLIP baseline by up to 6.39% average accuracy on 12 downstream datasets. Project website: https://github.com/ChenDelong1999/RemoteCLIP
comment: Accepted by IEEE Transactions on Geoscience and Remote Sensing (TGRS)
♻ ☆ Face-voice Association in Multilingual Environments (FAME) Challenge 2024 Evaluation Plan
The advancements of technology have led to the use of multimodal systems in various real-world applications. Among them, the audio-visual systems are one of the widely used multimodal systems. In the recent years, associating face and voice of a person has gained attention due to presence of unique correlation between them. The Face-voice Association in Multilingual Environments (FAME) Challenge 2024 focuses on exploring face-voice association under a unique condition of multilingual scenario. This condition is inspired from the fact that half of the world's population is bilingual and most often people communicate under multilingual scenario. The challenge uses a dataset namely, Multilingual Audio-Visual (MAV-Celeb) for exploring face-voice association in multilingual environments. This report provides the details of the challenge, dataset, baselines and task details for the FAME Challenge.
comment: ACM Multimedia Conference - Grand Challenge
♻ ☆ 3D Human Scan With A Moving Event Camera
Capturing a 3D human body is one of the important tasks in computer vision with a wide range of applications such as virtual reality and sports analysis. However, conventional frame cameras are limited by their temporal resolution and dynamic range, which imposes constraints in real-world application setups. Event cameras have the advantages of high temporal resolution and high dynamic range (HDR), but the development of event-based methods is necessary to handle data with different characteristics. This paper proposes a novel event-based method for 3D pose estimation and human mesh recovery. Prior work on event-based human mesh recovery require frames (images) as well as event data. The proposed method solely relies on events; it carves 3D voxels by moving the event camera around a stationary body, reconstructs the human pose and mesh by attenuated rays, and fit statistical body models, preserving high-frequency details. The experimental results show that the proposed method outperforms conventional frame-based methods in the estimation accuracy of both pose and body mesh. We also demonstrate results in challenging situations where a conventional camera has motion blur. This is the first to demonstrate event-only human mesh recovery, and we hope that it is the first step toward achieving robust and accurate 3D human body scanning from vision sensors. https://florpeng.github.io/event-based-human-scan/
♻ ☆ Mind-to-Image: Projecting Visual Mental Imagination of the Brain from fMRI
The reconstruction of images observed by subjects from fMRI data collected during visual stimuli has made significant strides in the past decade, thanks to the availability of extensive fMRI datasets and advancements in generative models for image generation. However, the application of visual reconstruction has remained limited. Reconstructing visual imagination presents a greater challenge, with potentially revolutionary applications ranging from aiding individuals with disabilities to verifying witness accounts in court. The primary hurdles in this field are the absence of data collection protocols for visual imagery and the lack of datasets on the subject. Traditionally, fMRI-to-image relies on data collected from subjects exposed to visual stimuli, which poses issues for generating visual imagery based on the difference of brain activity between visual stimulation and visual imagery. For the first time, we have compiled a substantial dataset (around 6h of scans) on visual imagery along with a proposed data collection protocol. We then train a modified version of an fMRI-to-image model and demonstrate the feasibility of reconstructing images from two modes of imagination: from memory and from pure imagination. This marks an important step towards creating a technology that allow direct reconstruction of visual imagery.
comment: Pre-print to be updated. Work in progress
♻ ☆ Theoretically Achieving Continuous Representation of Oriented Bounding Boxes CVPR'24
Considerable efforts have been devoted to Oriented Object Detection (OOD). However, one lasting issue regarding the discontinuity in Oriented Bounding Box (OBB) representation remains unresolved, which is an inherent bottleneck for extant OOD methods. This paper endeavors to completely solve this issue in a theoretically guaranteed manner and puts an end to the ad-hoc efforts in this direction. Prior studies typically can only address one of the two cases of discontinuity: rotation and aspect ratio, and often inadvertently introduce decoding discontinuity, e.g. Decoding Incompleteness (DI) and Decoding Ambiguity (DA) as discussed in literature. Specifically, we propose a novel representation method called Continuous OBB (COBB), which can be readily integrated into existing detectors e.g. Faster-RCNN as a plugin. It can theoretically ensure continuity in bounding box regression which to our best knowledge, has not been achieved in literature for rectangle-based object representation. For fairness and transparency of experiments, we have developed a modularized benchmark based on the open-source deep learning framework Jittor's detection toolbox JDet for OOD evaluation. On the popular DOTA dataset, by integrating Faster-RCNN as the same baseline model, our new method outperforms the peer method Gliding Vertex by 1.13% mAP50 (relative improvement 1.54%), and 2.46% mAP75 (relative improvement 5.91%), without any tricks.
comment: 17 pages, 12 tables, 8 figures. Accepted by CVPR'24. Code: https://github.com/514flowey/JDet-COBB
♻ ☆ Privacy Preserving Image Registration
Image registration is a key task in medical imaging applications, allowing to represent medical images in a common spatial reference frame. Current approaches to image registration are generally based on the assumption that the content of the images is usually accessible in clear form, from which the spatial transformation is subsequently estimated. This common assumption may not be met in practical applications, since the sensitive nature of medical images may ultimately require their analysis under privacy constraints, preventing to openly share the image content.In this work, we formulate the problem of image registration under a privacy preserving regime, where images are assumed to be confidential and cannot be disclosed in clear. We derive our privacy preserving image registration framework by extending classical registration paradigms to account for advanced cryptographic tools, such as secure multi-party computation and homomorphic encryption, that enable the execution of operations without leaking the underlying data. To overcome the problem of performance and scalability of cryptographic tools in high dimensions, we propose several techniques to optimize the image registration operations by using gradient approximations, and by revisiting the use of homomorphic encryption trough packing, to allow the efficient encryption and multiplication of large matrices. We demonstrate our privacy preserving framework in linear and non-linear registration problems, evaluating its accuracy and scalability with respect to standard, non-private counterparts. Our results show that privacy preserving image registration is feasible and can be adopted in sensitive medical imaging applications.
comment: v4 Accepted at Medical Image Computing and Computer Assisted Intervention (2022) 130-140
♻ ☆ NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Datase
Despite the significant progress in image denoising, it is still challenging to restore fine-scale details while removing noise, especially in extremely low-light environments. Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue, becoming a promising technology. Nonetheless, existing works still struggle with taking advantage of NIR information effectively for real-world image denoising, due to the content inconsistency between NIR-RGB images and the scarcity of real-world paired datasets. To alleviate the problem, we propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks to merge the deep NIR-RGB features. Specifically, we sequentially perform the global and local modulation for NIR and RGB features, and then integrate the two modulated features. Furthermore, we present a Real-world NIR-Assisted Image Denoising (Real-NAID) dataset, which covers diverse scenarios as well as various noise levels. Extensive experiments on both synthetic and our real-world datasets demonstrate that the proposed method achieves better results than state-of-the-art ones.
comment: 10 pages
♻ ☆ Proposing an intelligent mesh smoothing method with graph neural networks
In CFD, mesh smoothing methods are commonly utilized to refine the mesh quality to achieve high-precision numerical simulations. Specifically, optimization-based smoothing is used for high-quality mesh smoothing, but it incurs significant computational overhead. Pioneer works improve its smoothing efficiency by adopting supervised learning to learn smoothing methods from high-quality meshes. However, they pose difficulty in smoothing the mesh nodes with varying degrees and also need data augmentation to address the node input sequence problem. Additionally, the required labeled high-quality meshes further limit the applicability of the proposed method. In this paper, we present GMSNet, a lightweight neural network model for intelligent mesh smoothing. GMSNet adopts graph neural networks to extract features of the node's neighbors and output the optimal node position. During smoothing, we also introduce a fault-tolerance mechanism to prevent GMSNet from generating negative volume elements. With a lightweight model, GMSNet can effectively smoothing mesh nodes with varying degrees and remain unaffected by the order of input data. A novel loss function, MetricLoss, is also developed to eliminate the need for high-quality meshes, which provides a stable and rapid convergence during training. We compare GMSNet with commonly used mesh smoothing methods on two-dimensional triangle meshes. The experimental results show that GMSNet achieves outstanding mesh smoothing performances with 5% model parameters of the previous model, and attains 13.56 times faster than optimization-based smoothing.
♻ ☆ Positive Label Is All You Need for Multi-Label Classification ICME 2024
Multi-label classification (MLC) faces challenges from label noise in training data due to annotating diverse semantic labels for each image. Current methods mainly target identifying and correcting label mistakes using trained MLC models, but still struggle with persistent noisy labels during training, resulting in imprecise recognition and reduced performance. Our paper addresses label noise in MLC by introducing a positive and unlabeled multi-label classification (PU-MLC) method. To counteract noisy labels, we directly discard negative labels, focusing on the abundance of negative labels and the origin of most noisy labels. PU-MLC employs positive-unlabeled learning, training the model with only positive labels and unlabeled data. The method incorporates adaptive re-balance factors and temperature coefficients in the loss function to address label distribution imbalance and prevent over-smoothing of probabilities during training. Additionally, we introduce a local-global convolution module to capture both local and global dependencies in the image without requiring backbone retraining. PU-MLC proves effective on MLC and MLC with partial labels (MLC-PL) tasks, demonstrating significant improvements on MS-COCO and PASCAL VOC datasets with fewer annotations. Code is available at: https://github.com/TAKELAMAG/PU-MLC.
comment: ICME 2024
♻ ☆ Leveraging edge detection and neural networks for better UAV localization
We propose a novel method for geolocalizing Unmanned Aerial Vehicles (UAVs) in environments lacking Global Navigation Satellite Systems (GNSS). Current state-of-the-art techniques employ an offline-trained encoder to generate a vector representation (embedding) of the UAV's current view, which is then compared with pre-computed embeddings of geo-referenced images to determine the UAV's position. Here, we demonstrate that the performance of these methods can be significantly enhanced by preprocessing the images to extract their edges, which exhibit robustness to seasonal and illumination variations. Furthermore, we establish that utilizing edges enhances resilience to orientation and altitude inaccuracies. Additionally, we introduce a confidence criterion for localization. Our findings are substantiated through synthetic experiments.
comment: Accepted for publication in IGARSS2024. 4 pages, 3 figures, 3 tables
♻ ☆ Joining Forces for Pathology Diagnostics with AI Assistance: The EMPAIA Initiative
Over the past decade, artificial intelligence (AI) methods in pathology have advanced substantially. However, integration into routine clinical practice has been slow due to numerous challenges, including technical and regulatory hurdles in translating research results into clinical diagnostic products and the lack of standardized interfaces. The open and vendor-neutral EMPAIA initiative addresses these challenges. Here, we provide an overview of EMPAIA's achievements and lessons learned. EMPAIA integrates various stakeholders of the pathology AI ecosystem, i.e., pathologists, computer scientists, and industry. In close collaboration, we developed technical interoperability standards, recommendations for AI testing and product development, and explainability methods. We implemented the modular and open-source EMPAIA platform and successfully integrated 14 AI-based image analysis apps from 8 different vendors, demonstrating how different apps can use a single standardized interface. We prioritized requirements and evaluated the use of AI in real clinical settings with 14 different pathology laboratories in Europe and Asia. In addition to technical developments, we created a forum for all stakeholders to share information and experiences on digital pathology and AI. Commercial, clinical, and academic stakeholders can now adopt EMPAIA's common open-source interfaces, providing a unique opportunity for large-scale standardization and streamlining of processes. Further efforts are needed to effectively and broadly establish AI assistance in routine laboratory use. To this end, a sustainable infrastructure, the non-profit association EMPAIA International, has been established to continue standardization and support broad implementation and advocacy for an AI-assisted digital pathology future.
♻ ☆ Objects as volumes: A stochastic geometry view of opaque solids
We develop a theory for the representation of opaque solids as volumes. Starting from a stochastic representation of opaque solids as random indicator functions, we prove the conditions under which such solids can be modeled using exponential volumetric transport. We also derive expressions for the volumetric attenuation coefficient as a functional of the probability distributions of the underlying indicator functions. We generalize our theory to account for isotropic and anisotropic scattering at different parts of the solid, and for representations of opaque solids as stochastic implicit surfaces. We derive our volumetric representation from first principles, which ensures that it satisfies physical constraints such as reciprocity and reversibility. We use our theory to explain, compare, and correct previous volumetric representations, as well as propose meaningful extensions that lead to improved performance in 3D reconstruction tasks.
comment: project page: https://imaging.cs.cmu.edu/volumetric_opaque_solids
♻ ☆ CuNeRF: Cube-Based Neural Radiance Field for Zero-Shot Medical Image Arbitrary-Scale Super Resolution ICCV
Medical image arbitrary-scale super-resolution (MIASSR) has recently gained widespread attention, aiming to super sample medical volumes at arbitrary scales via a single model. However, existing MIASSR methods face two major limitations: (i) reliance on high-resolution (HR) volumes and (ii) limited generalization ability, which restricts their application in various scenarios. To overcome these limitations, we propose Cube-based Neural Radiance Field (CuNeRF), a zero-shot MIASSR framework that can yield medical images at arbitrary scales and viewpoints in a continuous domain. Unlike existing MIASSR methods that fit the mapping between low-resolution (LR) and HR volumes, CuNeRF focuses on building a coordinate-intensity continuous representation from LR volumes without the need for HR references. This is achieved by the proposed differentiable modules: including cube-based sampling, isotropic volume rendering, and cube-based hierarchical rendering. Through extensive experiments on magnetic resource imaging (MRI) and computed tomography (CT) modalities, we demonstrate that CuNeRF outperforms state-of-the-art MIASSR methods. CuNeRF yields better visual verisimilitude and reduces aliasing artifacts at various upsampling factors. Moreover, our CuNeRF does not need any LR-HR training pairs, which is more flexible and easier to be used than others. Our code is released at https://github.com/NarcissusEx/CuNeRF.
comment: This paper is accepted by the International Conference on Computer Vision (ICCV) 2023
♻ ☆ Human-in-the-Loop Segmentation of Multi-species Coral Imagery CVPR2024
Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery, however it is costly and time-consuming for domain experts to label images. Point label propagation is an approach used to leverage existing image data labeled with sparse point labels. The resulting augmented ground truth generated is then used to train a semantic segmentation model. Here, we first demonstrate that recent advances in foundation models enable generation of multi-species coral augmented ground truth masks using denoised DINOv2 features and K-Nearest Neighbors (KNN), without the need for any pre-training or custom-designed algorithms. For extremely sparsely labeled images, we propose a labeling regime based on human-in-the-loop principles, resulting in significant improvement in annotation efficiency: If only 5 point labels per image are available, our proposed human-in-the-loop approach improves on the state-of-the-art by 17.3% for pixel accuracy and 22.6% for mIoU; and by 10.6% and 19.1% when 10 point labels per image are available. Even if the human-in-the-loop labeling regime is not used, the denoised DINOv2 features with a KNN outperforms the prior state-of-the-art by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points). We also provide a detailed analysis of how point labeling style and the quantity of points per image affects the point label propagation quality and provide general recommendations on maximizing point label efficiency.
comment: Accepted at the CVPR2024 3rd Workshop on Learning with Limited Labelled Data for Image and Video Understanding (L3D-IVU), 10 pages, 6 figures, an additional 4 pages of supplementary material
♻ ☆ Generative Active Learning for Image Synthesis Personalization
This paper presents a pilot study that explores the application of active learning, traditionally studied in the context of discriminative models, to generative models. We specifically focus on image synthesis personalization tasks. The primary challenge in conducting active learning on generative models lies in the open-ended nature of querying, which differs from the closed form of querying in discriminative models that typically target a single concept. We introduce the concept of anchor directions to transform the querying process into a semi-open problem. We propose a direction-based uncertainty sampling strategy to enable generative active learning and tackle the exploitation-exploration dilemma. Extensive experiments are conducted to validate the effectiveness of our approach, demonstrating that an open-source model can achieve superior performance compared to closed-source models developed by large companies, such as Google's StyleDrop. The source code is available at https://github.com/zhangxulu1996/GAL4Personalization.
♻ ☆ Learning Self-Prior for Mesh Inpainting Using Self-Supervised Graph Convolutional Networks
In this paper, we present a self-prior-based mesh inpainting framework that requires only an incomplete mesh as input, without the need for any training datasets. Additionally, our method maintains the polygonal mesh format throughout the inpainting process without converting the shape format to an intermediate one, such as a voxel grid, a point cloud, or an implicit function, which are typically considered easier for deep neural networks to process. To achieve this goal, we introduce two graph convolutional networks (GCNs): single-resolution GCN (SGCN) and multi-resolution GCN (MGCN), both trained in a self-supervised manner. Our approach refines a watertight mesh obtained from the initial hole filling to generate a complete output mesh. Specifically, we train the GCNs to deform an oversmoothed version of the input mesh into the expected complete shape. The deformation is described by vertex displacements, and the GCNs are supervised to obtain accurate displacements at vertices in real holes. To this end, we specify several connected regions of the mesh as fake holes, thereby generating meshes with various sets of fake holes. The correct displacements of vertices are known in these fake holes, thus enabling training GCNs with loss functions that assess the accuracy of vertex displacements. We demonstrate that our method outperforms traditional dataset-independent approaches and exhibits greater robustness compared with other deep-learning-based methods for shapes that infrequently appear in shape datasets. Our code and test data are available at https://github.com/astaka-pe/SeMIGCN.
comment: 18 pages, 18 figures, 8 tables
♻ ☆ MetaCloak: Preventing Unauthorized Subject-driven Text-to-image Diffusion-based Synthesis via Meta-learning CVPR 2024
Text-to-image diffusion models allow seamless generation of personalized images from scant reference photos. Yet, these tools, in the wrong hands, can fabricate misleading or harmful content, endangering individuals. To address this problem, existing poisoning-based approaches perturb user images in an imperceptible way to render them "unlearnable" from malicious uses. We identify two limitations of these defending approaches: i) sub-optimal due to the hand-crafted heuristics for solving the intractable bilevel optimization and ii) lack of robustness against simple data transformations like Gaussian filtering. To solve these challenges, we propose MetaCloak, which solves the bi-level poisoning problem with a meta-learning framework with an additional transformation sampling process to craft transferable and robust perturbation. Specifically, we employ a pool of surrogate diffusion models to craft transferable and model-agnostic perturbation. Furthermore, by incorporating an additional transformation process, we design a simple denoising-error maximization loss that is sufficient for causing transformation-robust semantic distortion and degradation in a personalized generation. Extensive experiments on the VGGFace2 and CelebA-HQ datasets show that MetaCloak outperforms existing approaches. Notably, MetaCloak can successfully fool online training services like Replicate, in a black-box manner, demonstrating the effectiveness of MetaCloak in real-world scenarios. Our code is available at https://github.com/liuyixin-louis/MetaCloak.
comment: Accepted to CVPR 2024 (Oral)
♻ ☆ CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning
Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories. This knowledge, typically encapsulated in attribute descriptions, aids in identifying class-specific visual features, thus facilitating visual-semantic alignment and improving ZSL performance. However, real-world challenges such as distribution imbalances and attribute co-occurrence among instances often hinder the discernment of local variances in images, a problem exacerbated by the scarcity of fine-grained, region-specific attribute annotations. Moreover, the variability in visual presentation within categories can also skew attribute-category associations. In response, we propose a bidirectional cross-modal ZSL approach CREST. It begins by extracting representations for attribute and visual localization and employs Evidential Deep Learning (EDL) to measure underlying epistemic uncertainty, thereby enhancing the model's resilience against hard negatives. CREST incorporates dual learning pathways, focusing on both visual-category and attribute-category alignments, to ensure robust correlation between latent and observable spaces. Moreover, we introduce an uncertainty-informed cross-modal fusion technique to refine visual-attribute inference. Extensive experiments demonstrate our model's effectiveness and unique explainability across multiple datasets. Our code and data are available at: https://github.com/JethroJames/CREST.
comment: Ongoing work; 10 pages, 2 Tables, 9 Figures; Repo is available at: https://github.com/JethroJames/CREST
♻ ☆ Orientation-conditioned Facial Texture Mapping for Video-based Facial Remote Photoplethysmography Estimation
Camera-based remote photoplethysmography (rPPG) enables contactless measurement of important physiological signals such as pulse rate (PR). However, dynamic and unconstrained subject motion introduces significant variability into the facial appearance in video, confounding the ability of video-based methods to accurately extract the rPPG signal. In this study, we leverage the 3D facial surface to construct a novel orientation-conditioned facial texture video representation which improves the motion robustness of existing video-based facial rPPG estimation methods. Our proposed method achieves a significant 18.2% performance improvement in cross-dataset testing on MMPD over our baseline using the PhysNet model trained on PURE, highlighting the efficacy and generalization benefits of our designed video representation. We demonstrate significant performance improvements of up to 29.6% in all tested motion scenarios in cross-dataset testing on MMPD, even in the presence of dynamic and unconstrained subject motion, emphasizing the benefits of disentangling motion through modeling the 3D facial surface for motion robust facial rPPG estimation. We validate the efficacy of our design decisions and the impact of different video processing steps through an ablation study. Our findings illustrate the potential strengths of exploiting the 3D facial surface as a general strategy for addressing dynamic and unconstrained subject motion in videos. The code is available at https://samcantrill.github.io/orientation-uv-rppg/.
comment: 12 pages, 8 figures, 6 tables; corrected abstract typo
♻ ☆ Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present TransDeformer: a novel attention-based deep learning approach that reconstructs the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of TransDeformer for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our TransDeformer generates artifact-free geometry outputs, and its variant predicts the error of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.
♻ ☆ A Simple Strategy for Body Estimation from Partial-View Images CVPR
Virtual try-on and product personalization have become increasingly important in modern online shopping, highlighting the need for accurate body measurement estimation. Although previous research has advanced in estimating 3D body shapes from RGB images, the task is inherently ambiguous as the observed scale of human subjects in the images depends on two unknown factors: capture distance and body dimensions. This ambiguity is particularly pronounced in partial-view scenarios. To address this challenge, we propose a modular and simple height normalization solution. This solution relocates the subject skeleton to the desired position, thereby normalizing the scale and disentangling the relationship between the two variables. Our experimental results demonstrate that integrating this technique into state-of-the-art human mesh reconstruction models significantly enhances partial body measurement estimation. Additionally, we illustrate the applicability of this approach to multi-view settings, showcasing its versatility.
comment: Accepted to CVPRW 2024 Computer Vision for Fashion, Art, and Design
♻ ☆ Overcoming the Pitfalls of Vision-Language Model Finetuning for OOD Generalization ICLR 2024
Existing vision-language models exhibit strong generalization on a variety of visual domains and tasks. However, such models mainly perform zero-shot recognition in a closed-set manner, and thus struggle to handle open-domain visual concepts by design. There are recent finetuning methods, such as prompt learning, that not only study the discrimination between in-distribution (ID) and out-of-distribution (OOD) samples, but also show some improvements in both ID and OOD accuracies. In this paper, we first demonstrate that vision-language models, after long enough finetuning but without proper regularization, tend to overfit the known classes in the given dataset, with degraded performance on unknown classes. Then we propose a novel approach OGEN to address this pitfall, with the main focus on improving the OOD GENeralization of finetuned models. Specifically, a class-conditional feature generator is introduced to synthesize OOD features using just the class name of any unknown class. Such synthesized features will provide useful knowledge about unknowns and help regularize the decision boundary between ID and OOD data when optimized jointly. Equally important is our adaptive self-distillation mechanism to regularize our feature generation model during joint optimization, i.e., adaptively transferring knowledge between model states to further prevent overfitting. Experiments validate that our method yields convincing gains in OOD generalization performance in different settings. Code: https://github.com/apple/ml-ogen.
comment: ICLR 2024
♻ ☆ Improving the Robustness of 3D Human Pose Estimation: A Benchmark and Learning from Noisy Input
Despite the promising performance of current 3D human pose estimation techniques, understanding and enhancing their generalization on challenging in-the-wild videos remain an open problem. In this work, we focus on the robustness of 2D-to-3D pose lifters. To this end, we develop two benchmark datasets, namely Human3.6M-C and HumanEva-I-C, to examine the robustness of video-based 3D pose lifters to a wide range of common video corruptions including temporary occlusion, motion blur, and pixel-level noise. We observe the poor generalization of state-of-the-art 3D pose lifters in the presence of corruption and establish two techniques to tackle this issue. First, we introduce Temporal Additive Gaussian Noise (TAGN) as a simple yet effective 2D input pose data augmentation. Additionally, to incorporate the confidence scores output by the 2D pose detectors, we design a confidence-aware convolution (CA-Conv) block. Extensively tested on corrupted videos, the proposed strategies consistently boost the robustness of 3D pose lifters and serve as new baselines for future research.
♻ ☆ AVS-Net: Point Sampling with Adaptive Voxel Size for 3D Scene Understanding
The recent advancements in point cloud learning have enabled intelligent vehicles and robots to comprehend 3D environments better. However, processing large-scale 3D scenes remains a challenging problem, such that efficient downsampling methods play a crucial role in point cloud learning. Existing downsampling methods either require a huge computational burden or sacrifice fine-grained geometric information. For such purpose, this paper presents an advanced sampler that achieves both high accuracy and efficiency. The proposed method utilizes voxel centroid sampling as a foundation but effectively addresses the challenges regarding voxel size determination and the preservation of critical geometric cues. Specifically, we propose a Voxel Adaptation Module that adaptively adjusts voxel sizes with the reference of point-based downsampling ratio. This ensures that the sampling results exhibit a favorable distribution for comprehending various 3D objects or scenes. Meanwhile, we introduce a network compatible with arbitrary voxel sizes for sampling and feature extraction while maintaining high efficiency. The proposed approach is demonstrated with 3D object detection and 3D semantic segmentation. Compared to existing state-of-the-art methods, our approach achieves better accuracy on outdoor and indoor large-scale datasets, e.g. Waymo and ScanNet, with promising efficiency.
comment: 10 pages, 7 figures
♻ ☆ Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency
Diffusion models have recently emerged as powerful generative priors for solving inverse problems. However, training diffusion models in the pixel space are both data-intensive and computationally demanding, which restricts their applicability as priors for high-dimensional real-world data such as medical images. Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges. However, incorporating latent diffusion models to solve inverse problems remains a challenging problem due to the nonlinearity of the encoder and decoder. To address these issues, we propose \textit{ReSample}, an algorithm that can solve general inverse problems with pre-trained latent diffusion models. Our algorithm incorporates data consistency by solving an optimization problem during the reverse sampling process, a concept that we term as hard data consistency. Upon solving this optimization problem, we propose a novel resampling scheme to map the measurement-consistent sample back onto the noisy data manifold and theoretically demonstrate its benefits. Lastly, we apply our algorithm to solve a wide range of linear and nonlinear inverse problems in both natural and medical images, demonstrating that our approach outperforms existing state-of-the-art approaches, including those based on pixel-space diffusion models.
comment: 27 pages, 20 figures
♻ ☆ Achieving Reliable and Fair Skin Lesion Diagnosis via Unsupervised Domain Adaptation
The development of reliable and fair diagnostic systems is often constrained by the scarcity of labeled data. To address this challenge, our work explores the feasibility of unsupervised domain adaptation (UDA) to integrate large external datasets for developing reliable classifiers. The adoption of UDA with multiple sources can simultaneously enrich the training set and bridge the domain gap between different skin lesion datasets, which vary due to distinct acquisition protocols. Particularly, UDA shows practical promise for improving diagnostic reliability when training with a custom skin lesion dataset, where only limited labeled data are available from the target domain. In this study, we investigate three UDA training schemes based on source data utilization: single-source, combined-source, and multi-source UDA. Our findings demonstrate the effectiveness of applying UDA on multiple sources for binary and multi-class classification. A strong correlation between test error and label shift in multi-class tasks has been observed in the experiment. Crucially, our study shows that UDA can effectively mitigate bias against minority groups and enhance fairness in diagnostic systems, while maintaining superior classification performance. This is achieved even without directly implementing fairness-focused techniques. This success is potentially attributed to the increased and well-adapted demographic information obtained from multiple sources.
♻ ☆ Self-Supervised MRI Reconstruction with Unrolled Diffusion Models
Magnetic Resonance Imaging (MRI) produces excellent soft tissue contrast, albeit it is an inherently slow imaging modality. Promising deep learning methods have recently been proposed to reconstruct accelerated MRI scans. However, existing methods still suffer from various limitations regarding image fidelity, contextual sensitivity, and reliance on fully-sampled acquisitions for model training. To comprehensively address these limitations, we propose a novel self-supervised deep reconstruction model, named Self-Supervised Diffusion Reconstruction (SSDiffRecon). SSDiffRecon expresses a conditional diffusion process as an unrolled architecture that interleaves cross-attention transformers for reverse diffusion steps with data-consistency blocks for physics-driven processing. Unlike recent diffusion methods for MRI reconstruction, a self-supervision strategy is adopted to train SSDiffRecon using only undersampled k-space data. Comprehensive experiments on public brain MR datasets demonstrates the superiority of SSDiffRecon against state-of-the-art supervised, and self-supervised baselines in terms of reconstruction speed and quality. Implementation will be available at https://github.com/yilmazkorkmaz1/SSDiffRecon.
♻ ☆ Segment Anything in 3D with Radiance Fields NeurIPS 2023
The Segment Anything Model (SAM) emerges as a powerful vision foundation model to generate high-quality 2D segmentation results. This paper aims to generalize SAM to segment 3D objects. Rather than replicating the data acquisition and annotation procedure which is costly in 3D, we design an efficient solution, leveraging the radiance field as a cheap and off-the-shelf prior that connects multi-view 2D images to the 3D space. We refer to the proposed solution as SA3D, short for Segment Anything in 3D. With SA3D, the user is only required to provide a 2D segmentation prompt (e.g., rough points) for the target object in a single view, which is used to generate its corresponding 2D mask with SAM. Next, SA3D alternately performs mask inverse rendering and cross-view self-prompting across various views to iteratively refine the 3D mask of the target object. For one view, mask inverse rendering projects the 2D mask obtained by SAM into the 3D space with guidance of the density distribution learned by the radiance field for 3D mask refinement; Then, cross-view self-prompting extracts reliable prompts automatically as the input to SAM from the rendered 2D mask of the inaccurate 3D mask for a new view. We show in experiments that SA3D adapts to various scenes and achieves 3D segmentation within seconds. Our research reveals a potential methodology to lift the ability of a 2D segmentation model to 3D. Our code is available at https://github.com/Jumpat/SegmentAnythingin3D.
comment: Extension version of SA3D (NeurIPS 2023). Project page: https://jumpat.github.io/SA3D/
♻ ☆ GenCorres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models ICLR 2024
This paper introduces GenCorres, a novel unsupervised joint shape matching (JSM) approach. Our key idea is to learn a mesh generator to fit an unorganized deformable shape collection while constraining deformations between adjacent synthetic shapes to preserve geometric structures such as local rigidity and local conformality. GenCorres presents three appealing advantages over existing JSM techniques. First, GenCorres performs JSM among a synthetic shape collection whose size is much bigger than the input shapes and fully leverages the datadriven power of JSM. Second, GenCorres unifies consistent shape matching and pairwise matching (i.e., by enforcing deformation priors between adjacent synthetic shapes). Third, the generator provides a concise encoding of consistent shape correspondences. However, learning a mesh generator from an unorganized shape collection is challenging, requiring a good initialization. GenCorres addresses this issue by learning an implicit generator from the input shapes, which provides intermediate shapes between two arbitrary shapes. We introduce a novel approach for computing correspondences between adjacent implicit surfaces, which we use to regularize the implicit generator. Synthetic shapes of the implicit generator then guide initial fittings (i.e., via template-based deformation) for learning the mesh generator. Experimental results show that GenCorres considerably outperforms state-of-the-art JSM techniques. The synthetic shapes of GenCorres also achieve salient performance gains against state-of-the-art deformable shape generators.
comment: ICLR 2024
♻ ☆ Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets. We explore CLIP along three dimensions: data, architecture, and training strategies. With regards to data, we demonstrate the significance of high-quality training data and show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality. We also examine how model performance varies with different dataset sizes, suggesting that smaller ViT models are better suited for smaller datasets, while larger models perform better on larger datasets with fixed compute. Additionally, we provide guidance on when to choose a CNN-based architecture or a ViT-based architecture for CLIP training. We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource. Our analysis reveals that CLIP+Data Augmentation can achieve comparable performance to CLIP using only half of the training data. This work provides practical insights into how to effectively train and deploy CLIP models, making them more accessible and affordable for practical use in various applications.
Information Retrieval 13
☆ Spiral of Silences: How is Large Language Model Killing Information Retrieval? -- A Case Study on Open Domain Question Answering
The practice of Retrieval-Augmented Generation (RAG), which integrates Large Language Models (LLMs) with retrieval systems, has become increasingly prevalent. However, the repercussions of LLM-derived content infiltrating the web and influencing the retrieval-generation feedback loop are largely uncharted territories. In this study, we construct and iteratively run a simulation pipeline to deeply investigate the short-term and long-term effects of LLM text on RAG systems. Taking the trending Open Domain Question Answering (ODQA) task as a point of entry, our findings reveal a potential digital "Spiral of Silence" effect, with LLM-generated text consistently outperforming human-authored content in search rankings, thereby diminishing the presence and impact of human contributions online. This trend risks creating an imbalanced information ecosystem, where the unchecked proliferation of erroneous LLM-generated content may result in the marginalization of accurate information. We urge the academic community to take heed of this potential issue, ensuring a diverse and authentic digital information landscape.
☆ Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering
Large language models (LLMs), such as GPT3.5, GPT4 and LLAMA2 perform surprisingly well and outperform human experts on many tasks. However, in many domain-specific evaluations, these LLMs often suffer from hallucination problems due to insufficient training of relevant corpus. Furthermore, fine-tuning large models may face problems such as the LLMs are not open source or the construction of high-quality domain instruction is difficult. Therefore, structured knowledge databases such as knowledge graph can better provide domain back- ground knowledge for LLMs and make full use of the reasoning and analysis capabilities of LLMs. In some previous works, LLM was called multiple times to determine whether the current triplet was suitable for inclusion in the subgraph when retrieving subgraphs through a question. Especially for the question that require a multi-hop reasoning path, frequent calls to LLM will consume a lot of computing power. Moreover, when choosing the reasoning path, LLM will be called once for each step, and if one of the steps is selected incorrectly, it will lead to the accumulation of errors in the following steps. In this paper, we integrated and optimized a pipeline for selecting reasoning paths from KG based on LLM, which can reduce the dependency on LLM. In addition, we propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank which can returns the paths most likely to contain the answer. We conduct experiments on three datasets: GenMedGPT-5k [14], WebQuestions [2], and CMCQA [21]. Finally, RoK can demonstrate that using fewer LLM calls can achieve the same results as previous SOTAs models.
☆ Promoting the linguistic diversity of TEI in the Maghreb and the Arab region
The project targets both oral corpus and the rich text resources written in the Maghreb region. It focuses particularly on the continuity, for more than 12 centuries, of a classical still alive Arabic language and on the extreme hybridization of vernacular languages sustained by the rich Libyan, Roman, Hebrew and Ottoman influences and by the more recent French, Spanish and Italian linguistic interference. In short, the Maghreb is a place of extremely abundant, but much unexploited, textual studies.
☆ Exact and Efficient Unlearning for Large Language Model-based Recommendation
The evolving paradigm of Large Language Model-based Recom- mendation (LLMRec) customizes Large Language Models (LLMs) through parameter-efficient fine-tuning (PEFT) using recommenda- tion data. The inclusion of user data in LLMs raises privacy concerns. To protect users, the unlearning process in LLMRec, specifically removing unusable data (e.g., historical behaviors) from established LLMRec models, becomes crucial. However, existing unlearning methods are insufficient for the unique characteristics of LLM- Rec, mainly due to high computational costs or incomplete data erasure. In this study, we introduce the Adapter Partition and Ag- gregation (APA) framework for exact and efficient unlearning while maintaining recommendation performance. APA achieves this by establishing distinct adapters for partitioned training data shards and retraining only the adapters impacted by unusable data for un- learning. To preserve recommendation performance and mitigate considerable inference costs, APA employs parameter-level adapter aggregation with sample-adaptive attention for individual testing samples. Extensive experiments substantiate the effectiveness and efficiency of our proposed framework
☆ Cluster-based Graph Collaborative Filtering
Graph Convolution Networks (GCNs) have significantly succeeded in learning user and item representations for recommendation systems. The core of their efficacy is the ability to explicitly exploit the collaborative signals from both the first- and high-order neighboring nodes. However, most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution. Thus, the noisy information from unreliable neighbor nodes (e.g., users with dissimilar interests) negatively impacts the representation learning of the target node. Additionally, conducting graph convolution operations without differentiating high-order neighbors suffers the over-smoothing issue when stacking more layers, resulting in performance degradation. In this paper, we aim to capture more valuable information from high-order neighboring nodes while avoiding noise for better representation learning of the target node. To achieve this goal, we propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF). This model performs high-order graph convolution on cluster-specific graphs, which are constructed by capturing the multiple interests of users and identifying the common interests among them. Specifically, we design an unsupervised and optimizable soft node clustering approach to classify user and item nodes into multiple clusters. Based on the soft node clustering results and the topology of the user-item interaction graph, we assign the nodes with probabilities for different clusters to construct the cluster-specific graphs. To evaluate the effectiveness of ClusterGCF, we conducted extensive experiments on four publicly available datasets. Experimental results demonstrate that our model can significantly improve recommendation performance.
comment: 22 pages, 8 figures
☆ Compressible and Searchable: AI-native Multi-Modal Retrieval System with Learned Image Compression
The burgeoning volume of digital content across diverse modalities necessitates efficient storage and retrieval methods. Conventional approaches struggle to cope with the escalating complexity and scale of multimedia data. In this paper, we proposed framework addresses this challenge by fusing AI-native multi-modal search capabilities with neural image compression. First we analyze the intricate relationship between compressibility and searchability, recognizing the pivotal role each plays in the efficiency of storage and retrieval systems. Through the usage of simple adapter is to bridge the feature of Learned Image Compression(LIC) and Contrastive Language-Image Pretraining(CLIP) while retaining semantic fidelity and retrieval of multi-modal data. Experimental evaluations on Kodak datasets demonstrate the efficacy of our approach, showcasing significant enhancements in compression efficiency and search accuracy compared to existing methodologies. Our work marks a significant advancement towards scalable and efficient multi-modal search systems in the era of big data.
☆ Threat Behavior Textual Search by Attention Graph Isomorphism
Cyber attacks cause over \$1 trillion loss every year. An important task for cyber security analysts is attack forensics. It entails understanding malware behaviors and attack origins. However, existing automated or manual malware analysis can only disclose a subset of behaviors due to inherent difficulties (e.g., malware cloaking and obfuscation). As such, analysts often resort to text search techniques to identify existing malware reports based on the symptoms they observe, exploiting the fact that malware samples share a lot of similarity, especially those from the same origin. In this paper, we propose a novel malware behavior search technique that is based on graph isomorphism at the attention layers of Transformer models. We also compose a large dataset collected from various agencies to facilitate such research. Our technique outperforms state-of-the-art methods, such as those based on sentence embeddings and keywords by 6-14%. In the case study of 10 real-world malwares, our technique can correctly attribute 8 of them to their ground truth origins while using Google only works for 3 cases.
☆ Exploring Augmentation and Cognitive Strategies for AI based Synthetic Personae
Large language models (LLMs) hold potential for innovative HCI research, including the creation of synthetic personae. However, their black-box nature and propensity for hallucinations pose challenges. To address these limitations, this position paper advocates for using LLMs as data augmentation systems rather than zero-shot generators. We further propose the development of robust cognitive and memory frameworks to guide LLM responses. Initial explorations suggest that data enrichment, episodic memory, and self-reflection techniques can improve the reliability of synthetic personae and open up new avenues for HCI research.
comment: This paper was accepted for publication: Proceedings of ACM Conf on Human Factors in Computing Systems (CHI 24), Rafael Arias Gonzalez, Steve DiPaola. Exploring Augmentation and Cognitive Strategies for Synthetic Personae. ACM SigCHI, in Challenges and Opportunities of LLM-Based Synthetic Personae and Data in HCI Workshop, 2024
☆ Course Recommender Systems Need to Consider the Job Market SIGIR 2024
Current course recommender systems primarily leverage learner-course interactions, course content, learner preferences, and supplementary course details like instructor, institution, ratings, and reviews, to make their recommendation. However, these systems often overlook a critical aspect: the evolving skill demand of the job market. This paper focuses on the perspective of academic researchers, working in collaboration with the industry, aiming to develop a course recommender system that incorporates job market skill demands. In light of the job market's rapid changes and the current state of research in course recommender systems, we outline essential properties for course recommender systems to address these demands effectively, including explainable, sequential, unsupervised, and aligned with the job market and user's goals. Our discussion extends to the challenges and research questions this objective entails, including unsupervised skill extraction from job listings, course descriptions, and resumes, as well as predicting recommendations that align with learner objectives and the job market and designing metrics to evaluate this alignment. Furthermore, we introduce an initial system that addresses some existing limitations of course recommender systems using large Language Models (LLMs) for skill extraction and Reinforcement Learning (RL) for alignment with the job market. We provide empirical results using open-source data to demonstrate its effectiveness.
comment: accepted at SIGIR 2024 as a perspective paper. Camera Ready will come soon
♻ ☆ Generative Information Retrieval Evaluation
This paper is a draft of a chapter intended to appear in a forthcoming book on generative information retrieval, co-edited by Chirag Shah and Ryen White. In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
comment: Draft of a chapter intended to appear in a forthcoming book on generative information retrieval, co-edited by Chirag Shah and Ryen White
♻ ☆ Train Once, Use Flexibly: A Modular Framework for Multi-Aspect Neural News Recommendation
Recent neural news recommenders (NNRs) extend content-based recommendation (1) by aligning additional aspects (e.g., topic, sentiment) between candidate news and user history or (2) by diversifying recommendations w.r.t. these aspects. This customization is achieved by "hardcoding" additional constraints into the NNR's architecture and/or training objectives: any change in the desired recommendation behavior thus requires retraining the model with a modified objective. This impedes widespread adoption of multi-aspect news recommenders. In this work, we introduce MANNeR, a modular framework for multi-aspect neural news recommendation that supports on-the-fly customization over individual aspects at inference time. With metric-based learning as its backbone, MANNeR learns aspect-specialized news encoders and then flexibly and linearly combines the resulting aspect-specific similarity scores into different ranking functions, alleviating the need for ranking function-specific retraining of the model. Extensive experimental results show that MANNeR consistently outperforms state-of-the-art NNRs on both standard content-based recommendation and single- and multi-aspect customization. Lastly, we validate that MANNeR's aspect-customization module is robust to language and domain transfer.
♻ ☆ JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability
Large Language Models (LLMs) have demonstrated a remarkable potential in medical knowledge acquisition and question-answering. However, LLMs can potentially hallucinate and yield factually incorrect outcomes, even with domain-specific pretraining. Previously, retrieval augmented generation (RAG) has limited success in addressing hallucinations. Unlike previous methods in RAG where the retrieval model was trained separately from the LLM, we introduce JMLR (for Jointly trains LLM and information Retrieval (IR)) during the fine-tuning phase. The synchronized training mechanism enhances JMLR's ability to retrieve clinical guidelines and leverage medical knowledge to reason and answer questions and reduces the demand for computational resources. We evaluated JMLR on the important medical question answering application. Our experimental results demonstrate that JMLR-13B (70.5%) outperforms a previous state-of-the-art open-source model using conventional pre-training and fine-tuning Meditron-70B (68.9%) and Llama2-13B with RAG (54.9%) on a medical question-answering dataset. JMLR-13B (148 GPU hours) also trains much faster than Meditron-70B (42630 GPU hours). Through this work, we provide a new and efficient knowledge enhancement tool for healthcare, demonstrating the potential of integrating IR and LLM training for medical question-answering systems.
♻ ☆ Retrieval-Augmented Generation: Is Dense Passage Retrieval Retrieving?
Dense passage retrieval (DPR) is the first step in the retrieval augmented generation (RAG) paradigm for improving the performance of large language models (LLM). DPR fine-tunes pre-trained networks to enhance the alignment of the embeddings between queries and relevant textual data. A deeper understanding of DPR fine-tuning will be required to fundamentally unlock the full potential of this approach. In this work, we explore DPR-trained models mechanistically by using a combination of probing, layer activation analysis, and model editing. Our experiments show that DPR training decentralizes how knowledge is stored in the network, creating multiple access pathways to the same information. We also uncover a limitation in this training style: the internal knowledge of the pre-trained model bounds what the retrieval model can retrieve. These findings suggest a few possible directions for dense retrieval: (1) expose the DPR training process to more knowledge so more can be decentralized, (2) inject facts as decentralized representations, (3) model and incorporate knowledge uncertainty in the retrieval process, and (4) directly map internal model knowledge to a knowledge base.
Machine Learning 161
☆ Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM). However, the effectiveness of this approach can be influenced by adversaries, who may intentionally provide misleading preferences to manipulate the output in an undesirable or harmful direction. To tackle this challenge, we study a specific model within this problem domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary. We propose an algorithm namely robust contextual dueling bandit (\algo), which is based on uncertainty-weighted maximum likelihood estimation. Our algorithm achieves an $\tilde O(d\sqrt{T}+dC)$ regret bound, where $T$ is the number of rounds, $d$ is the dimension of the context, and $ 0 \le C \le T$ is the total number of adversarial feedback. We also prove a lower bound to show that our regret bound is nearly optimal, both in scenarios with and without ($C=0$) adversarial feedback. Additionally, we conduct experiments to evaluate our proposed algorithm against various types of adversarial feedback. Experimental results demonstrate its superiority over the state-of-the-art dueling bandit algorithms in the presence of adversarial feedback.
comment: 24pages, 5 figures
☆ TENG: Time-Evolving Natural Gradient for Solving PDEs with Deep Neural Net
Partial differential equations (PDEs) are instrumental for modeling dynamical systems in science and engineering. The advent of neural networks has initiated a significant shift in tackling these complexities though challenges in accuracy persist, especially for initial value problems. In this paper, we introduce the $\textit{Time-Evolving Natural Gradient (TENG)}$, generalizing time-dependent variational principles and optimization-based time integration, leveraging natural gradient optimization to obtain high accuracy in neural-network-based PDE solutions. Our comprehensive development includes algorithms like TENG-Euler and its high-order variants, such as TENG-Heun, tailored for enhanced precision and efficiency. TENG's effectiveness is further validated through its performance, surpassing current leading methods and achieving machine precision in step-by-step optimizations across a spectrum of PDEs, including the heat equation, Allen-Cahn equation, and Burgers' equation.
☆ Finite-dimensional approximations of push-forwards on locally analytic functionals and truncation of least-squares polynomials
This paper introduces a theoretical framework for investigating analytic maps from finite discrete data, elucidating mathematical machinery underlying the polynomial approximation with least-squares in multivariate situations. Our approach is to consider the push-forward on the space of locally analytic functionals, instead of directly handling the analytic map itself. We establish a methodology enabling appropriate finite-dimensional approximation of the push-forward from finite discrete data, through the theory of the Fourier--Borel transform and the Fock space. Moreover, we prove a rigorous convergence result with a convergence rate. As an application, we prove that it is not the least-squares polynomial, but the polynomial obtained by truncating its higher-degree terms, that approximates analytic functions and further allows for approximation beyond the support of the data distribution. One advantage of our theory is that it enables us to apply linear algebraic operations to the finite-dimensional approximation of the push-forward. Utilizing this, we prove the convergence of a method for approximating an analytic vector field from finite data of the flow map of an ordinary differential equation.
comment: 30 pages. 2 figures. Comments are welcome
☆ Confidential Federated Computations
Federated Learning and Analytics (FLA) have seen widespread adoption by technology platforms for processing sensitive on-device data. However, basic FLA systems have privacy limitations: they do not necessarily require anonymization mechanisms like differential privacy (DP), and provide limited protections against a potentially malicious service provider. Adding DP to a basic FLA system currently requires either adding excessive noise to each device's updates, or assuming an honest service provider that correctly implements the mechanism and only uses the privatized outputs. Secure multiparty computation (SMPC) -based oblivious aggregations can limit the service provider's access to individual user updates and improve DP tradeoffs, but the tradeoffs are still suboptimal, and they suffer from scalability challenges and susceptibility to Sybil attacks. This paper introduces a novel system architecture that leverages trusted execution environments (TEEs) and open-sourcing to both ensure confidentiality of server-side computations and provide externally verifiable privacy properties, bolstering the robustness and trustworthiness of private federated computations.
☆ TorchSurv: A Lightweight Package for Deep Survival Analysis
TorchSurv is a Python package that serves as a companion tool to perform deep survival modeling within the PyTorch environment. Unlike existing libraries that impose specific parametric forms, TorchSurv enables the use of custom PyTorch-based deep survival mod- els. With its lightweight design, minimal input requirements, full PyTorch backend, and freedom from restrictive survival model parameterizations, TorchSurv facilitates efficient deep survival model implementation and is particularly beneficial for high-dimensional and complex input data scenarios
comment: https://opensource.nibr.com/torchsurv/
☆ Laplace-HDC: Understanding the geometry of binary hyperdimensional computing
This paper studies the geometry of binary hyperdimensional computing (HDC), a computational scheme in which data are encoded using high-dimensional binary vectors. We establish a result about the similarity structure induced by the HDC binding operator and show that the Laplace kernel naturally arises in this setting, motivating our new encoding method Laplace-HDC, which improves upon previous methods. We describe how our results indicate limitations of binary HDC in encoding spatial information from images and discuss potential solutions, including using Haar convolutional features and the definition of a translation-equivariant HDC encoding. Several numerical experiments highlighting the improved accuracy of Laplace-HDC in contrast to alternative methods are presented. We also numerically study other aspects of the proposed framework such as robustness and the underlying translation-equivariant encoding.
comment: 23 pages, 7 figures
☆ Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification
Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and large language model (LLM) based models for the automatic classification of variable star light curves, based on large datasets from the Kepler and K2 missions. Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision. Employing AutoDL optimization, we achieve striking performance with the 1D-Convolution+BiLSTM architecture and the Swin Transformer, hitting accuracies of 94\% and 99\% correspondingly, with the latter demonstrating a notable 83\% accuracy in discerning the elusive Type II Cepheids-comprising merely 0.02\% of the total dataset.We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal large language model (MLLM), and Large Audio Language Model (LALM). Each model is fine-tuned with strategic prompt engineering and customized training methods to explore the emergent abilities of these models for astronomical data. Remarkably, StarWhisper LC Series exhibit high accuracies around 90\%, significantly reducing the need for explicit feature engineering, thereby paving the way for streamlined parallel data processing and the progression of multifaceted multimodal models in astronomical applications. The study furnishes two detailed catalogs illustrating the impacts of phase and sampling intervals on deep learning classification accuracy, showing that a substantial decrease of up to 14\% in observation duration and 21\% in sampling points can be realized without compromising accuracy by more than 10\%.
comment: 35 pages, 20 figures
☆ Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials
Machine learning interatomic potentials (MLIPs) have become a workhorse of modern atomistic simulations, and recently published universal MLIPs, pre-trained on large datasets, have demonstrated remarkable accuracy and generalizability. However, the computational cost of MLIPs limits their applicability to chemically disordered systems requiring large simulation cells or to sample-intensive statistical methods. Here, we report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations, exploiting the fact that graph neural network MLIPs represent discrete elements as real-valued tensors. The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs, and allows smooth interpolation between the compositional states of materials. The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights. Leveraging these gradients, we propose methodologies for optimizing the composition of solid solutions towards target macroscopic properties and conducting alchemical free energy simulations to quantify the free energy of vacancy formation and composition changes. The approach offers an avenue for extending the capabilities of universal MLIPs in the modeling of compositional disorder and characterizing the phase stabilities of complex materials systems.
☆ Settling Constant Regrets in Linear Markov Decision Processes
We study the constant regret guarantees in reinforcement learning (RL). Our objective is to design an algorithm that incurs only finite regret over infinite episodes with high probability. We introduce an algorithm, Cert-LSVI-UCB, for misspecified linear Markov decision processes (MDPs) where both the transition kernel and the reward function can be approximated by some linear function up to misspecification level $\zeta$. At the core of Cert-LSVI-UCB is an innovative certified estimator, which facilitates a fine-grained concentration analysis for multi-phase value-targeted regression, enabling us to establish an instance-dependent regret bound that is constant w.r.t. the number of episodes. Specifically, we demonstrate that for an MDP characterized by a minimal suboptimality gap $\Delta$, Cert-LSVI-UCB has a cumulative regret of $\tilde{\mathcal{O}}(d^3H^5/\Delta)$ with high probability, provided that the misspecification level $\zeta$ is below $\tilde{\mathcal{O}}(\Delta / (\sqrt{d}H^2))$. Remarkably, this regret bound remains constant relative to the number of episodes $K$. To the best of our knowledge, Cert-LSVI-UCB is the first algorithm to achieve a constant, instance-dependent, high-probability regret bound in RL with linear function approximation for infinite runs without relying on prior distribution assumptions. This not only highlights the robustness of Cert-LSVI-UCB to model misspecification but also introduces novel algorithmic designs and analytical techniques of independent interest.
comment: 46 pages, 2 tables
☆ Insight Gained from Migrating a Machine Learning Model to Intelligence Processing Units
The discoveries in this paper show that Intelligence Processing Units (IPUs) offer a viable accelerator alternative to GPUs for machine learning (ML) applications within the fields of materials science and battery research. We investigate the process of migrating a model from GPU to IPU and explore several optimization techniques, including pipelining and gradient accumulation, aimed at enhancing the performance of IPU-based models. Furthermore, we have effectively migrated a specialized model to the IPU platform. This model is employed for predicting effective conductivity, a parameter crucial in ion transport processes, which govern the performance of multiple charge and discharge cycles of batteries. The model utilizes a Convolutional Neural Network (CNN) architecture to perform prediction tasks for effective conductivity. The performance of this model on the IPU is found to be comparable to its execution on GPUs. We also analyze the utilization and performance of Graphcore's Bow IPU. Through benchmark tests, we observe significantly improved performance with the Bow IPU when compared to its predecessor, the Colossus IPU.
☆ Randomized Exploration in Cooperative Multi-Agent Reinforcement Learning
We present the first study on provably efficient randomized exploration in cooperative multi-agent reinforcement learning (MARL). We propose a unified algorithm framework for randomized exploration in parallel Markov Decision Processes (MDPs), and two Thompson Sampling (TS)-type algorithms, CoopTS-PHE and CoopTS-LMC, incorporating the perturbed-history exploration (PHE) strategy and the Langevin Monte Carlo exploration (LMC) strategy respectively, which are flexible in design and easy to implement in practice. For a special class of parallel MDPs where the transition is (approximately) linear, we theoretically prove that both CoopTS-PHE and CoopTS-LMC achieve a $\widetilde{\mathcal{O}}(d^{3/2}H^2\sqrt{MK})$ regret bound with communication complexity $\widetilde{\mathcal{O}}(dHM^2)$, where $d$ is the feature dimension, $H$ is the horizon length, $M$ is the number of agents, and $K$ is the number of episodes. This is the first theoretical result for randomized exploration in cooperative MARL. We evaluate our proposed method on multiple parallel RL environments, including a deep exploration problem (\textit{i.e.,} $N$-chain), a video game, and a real-world problem in energy systems. Our experimental results support that our framework can achieve better performance, even under conditions of misspecified transition models. Additionally, we establish a connection between our unified framework and the practical application of federated learning.
comment: 80 pages, 14 figures, 1 table. Hao-Lun Hsu and Weixin Wang contributed equally to this work
☆ How Deep Networks Learn Sparse and Hierarchical Data: the Sparse Random Hierarchy Model
Understanding what makes high-dimensional data learnable is a fundamental question in machine learning. On the one hand, it is believed that the success of deep learning lies in its ability to build a hierarchy of representations that become increasingly more abstract with depth, going from simple features like edges to more complex concepts. On the other hand, learning to be insensitive to invariances of the task, such as smooth transformations for image datasets, has been argued to be important for deep networks and it strongly correlates with their performance. In this work, we aim to explain this correlation and unify these two viewpoints. We show that by introducing sparsity to generative hierarchical models of data, the task acquires insensitivity to spatial transformations that are discrete versions of smooth transformations. In particular, we introduce the Sparse Random Hierarchy Model (SRHM), where we observe and rationalize that a hierarchical representation mirroring the hierarchical model is learnt precisely when such insensitivity is learnt, thereby explaining the strong correlation between the latter and performance. Moreover, we quantify how the sample complexity of CNNs learning the SRHM depends on both the sparsity and hierarchical structure of the task.
comment: 9 pages, 6 figures
☆ Automatic re-calibration of quantum devices by reinforcement learning
During their operation, due to shifts in environmental conditions, devices undergo various forms of detuning from their optimal settings. Typically, this is addressed through control loops, which monitor variables and the device performance, to maintain settings at their optimal values. Quantum devices are particularly challenging since their functionality relies on precisely tuning their parameters. At the same time, the detailed modeling of the environmental behavior is often computationally unaffordable, while a direct measure of the parameters defining the system state is costly and introduces extra noise in the mechanism. In this study, we investigate the application of reinforcement learning techniques to develop a model-free control loop for continuous recalibration of quantum device parameters. Furthermore, we explore the advantages of incorporating minimal environmental noise models. As an example, the application to numerical simulations of a Kennedy receiver-based long-distance quantum communication protocol is presented.
☆ Dynamic Frequency-Based Fingerprinting Attacks against Modern Sandbox Environments
The cloud computing landscape has evolved significantly in recent years, embracing various sandboxes to meet the diverse demands of modern cloud applications. These sandboxes encompass container-based technologies like Docker and gVisor, microVM-based solutions like Firecracker, and security-centric sandboxes relying on Trusted Execution Environments (TEEs) such as Intel SGX and AMD SEV. However, the practice of placing multiple tenants on shared physical hardware raises security and privacy concerns, most notably side-channel attacks. In this paper, we investigate the possibility of fingerprinting containers through CPU frequency reporting sensors in Intel and AMD CPUs. One key enabler of our attack is that the current CPU frequency information can be accessed by user-space attackers. We demonstrate that Docker images exhibit a unique frequency signature, enabling the distinction of different containers with up to 84.5% accuracy even when multiple containers are running simultaneously in different cores. Additionally, we assess the effectiveness of our attack when performed against several sandboxes deployed in cloud environments, including Google's gVisor, AWS' Firecracker, and TEE-based platforms like Gramine (utilizing Intel SGX) and AMD SEV. Our empirical results show that these attacks can also be carried out successfully against all of these sandboxes in less than 40 seconds, with an accuracy of over 70% in all cases. Finally, we propose a noise injection-based countermeasure to mitigate the proposed attack on cloud environments.
☆ Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs
Modern smartphone camera quality heavily relies on the image signal processor (ISP) to enhance captured raw images, utilizing carefully designed modules to produce final output images encoded in a standard color space (e.g., sRGB). Neural-based end-to-end learnable ISPs offer promising advancements, potentially replacing traditional ISPs with their ability to adapt without requiring extensive tuning for each new camera model, as is often the case for nearly every module in traditional ISPs. However, the key challenge with the recent learning-based ISPs is the urge to collect large paired datasets for each distinct camera model due to the influence of intrinsic camera characteristics on the formation of input raw images. This paper tackles this challenge by introducing a novel method for unpaired learning of raw-to-raw translation across diverse cameras. Specifically, we propose Rawformer, an unsupervised Transformer-based encoder-decoder method for raw-to-raw translation. It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras. Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques, and preserving a more robust correlation between the original and translated raw images.
comment: 15 pages, 5 figures
☆ MathWriting: A Dataset For Handwritten Mathematical Expression Recognition
We introduce MathWriting, the largest online handwritten mathematical expression dataset to date. It consists of 230k human-written samples and an additional 400k synthetic ones. MathWriting can also be used for offline HME recognition and is larger than all existing offline HME datasets like IM2LATEX-100K. We introduce a benchmark based on MathWriting data in order to advance research on both online and offline HME recognition.
☆ Network architecture search of X-ray based scientific applications
X-ray and electron diffraction-based microscopy use bragg peak detection and ptychography to perform 3-D imaging at an atomic resolution. Typically, these techniques are implemented using computationally complex tasks such as a Psuedo-Voigt function or solving a complex inverse problem. Recently, the use of deep neural networks has improved the existing state-of-the-art approaches. However, the design and development of the neural network models depends on time and labor intensive tuning of the model by application experts. To that end, we propose a hyperparameter (HPS) and neural architecture search (NAS) approach to automate the design and optimization of the neural network models for model size, energy consumption and throughput. We demonstrate the improved performance of the auto-tuned models when compared to the manually tuned BraggNN and PtychoNN benchmark. We study and demonstrate the importance of the exploring the search space of tunable hyperparameters in enhancing the performance of bragg peak detection and ptychographic reconstruction. Our NAS and HPS of (1) BraggNN achieves a 31.03\% improvement in bragg peak detection accuracy with a 87.57\% reduction in model size, and (2) PtychoNN achieves a 16.77\% improvement in model accuracy and a 12.82\% reduction in model size when compared to the baseline PtychoNN model. When inferred on the Orin-AGX platform, the optimized Braggnn and Ptychonn models demonstrate a 10.51\% and 9.47\% reduction in inference latency and a 44.18\% and 15.34\% reduction in energy consumption when compared to their respective baselines, when inferred in the Orin-AGX edge platform.
☆ Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution AAAI 2024
Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.
comment: AAAI 2024
☆ Driver Fatigue Prediction using Randomly Activated Neural Networks for Smart Ridesharing Platforms
Drivers in ridesharing platforms exhibit cognitive atrophy and fatigue as they accept ride offers along the day, which can have a significant impact on the overall efficiency of the ridesharing platform. In contrast to the current literature which focuses primarily on modeling and learning driver's preferences across different ride offers, this paper proposes a novel Dynamic Discounted Satisficing (DDS) heuristic to model and predict driver's sequential ride decisions during a given shift. Based on DDS heuristic, a novel stochastic neural network with random activations is proposed to model DDS heuristic and predict the final decision made by a given driver. The presence of random activations in the network necessitated the development of a novel training algorithm called Sampling-Based Back Propagation Through Time (SBPTT), where gradients are computed for independent instances of neural networks (obtained via sampling the distribution of activation threshold) and aggregated to update the network parameters. Using both simulation experiments as well as on real Chicago taxi dataset, this paper demonstrates the improved performance of the proposed approach, when compared to state-of-the-art methods.
☆ Automating REST API Postman Test Cases Using LLM
In the contemporary landscape of technological advancements, the automation of manual processes is crucial, compelling the demand for huge datasets to effectively train and test machines. This research paper is dedicated to the exploration and implementation of an automated approach to generate test cases specifically using Large Language Models. The methodology integrates the use of Open AI to enhance the efficiency and effectiveness of test case generation for training and evaluating Large Language Models. This formalized approach with LLMs simplifies the testing process, making it more efficient and comprehensive. Leveraging natural language understanding, LLMs can intelligently formulate test cases that cover a broad range of REST API properties, ensuring comprehensive testing. The model that is developed during the research is trained using manually collected postman test cases or instances for various Rest APIs. LLMs enhance the creation of Postman test cases by automating the generation of varied and intricate test scenarios. Postman test cases offer streamlined automation, collaboration, and dynamic data handling, providing a user-friendly and efficient approach to API testing compared to traditional test cases. Thus, the model developed not only conforms to current technological standards but also holds the promise of evolving into an idea of substantial importance in future technological advancements.
☆ Assessing The Impact of CNN Auto Encoder-Based Image Denoising on Image Classification Tasks
Images captured from the real world are often affected by different types of noise, which can significantly impact the performance of Computer Vision systems and the quality of visual data. This study presents a novel approach for defect detection in casting product noisy images, specifically focusing on submersible pump impellers. The methodology involves utilizing deep learning models such as VGG16, InceptionV3, and other models in both the spatial and frequency domains to identify noise types and defect status. The research process begins with preprocessing images, followed by applying denoising techniques tailored to specific noise categories. The goal is to enhance the accuracy and robustness of defect detection by integrating noise detection and denoising into the classification pipeline. The study achieved remarkable results using VGG16 for noise type classification in the frequency domain, achieving an accuracy of over 99%. Removal of salt and pepper noise resulted in an average SSIM of 87.9, while Gaussian noise removal had an average SSIM of 64.0, and periodic noise removal yielded an average SSIM of 81.6. This comprehensive approach showcases the effectiveness of the deep AutoEncoder model and median filter, for denoising strategies in real-world industrial applications. Finally, our study reports significant improvements in binary classification accuracy for defect detection compared to previous methods. For the VGG16 classifier, accuracy increased from 94.6% to 97.0%, demonstrating the effectiveness of the proposed noise detection and denoising approach. Similarly, for the InceptionV3 classifier, accuracy improved from 84.7% to 90.0%, further validating the benefits of integrating noise analysis into the classification pipeline.
comment: 13 pages, 13 figures, 13th International conference on innovative technologies in the field of science, engineering and technology
☆ Continual Offline Reinforcement Learning via Diffusion-based Dual Generative Replay
We study continual offline reinforcement learning, a practical paradigm that facilitates forward transfer and mitigates catastrophic forgetting to tackle sequential offline tasks. We propose a dual generative replay framework that retains previous knowledge by concurrent replay of generated pseudo-data. First, we decouple the continual learning policy into a diffusion-based generative behavior model and a multi-head action evaluation model, allowing the policy to inherit distributional expressivity for encompassing a progressive range of diverse behaviors. Second, we train a task-conditioned diffusion model to mimic state distributions of past tasks. Generated states are paired with corresponding responses from the behavior generator to represent old tasks with high-fidelity replayed samples. Finally, by interleaving pseudo samples with real ones of the new task, we continually update the state and behavior generators to model progressively diverse behaviors, and regularize the multi-head critic via behavior cloning to mitigate forgetting. Experiments demonstrate that our method achieves better forward transfer with less forgetting, and closely approximates the results of using previous ground-truth data due to its high-fidelity replay of the sample space. Our code is available at \href{https://github.com/NJU-RL/CuGRO}{https://github.com/NJU-RL/CuGRO}.
☆ Continuous Control Reinforcement Learning: Distributed Distributional DrQ Algorithms
Distributed Distributional DrQ is a model-free and off-policy RL algorithm for continuous control tasks based on the state and observation of the agent, which is an actor-critic method with the data-augmentation and the distributional perspective of critic value function. Aim to learn to control the agent and master some tasks in a high-dimensional continuous space. DrQ-v2 uses DDPG as the backbone and achieves out-performance in various continuous control tasks. Here Distributed Distributional DrQ uses Distributed Distributional DDPG as the backbone, and this modification aims to achieve better performance in some hard continuous control tasks through the better expression ability of distributional value function and distributed actor policies.
comment: 11 pages, 12 figures
☆ Self-playing Adversarial Language Game Enhances LLM Reasoning
We explore the self-play training procedure of large language models (LLMs) in a two-player adversarial language game called Adversarial Taboo. In this game, an attacker and a defender communicate with respect to a target word only visible to the attacker. The attacker aims to induce the defender to utter the target word unconsciously, while the defender tries to infer the target word from the attacker's utterances. To win the game, both players should have sufficient knowledge about the target word and high-level reasoning ability to infer and express in this information-reserved conversation. Hence, we are curious about whether LLMs' reasoning ability can be further enhanced by Self-Play in this Adversarial language Game (SPAG). With this goal, we let LLMs act as the attacker and play with a copy of itself as the defender on an extensive range of target words. Through reinforcement learning on the game outcomes, we observe that the LLMs' performance uniformly improves on a broad range of reasoning benchmarks. Furthermore, iteratively adopting this self-play process can continuously promote LLM's reasoning ability. The code is at https://github.com/Linear95/SPAG.
comment: Preprint
☆ HLAT: High-quality Large Language Model Pre-trained on AWS Trainium
Getting large language models (LLMs) to perform well on the downstream tasks requires pre-training over trillions of tokens. This typically demands a large number of powerful computational devices in addition to a stable distributed training framework to accelerate the training. The growing number of applications leveraging AI/ML had led to a scarcity of the expensive conventional accelerators (such as GPUs), which begs the need for the alternative specialized-accelerators that are scalable and cost-efficient. AWS Trainium is the second-generation machine learning accelerator that has been purposely built for training large deep learning models. Its corresponding instance, Amazon EC2 trn1, is an alternative to GPU instances for LLM training. However, training LLMs with billions of parameters on trn1 is challenging due to its relatively nascent software ecosystem. In this paper, we showcase HLAT: a 7 billion parameter decoder-only LLM pre-trained using trn1 instances over 1.8 trillion tokens. The performance of HLAT is benchmarked against popular open source baseline models including LLaMA and OpenLLaMA, which have been trained on NVIDIA GPUs and Google TPUs, respectively. On various evaluation tasks, we show that HLAT achieves model quality on par with the baselines. We also share the best practice of using the Neuron Distributed Training Library (NDTL), a customized distributed training library for AWS Trainium to achieve efficient training. Our work demonstrates that AWS Trainium powered by the NDTL is able to successfully pre-train state-of-the-art LLM models with high performance and cost-effectiveness.
☆ PyTorchGeoNodes: Enabling Differentiable Shape Programs for 3D Shape Reconstruction
We propose PyTorchGeoNodes, a differentiable module for reconstructing 3D objects from images using interpretable shape programs. In comparison to traditional CAD model retrieval methods, the use of shape programs for 3D reconstruction allows for reasoning about the semantic properties of reconstructed objects, editing, low memory footprint, etc. However, the utilization of shape programs for 3D scene understanding has been largely neglected in past works. As our main contribution, we enable gradient-based optimization by introducing a module that translates shape programs designed in Blender, for example, into efficient PyTorch code. We also provide a method that relies on PyTorchGeoNodes and is inspired by Monte Carlo Tree Search (MCTS) to jointly optimize discrete and continuous parameters of shape programs and reconstruct 3D objects for input scenes. In our experiments, we apply our algorithm to reconstruct 3D objects in the ScanNet dataset and evaluate our results against CAD model retrieval-based reconstructions. Our experiments indicate that our reconstructions match well the input scenes while enabling semantic reasoning about reconstructed objects.
comment: In Submission
☆ Private Attribute Inference from Images with Vision-Language Models
As large language models (LLMs) become ubiquitous in our daily tasks and digital interactions, associated privacy risks are increasingly in focus. While LLM privacy research has primarily focused on the leakage of model training data, it has recently been shown that the increase in models' capabilities has enabled LLMs to make accurate privacy-infringing inferences from previously unseen texts. With the rise of multimodal vision-language models (VLMs), capable of understanding both images and text, a pertinent question is whether such results transfer to the previously unexplored domain of benign images posted online. To investigate the risks associated with the image reasoning capabilities of newly emerging VLMs, we compile an image dataset with human-annotated labels of the image owner's personal attributes. In order to understand the additional privacy risk posed by VLMs beyond traditional human attribute recognition, our dataset consists of images where the inferable private attributes do not stem from direct depictions of humans. On this dataset, we evaluate the inferential capabilities of 7 state-of-the-art VLMs, finding that they can infer various personal attributes at up to 77.6% accuracy. Concerningly, we observe that accuracy scales with the general capabilities of the models, implying that future models can be misused as stronger adversaries, establishing an imperative for the development of adequate defenses.
☆ Intra-operative tumour margin evaluation in breast-conserving surgery with deep learning
A positive margin may result in an increased risk of local recurrences after breast retention surgery for any malignant tumour. In order to reduce the number of positive margins would offer surgeon real-time intra-operative information on the presence of positive resection margins. This study aims to design an intra-operative tumour margin evaluation scheme by using specimen mammography in breast-conserving surgery. Total of 30 cases were evaluated and compared with the manually determined contours by experienced physicians and pathology report. The proposed method utilizes image thresholding to extract regions of interest and then performs a deep learning model, i.e. SegNet, to segment tumour tissue. The margin width of normal tissues surrounding it is evaluated as the result. The desired size of margin around the tumor was set for 10 mm. The smallest average difference to manual sketched margin (6.53 mm +- 5.84). In the all case, the SegNet architecture was utilized to obtain tissue specimen boundary and tumor contour, respectively. The simulation results indicated that this technology is helpful in discriminating positive from negative margins in the intra-operative setting. The aim of proposed scheme was a potential procedure in the intra-operative measurement system. The experimental results reveal that deep learning techniques can draw results that are consistent with pathology reports.
comment: 1 pages, 6 figures and 2 tables
☆ Do Counterfactual Examples Complicate Adversarial Training? CVPR'24
We leverage diffusion models to study the robustness-performance tradeoff of robust classifiers. Our approach introduces a simple, pretrained diffusion method to generate low-norm counterfactual examples (CEs): semantically altered data which results in different true class membership. We report that the confidence and accuracy of robust models on their clean training data are associated with the proximity of the data to their CEs. Moreover, robust models perform very poorly when evaluated on the CEs directly, as they become increasingly invariant to the low-norm, semantic changes brought by CEs. The results indicate a significant overlap between non-robust and semantic features, countering the common assumption that non-robust features are not interpretable.
comment: Accepted as a short paper to the GCV Workshop at CVPR'24
☆ Data-driven subgrouping of patient trajectories with chronic diseases: Evidence from low back pain
Clinical data informs the personalization of health care with a potential for more effective disease management. In practice, this is achieved by subgrouping, whereby clusters with similar patient characteristics are identified and then receive customized treatment plans with the goal of targeting subgroup-specific disease dynamics. In this paper, we propose a novel mixture hidden Markov model for subgrouping patient trajectories from chronic diseases. Our model is probabilistic and carefully designed to capture different trajectory phases of chronic diseases (i.e., "severe", "moderate", and "mild") through tailored latent states. We demonstrate our subgrouping framework based on a longitudinal study across 847 patients with non-specific low back pain. Here, our subgrouping framework identifies 8 subgroups. Further, we show that our subgrouping framework outperforms common baselines in terms of cluster validity indices. Finally, we discuss the applicability of the model to other chronic and long-lasting diseases.
comment: Forthcoming at Conference on Health, Inference, and Learning (CHIL) 2024
☆ EMC$^2$: Efficient MCMC Negative Sampling for Contrastive Learning with Global Convergence
A key challenge in contrastive learning is to generate negative samples from a large sample set to contrast with positive samples, for learning better encoding of the data. These negative samples often follow a softmax distribution which are dynamically updated during the training process. However, sampling from this distribution is non-trivial due to the high computational costs in computing the partition function. In this paper, we propose an Efficient Markov Chain Monte Carlo negative sampling method for Contrastive learning (EMC$^2$). We follow the global contrastive learning loss as introduced in SogCLR, and propose EMC$^2$ which utilizes an adaptive Metropolis-Hastings subroutine to generate hardness-aware negative samples in an online fashion during the optimization. We prove that EMC$^2$ finds an $\mathcal{O}(1/\sqrt{T})$-stationary point of the global contrastive loss in $T$ iterations. Compared to prior works, EMC$^2$ is the first algorithm that exhibits global convergence (to stationarity) regardless of the choice of batch size while exhibiting low computation and memory cost. Numerical experiments validate that EMC$^2$ is effective with small batch training and achieves comparable or better performance than baseline algorithms. We report the results for pre-training image encoders on STL-10 and Imagenet-100.
comment: 20 pages
☆ Uncertainty-guided Open-Set Source-Free Unsupervised Domain Adaptation with Target-private Class Segregation
Standard Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target but usually requires simultaneous access to both source and target data. Moreover, UDA approaches commonly assume that source and target domains share the same labels space. Yet, these two assumptions are hardly satisfied in real-world scenarios. This paper considers the more challenging Source-Free Open-set Domain Adaptation (SF-OSDA) setting, where both assumptions are dropped. We propose a novel approach for SF-OSDA that exploits the granularity of target-private categories by segregating their samples into multiple unknown classes. Starting from an initial clustering-based assignment, our method progressively improves the segregation of target-private samples by refining their pseudo-labels with the guide of an uncertainty-based sample selection module. Additionally, we propose a novel contrastive loss, named NL-InfoNCELoss, that, integrating negative learning into self-supervised contrastive learning, enhances the model robustness to noisy pseudo-labels. Extensive experiments on benchmark datasets demonstrate the superiority of the proposed method over existing approaches, establishing new state-of-the-art performance. Notably, additional analyses show that our method is able to learn the underlying semantics of novel classes, opening the possibility to perform novel class discovery.
☆ HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction
The discovery of drug-target interactions (DTIs) plays a crucial role in pharmaceutical development. The deep learning model achieves more accurate results in DTI prediction due to its ability to extract robust and expressive features from drug and target chemical structures. However, existing deep learning methods typically generate drug features via aggregating molecular atom representations, ignoring the chemical properties carried by motifs, i.e., substructures of the molecular graph. The atom-drug double-level molecular representation learning can not fully exploit structure information and fails to interpret the DTI mechanism from the motif perspective. In addition, sequential model-based target feature extraction either fuses limited contextual information or requires expensive computational resources. To tackle the above issues, we propose a hierarchical graph representation learning-based DTI prediction method (HiGraphDTI). Specifically, HiGraphDTI learns hierarchical drug representations from triple-level molecular graphs to thoroughly exploit chemical information embedded in atoms, motifs, and molecules. Then, an attentional feature fusion module incorporates information from different receptive fields to extract expressive target features.Last, the hierarchical attention mechanism identifies crucial molecular segments, which offers complementary views for interpreting interaction mechanisms. The experiment results not only demonstrate the superiority of HiGraphDTI to the state-of-the-art methods, but also confirm the practical ability of our model in interaction interpretation and new DTI discovery.
☆ Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem
We propose an analytical solution for approximating the gradient of the Evidence Lower Bound (ELBO) in variational inference problems where the statistical model is a Bayesian network consisting of observations drawn from a mixture of a Gaussian distribution embedded in unrelated clutter, known as the clutter problem. The method employs the reparameterization trick to move the gradient operator inside the expectation and relies on the assumption that, because the likelihood factorizes over the observed data, the variational distribution is generally more compactly supported than the Gaussian distribution in the likelihood factors. This allows efficient local approximation of the individual likelihood factors, which leads to an analytical solution for the integral defining the gradient expectation. We integrate the proposed gradient approximation as the expectation step in an EM (Expectation Maximization) algorithm for maximizing ELBO and test against classical deterministic approaches in Bayesian inference, such as the Laplace approximation, Expectation Propagation and Mean-Field Variational Inference. The proposed method demonstrates good accuracy and rate of convergence together with linear computational complexity.
comment: 16 pages, 4 figures, supporting code available at https://github.com/rpopov42/elbo_gaa
☆ Classification of Prostate Cancer in 3D Magnetic Resonance Imaging Data based on Convolutional Neural Networks
Prostate cancer is a commonly diagnosed cancerous disease among men world-wide. Even with modern technology such as multi-parametric magnetic resonance tomography and guided biopsies, the process for diagnosing prostate cancer remains time consuming and requires highly trained professionals. In this paper, different convolutional neural networks (CNN) are evaluated on their abilities to reliably classify whether an MRI sequence contains malignant lesions. Implementations of a ResNet, a ConvNet and a ConvNeXt for 3D image data are trained and evaluated. The models are trained using different data augmentation techniques, learning rates, and optimizers. The data is taken from a private dataset, provided by Cantonal Hospital Aarau. The best result was achieved by a ResNet3D, yielding an average precision score of 0.4583 and AUC ROC score of 0.6214.
comment: Previous version published in Buzug T.M., Handels H., M\"uller S., H\"ubner C., Mertins A., Rostalski P.: Student Conference Proceedings 2023, Infinite Science Publishing, 2023 (ISBN/EAN 978-3-945954-72-0). 7 pages, 2 figures
☆ A/B testing under Interference with Partial Network Information AISTATS 2024
A/B tests are often required to be conducted on subjects that might have social connections. For e.g., experiments on social media, or medical and social interventions to control the spread of an epidemic. In such settings, the SUTVA assumption for randomized-controlled trials is violated due to network interference, or spill-over effects, as treatments to group A can potentially also affect the control group B. When the underlying social network is known exactly, prior works have demonstrated how to conduct A/B tests adequately to estimate the global average treatment effect (GATE). However, in practice, it is often impossible to obtain knowledge about the exact underlying network. In this paper, we present UNITE: a novel estimator that relax this assumption and can identify GATE while only relying on knowledge of the superset of neighbors for any subject in the graph. Through theoretical analysis and extensive experiments, we show that the proposed approach performs better in comparison to standard estimators.
comment: AISTATS 2024
☆ Warm-Start Variational Quantum Policy Iteration
Reinforcement learning is a powerful framework aiming to determine optimal behavior in highly complex decision-making scenarios. This objective can be achieved using policy iteration, which requires to solve a typically large linear system of equations. We propose the variational quantum policy iteration (VarQPI) algorithm, realizing this step with a NISQ-compatible quantum-enhanced subroutine. Its scalability is supported by an analysis of the structure of generic reinforcement learning environments, laying the foundation for potential quantum advantage with utility-scale quantum computers. Furthermore, we introduce the warm-start initialization variant (WS-VarQPI) that significantly reduces resource overhead. The algorithm solves a large FrozenLake environment with an underlying 256x256-dimensional linear system, indicating its practical robustness.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. 9 pages, 6 figures, 1 table
☆ CoTAR: Chain-of-Thought Attribution Reasoning with Multi-level Granularity
State-of-the-art performance in QA tasks is currently achieved by systems employing Large Language Models (LLMs), however these models tend to hallucinate information in their responses. One approach focuses on enhancing the generation process by incorporating attribution from the given input to the output. However, the challenge of identifying appropriate attributions and verifying their accuracy against a source is a complex task that requires significant improvements in assessing such systems. We introduce an attribution-oriented Chain-of-Thought reasoning method to enhance the accuracy of attributions. This approach focuses the reasoning process on generating an attribution-centric output. Evaluations on two context-enhanced question-answering datasets using GPT-4 demonstrate improved accuracy and correctness of attributions. In addition, the combination of our method with finetuning enhances the response and attribution accuracy of two smaller LLMs, showing their potential to outperform GPT-4 in some cases.
☆ Four-hour thunderstorm nowcasting using deep diffusion models of satellite
Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to nature and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model of satellite (DDMS) to establish an AI-based convection nowcasting system. On one hand, it employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, significantly improving the forecast lead time. On the other hand, it utilizes geostationary satellite brightness temperature data, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system operates efficiently (forecasting 4 hours of convection in 8 minutes), and is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.
Self-Supervised Visual Preference Alignment
This paper makes the first attempt towards unsupervised preference alignment in Vision-Language Models (VLMs). We generate chosen and rejected responses with regard to the original and augmented image pairs, and conduct preference alignment with direct preference optimization. It is based on a core idea: properly designed augmentation to the image input will induce VLM to generate false but hard negative responses, which helps the model to learn from and produce more robust and powerful answers. The whole pipeline no longer hinges on supervision from GPT4 or human involvement during alignment, and is highly efficient with few lines of code. With only 8k randomly sampled unsupervised data, it achieves 90\% relative score to GPT-4 on complex reasoning in LLaVA-Bench, and improves LLaVA-7B/13B by 6.7\%/5.6\% score on complex multi-modal benchmark MM-Vet. Visualizations shows its improved ability to align with user-intentions. A series of ablations are firmly conducted to reveal the latent mechanism of the approach, which also indicates its potential towards further scaling. Code will be available.
☆ BDAN: Mitigating Temporal Difference Across Electrodes in Cross-Subject Motor Imagery Classification via Generative Bridging Domain
Because of "the non-repeatability of the experiment settings and conditions" and "the variability of brain patterns among subjects", the data distributions across sessions and electrodes are different in cross-subject motor imagery (MI) studies, eventually reducing the performance of the classification model. Systematically summarised based on the existing studies, a novel temporal-electrode data distribution problem is investigated under both intra-subject and inter-subject scenarios in this paper. Based on the presented issue, a novel bridging domain adaptation network (BDAN) is proposed, aiming to minimise the data distribution difference across sessions in the aspect of the electrode, thus improving and enhancing model performance. In the proposed BDAN, deep features of all the EEG data are extracted via a specially designed spatial feature extractor. With the obtained spatio-temporal features, a special generative bridging domain is established, bridging the data from all the subjects across sessions. The difference across sessions and electrodes is then minimized using the customized bridging loss functions, and the known knowledge is automatically transferred through the constructed bridging domain. To show the effectiveness of the proposed BDAN, comparison experiments and ablation studies are conducted on a public EEG dataset. The overall comparison results demonstrate the superior performance of the proposed BDAN compared with the other advanced deep learning and domain adaptation methods.
☆ Would You Trust an AI Doctor? Building Reliable Medical Predictions with Kernel Dropout Uncertainty
The growing capabilities of AI raise questions about their trustworthiness in healthcare, particularly due to opaque decision-making and limited data availability. This paper proposes a novel approach to address these challenges, introducing a Bayesian Monte Carlo Dropout model with kernel modelling. Our model is designed to enhance reliability on small medical datasets, a crucial barrier to the wider adoption of AI in healthcare. This model leverages existing language models for improved effectiveness and seamlessly integrates with current workflows. We demonstrate significant improvements in reliability, even with limited data, offering a promising step towards building trust in AI-driven medical predictions and unlocking its potential to improve patient care.
☆ BayesJudge: Bayesian Kernel Language Modelling with Confidence Uncertainty in Legal Judgment Prediction
Predicting legal judgments with reliable confidence is paramount for responsible legal AI applications. While transformer-based deep neural networks (DNNs) like BERT have demonstrated promise in legal tasks, accurately assessing their prediction confidence remains crucial. We present a novel Bayesian approach called BayesJudge that harnesses the synergy between deep learning and deep Gaussian Processes to quantify uncertainty through Bayesian kernel Monte Carlo dropout. Our method leverages informative priors and flexible data modelling via kernels, surpassing existing methods in both predictive accuracy and confidence estimation as indicated through brier score. Extensive evaluations of public legal datasets showcase our model's superior performance across diverse tasks. We also introduce an optimal solution to automate the scrutiny of unreliable predictions, resulting in a significant increase in the accuracy of the model's predictions by up to 27\%. By empowering judges and legal professionals with more reliable information, our work paves the way for trustworthy and transparent legal AI applications that facilitate informed decisions grounded in both knowledge and quantified uncertainty.
☆ Toward a Realistic Benchmark for Out-of-Distribution Detection
Deep neural networks are increasingly used in a wide range of technologies and services, but remain highly susceptible to out-of-distribution (OOD) samples, that is, drawn from a different distribution than the original training set. A common approach to address this issue is to endow deep neural networks with the ability to detect OOD samples. Several benchmarks have been proposed to design and validate OOD detection techniques. However, many of them are based on far-OOD samples drawn from very different distributions, and thus lack the complexity needed to capture the nuances of real-world scenarios. In this work, we introduce a comprehensive benchmark for OOD detection, based on ImageNet and Places365, that assigns individual classes as in-distribution or out-of-distribution depending on the semantic similarity with the training set. Several techniques can be used to determine which classes should be considered in-distribution, yielding benchmarks with varying properties. Experimental results on different OOD detection techniques show how their measured efficacy depends on the selected benchmark and how confidence-based techniques may outperform classifier-based ones on near-OOD samples.
☆ Machine Learning Based Optimization Workflow for Tuning Numerical Settings of Differential Equation Solvers for Boundary Value Problems
Several numerical differential equation solvers have been employed effectively over the years as an alternative to analytical solvers to quickly and conveniently solve differential equations. One category of these is boundary value solvers, which are used to solve real-world problems formulated as differential equations with boundary conditions. These solvers require certain numerical settings to solve the differential equations that affect their solvability and performance. A systematic fine-tuning of these settings is required to obtain the desired solution and performance. Currently, these settings are either selected by trial and error or require domain expertise. In this paper, we propose a machine learning-based optimization workflow for fine-tuning the numerical settings to reduce the time and domain expertise required in the process. In the evaluation section, we discuss the scalability, stability, and reliability of the proposed workflow. We demonstrate our workflow on a numerical boundary value problem solver.
☆ Advancing Long-Term Multi-Energy Load Forecasting with Patchformer: A Patch and Transformer-Based Approach
In the context of increasing demands for long-term multi-energy load forecasting in real-world applications, this paper introduces Patchformer, a novel model that integrates patch embedding with encoder-decoder Transformer-based architectures. To address the limitation in existing Transformer-based models, which struggle with intricate temporal patterns in long-term forecasting, Patchformer employs patch embedding, which predicts multivariate time-series data by separating it into multiple univariate data and segmenting each of them into multiple patches. This method effectively enhances the model's ability to capture local and global semantic dependencies. The numerical analysis shows that the Patchformer obtains overall better prediction accuracy in both multivariate and univariate long-term forecasting on the novel Multi-Energy dataset and other benchmark datasets. In addition, the positive effect of the interdependence among energy-related products on the performance of long-term time-series forecasting across Patchformer and other compared models is discovered, and the superiority of the Patchformer against other models is also demonstrated, which presents a significant advancement in handling the interdependence and complexities of long-term multi-energy forecasting. Lastly, Patchformer is illustrated as the only model that follows the positive correlation between model performance and the length of the past sequence, which states its ability to capture long-range past local semantic information.
☆ Revealing data leakage in protein interaction benchmarks
In recent years, there has been remarkable progress in machine learning for protein-protein interactions. However, prior work has predominantly focused on improving learning algorithms, with less attention paid to evaluation strategies and data preparation. Here, we demonstrate that further development of machine learning methods may be hindered by the quality of existing train-test splits. Specifically, we find that commonly used splitting strategies for protein complexes, based on protein sequence or metadata similarity, introduce major data leakage. This may result in overoptimistic evaluation of generalization, as well as unfair benchmarking of the models, biased towards assessing their overfitting capacity rather than practical utility. To overcome the data leakage, we recommend constructing data splits based on 3D structural similarity of protein-protein interfaces and suggest corresponding algorithms. We believe that addressing the data leakage problem is critical for further progress in this research area.
☆ Graph Neural Networks for Protein-Protein Interactions - A Short Survey
Protein-protein interactions (PPIs) play key roles in a broad range of biological processes. Numerous strategies have been proposed for predicting PPIs, and among them, graph-based methods have demonstrated promising outcomes owing to the inherent graph structure of PPI networks. This paper reviews various graph-based methodologies, and discusses their applications in PPI prediction. We classify these approaches into two primary groups based on their model structures. The first category employs Graph Neural Networks (GNN) or Graph Convolutional Networks (GCN), while the second category utilizes Graph Attention Networks (GAT), Graph Auto-Encoders and Graph-BERT. We highlight the distinctive methodologies of each approach in managing the graph-structured data inherent in PPI networks and anticipate future research directions in this domain.
☆ SparseDM: Toward Sparse Efficient Diffusion Models
Diffusion models have been extensively used in data generation tasks and are recognized as one of the best generative models. However, their time-consuming deployment, long inference time, and requirements on large memory limit their application on mobile devices. In this paper, we propose a method based on the improved Straight-Through Estimator to improve the deployment efficiency of diffusion models. Specifically, we add sparse masks to the Convolution and Linear layers in a pre-trained diffusion model, then use design progressive sparsity for model training in the fine-tuning stage, and switch the inference mask on and off, which supports a flexible choice of sparsity during inference according to the FID and MACs requirements. Experiments on four datasets conducted on a state-of-the-art Transformer-based diffusion model demonstrate that our method reduces MACs by $50\%$ while increasing FID by only 1.5 on average. Under other MACs conditions, the FID is also lower than 1$\sim$137 compared to other methods.
☆ Semi-supervised Fréchet Regression
This paper explores the field of semi-supervised Fr\'echet regression, driven by the significant costs associated with obtaining non-Euclidean labels. Methodologically, we propose two novel methods: semi-supervised NW Fr\'echet regression and semi-supervised kNN Fr\'echet regression, both based on graph distance acquired from all feature instances. These methods extend the scope of existing semi-supervised Euclidean regression methods. We establish their convergence rates with limited labeled data and large amounts of unlabeled data, taking into account the low-dimensional manifold structure of the feature space. Through comprehensive simulations across diverse settings and applications to real data, we demonstrate the superior performance of our methods over their supervised counterparts. This study addresses existing research gaps and paves the way for further exploration and advancements in the field of semi-supervised Fr\'echet regression.
☆ AGHINT: Attribute-Guided Representation Learning on Heterogeneous Information Networks with Transformer
Recently, heterogeneous graph neural networks (HGNNs) have achieved impressive success in representation learning by capturing long-range dependencies and heterogeneity at the node level. However, few existing studies have delved into the utilization of node attributes in heterogeneous information networks (HINs). In this paper, we investigate the impact of inter-node attribute disparities on HGNNs performance within the benchmark task, i.e., node classification, and empirically find that typical models exhibit significant performance decline when classifying nodes whose attributes markedly differ from their neighbors. To alleviate this issue, we propose a novel Attribute-Guided heterogeneous Information Networks representation learning model with Transformer (AGHINT), which allows a more effective aggregation of neighbor node information under the guidance of attributes. Specifically, AGHINT transcends the constraints of the original graph structure by directly integrating higher-order similar neighbor features into the learning process and modifies the message-passing mechanism between nodes based on their attribute disparities. Extensive experimental results on three real-world heterogeneous graph benchmarks with target node attributes demonstrate that AGHINT outperforms the state-of-the-art.
comment: 9 pages, 5 figures
☆ Tree Bandits for Generative Bayes
In generative models with obscured likelihood, Approximate Bayesian Computation (ABC) is often the tool of last resort for inference. However, ABC demands many prior parameter trials to keep only a small fraction that passes an acceptance test. To accelerate ABC rejection sampling, this paper develops a self-aware framework that learns from past trials and errors. We apply recursive partitioning classifiers on the ABC lookup table to sequentially refine high-likelihood regions into boxes. Each box is regarded as an arm in a binary bandit problem treating ABC acceptance as a reward. Each arm has a proclivity for being chosen for the next ABC evaluation, depending on the prior distribution and past rejections. The method places more splits in those areas where the likelihood resides, shying away from low-probability regions destined for ABC rejections. We provide two versions: (1) ABC-Tree for posterior sampling, and (2) ABC-MAP for maximum a posteriori estimation. We demonstrate accurate ABC approximability at much lower simulation cost. We justify the use of our tree-based bandit algorithms with nearly optimal regret bounds. Finally, we successfully apply our approach to the problem of masked image classification using deep generative models.
☆ Explainable concept mappings of MRI: Revealing the mechanisms underlying deep learning-based brain disease classification
Motivation. While recent studies show high accuracy in the classification of Alzheimer's disease using deep neural networks, the underlying learned concepts have not been investigated. Goals. To systematically identify changes in brain regions through concepts learned by the deep neural network for model validation. Approach. Using quantitative R2* maps we separated Alzheimer's patients (n=117) from normal controls (n=219) by using a convolutional neural network and systematically investigated the learned concepts using Concept Relevance Propagation and compared these results to a conventional region of interest-based analysis. Results. In line with established histological findings and the region of interest-based analyses, highly relevant concepts were primarily found in and adjacent to the basal ganglia. Impact. The identification of concepts learned by deep neural networks for disease classification enables validation of the models and could potentially improve reliability.
☆ AudioProtoPNet: An interpretable deep learning model for bird sound classification
Recently, scientists have proposed several deep learning models to monitor the diversity of bird species. These models can detect bird species with high accuracy by analyzing acoustic signals. However, traditional deep learning algorithms are black-box models that provide no insight into their decision-making process. For domain experts, such as ornithologists, it is crucial that these models are not only efficient, but also interpretable in order to be used as assistive tools. In this study, we present an adaption of the Prototypical Part Network (ProtoPNet) for audio classification that provides inherent interpretability through its model architecture. Our approach is based on a ConvNeXt backbone architecture for feature extraction and learns prototypical patterns for each bird species using spectrograms of the training data. Classification of new data is done by comparison with these prototypes in latent space, which simultaneously serve as easily understandable explanations for the model's decisions.
comment: Work in progress
☆ VDTuner: Automated Performance Tuning for Vector Data Management Systems ICDE 2024
Vector data management systems (VDMSs) have become an indispensable cornerstone in large-scale information retrieval and machine learning systems like large language models. To enhance the efficiency and flexibility of similarity search, VDMS exposes many tunable index parameters and system parameters for users to specify. However, due to the inherent characteristics of VDMS, automatic performance tuning for VDMS faces several critical challenges, which cannot be well addressed by the existing auto-tuning methods. In this paper, we introduce VDTuner, a learning-based automatic performance tuning framework for VDMS, leveraging multi-objective Bayesian optimization. VDTuner overcomes the challenges associated with VDMS by efficiently exploring a complex multi-dimensional parameter space without requiring any prior knowledge. Moreover, it is able to achieve a good balance between search speed and recall rate, delivering an optimal configuration. Extensive evaluations demonstrate that VDTuner can markedly improve VDMS performance (14.12% in search speed and 186.38% in recall rate) compared with default setting, and is more efficient compared with state-of-the-art baselines (up to 3.57 times faster in terms of tuning time). In addition, VDTuner is scalable to specific user preference and cost-aware optimization objective. VDTuner is available online at https://github.com/tiannuo-yang/VDTuner.
comment: Accepted by ICDE 2024
☆ Integration of Self-Supervised BYOL in Semi-Supervised Medical Image Recognition CCS 2024
Image recognition techniques heavily rely on abundant labeled data, particularly in medical contexts. Addressing the challenges associated with obtaining labeled data has led to the prominence of self-supervised learning and semi-supervised learning, especially in scenarios with limited annotated data. In this paper, we proposed an innovative approach by integrating self-supervised learning into semi-supervised models to enhance medical image recognition. Our methodology commences with pre-training on unlabeled data utilizing the BYOL method. Subsequently, we merge pseudo-labeled and labeled datasets to construct a neural network classifier, refining it through iterative fine-tuning. Experimental results on three different datasets demonstrate that our approach optimally leverages unlabeled data, outperforming existing methods in terms of accuracy for medical image recognition.
comment: Accepted by ICCS 2024
☆ A Phone-based Distributed Ambient Temperature Measurement System with An Efficient Label-free Automated Training Strategy
Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers' attention towards the exploration of phone-based ambient temperature estimation technology. Nevertheless, numerous obstacles remain to be addressed in order to achieve a practical implementation of this technology. This study proposes a distributed phone-based ambient temperature estimation system which enables collaboration between multiple phones to accurately measure the ambient temperature in each small area of an indoor space. Besides, it offers a secure, efficient, and cost-effective training strategy to train a new estimation model for each newly added phone, eliminating the need for manual collection of labeled data. This innovative training strategy can yield a high-performing estimation model for a new phone with just 5 data points, requiring only a few iterations. Meanwhile, by crowdsourcing, our system automatically provides accurate inferred labels for all newly collected data. We also highlight the potential of integrating federated learning into our system to ensure privacy protection at the end of this study. We believe this study has the potential to advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.
☆ Offline Trajectory Generalization for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to learn policies from static datasets of previously collected trajectories. Existing methods for offline RL either constrain the learned policy to the support of offline data or utilize model-based virtual environments to generate simulated rollouts. However, these methods suffer from (i) poor generalization to unseen states; and (ii) trivial improvement from low-qualified rollout simulation. In this paper, we propose offline trajectory generalization through world transformers for offline reinforcement learning (OTTO). Specifically, we use casual Transformers, a.k.a. World Transformers, to predict state dynamics and the immediate reward. Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data. Finally, we jointly use offline data with simulated data to train an offline RL algorithm. OTTO serves as a plug-in module and can be integrated with existing offline RL methods to enhance them with better generalization capability of transformers and high-rewarded data augmentation. Conducting extensive experiments on D4RL benchmark datasets, we verify that OTTO significantly outperforms state-of-the-art offline RL methods.
☆ I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
High-Performance Computing (HPC) systems excel in managing distributed workloads, and the growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. In the past, research on HPC I/O focused on optimizing the underlying storage system for modeling and simulation applications and checkpointing the results, causing writes to be the dominant I/O operation. These applications typically access large portions of the data written by simulations or experiments. ML workloads, in contrast, perform small I/O reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to HPC storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during ML training, explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature, and lastly, present gaps requiring further R&D. We seek to summarize the common practices used in accessing data by ML applications and expose research gaps that could spawn further R&D.
☆ Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data
Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
comment: arXiv admin note: text overlap with arXiv:2311.10476
☆ Know Yourself Better: Diverse Discriminative Feature Learning Improves Open Set Recognition
Open set recognition (OSR) is a critical aspect of machine learning, addressing the challenge of detecting novel classes during inference. Within the realm of deep learning, neural classifiers trained on a closed set of data typically struggle to identify novel classes, leading to erroneous predictions. To address this issue, various heuristic methods have been proposed, allowing models to express uncertainty by stating "I don't know." However, a gap in the literature remains, as there has been limited exploration of the underlying mechanisms of these methods. In this paper, we conduct an analysis of open set recognition methods, focusing on the aspect of feature diversity. Our research reveals a significant correlation between learning diverse discriminative features and enhancing OSR performance. Building on this insight, we propose a novel OSR approach that leverages the advantages of feature diversity. The efficacy of our method is substantiated through rigorous evaluation on a standard OSR testbench, demonstrating a substantial improvement over state-of-the-art methods.
☆ Learning Wireless Data Knowledge Graph for Green Intelligent Communications: Methodology and Experiments
Intelligent communications have played a pivotal role in shaping the evolution of 6G networks. Native artificial intelligence (AI) within green communication systems must meet stringent real-time requirements. To achieve this, deploying lightweight and resource-efficient AI models is necessary. However, as wireless networks generate a multitude of data fields and indicators during operation, only a fraction of them imposes significant impact on the network AI models. Therefore, real-time intelligence of communication systems heavily relies on a small but critical set of the data that profoundly influences the performance of network AI models. These challenges underscore the need for innovative architectures and solutions. In this paper, we propose a solution, termed the pervasive multi-level (PML) native AI architecture, which integrates the concept of knowledge graph (KG) into the intelligent operational manipulations of mobile networks, resulting in the establishment of a wireless data KG. Leveraging the wireless data KG, we characterize the massive and complex data collected from wireless communication networks and analyze the relationships among various data fields. The obtained graph of data field relations enables the on-demand generation of minimal and effective datasets, referred to as feature datasets, tailored to specific application requirements. Consequently, this architecture not only enhances AI training, inference, and validation processes but also significantly reduces resource wastage and overhead for communication networks. To implement this architecture, we have developed a specific solution comprising a spatio-temporal heterogeneous graph attention neural network model (STREAM) as well as a feature dataset generation algorithm. Experiments are conducted to validate the effectiveness of the proposed architecture.
comment: 12 pages,11 figures
☆ A Survey on Data-Driven Fault Diagnostic Techniques for Marine Diesel Engines
Fault diagnosis in marine diesel engines is vital for maritime safety and operational efficiency.These engines are integral to marine vessels, and their reliable performance is crucial for safenavigation. Swift identification and resolution of faults are essential to prevent breakdowns,enhance safety, and reduce the risk of catastrophic failures at sea. Proactive fault diagnosisfacilitates timely maintenance, minimizes downtime, and ensures the overall reliability andlongevity of marine diesel engines. This paper explores the importance of fault diagnosis,emphasizing subsystems, common faults, and recent advancements in data-driven approachesfor effective marine diesel engine maintenance
☆ Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery ICPR
Trustworthiness is a major prerequisite for the safe application of opaque deep learning models in high-stakes domains like medicine. Understanding the decision-making process not only contributes to fostering trust but might also reveal previously unknown decision criteria of complex models that could advance the state of medical research. The discovery of decision-relevant concepts from black box models is a particularly challenging task. This study proposes Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT), a novel three-step framework for concept discovery leveraging the superior image synthesis capabilities of diffusion models. In the first step, CDCT uses a Latent Diffusion Model (LDM) to generate a counterfactual trajectory dataset. This dataset is used to derive a disentangled representation of classification-relevant concepts using a Variational Autoencoder (VAE). Finally, a search algorithm is applied to identify relevant concepts in the disentangled latent space. The application of CDCT to a classifier trained on the largest public skin lesion dataset revealed not only the presence of several biases but also meaningful biomarkers. Moreover, the counterfactuals generated within CDCT show better FID scores than those produced by a previously established state-of-the-art method, while being 12 times more resource-efficient. Unsupervised concept discovery holds great potential for the application of trustworthy AI and the further development of human knowledge in various domains. CDCT represents a further step in this direction.
comment: Submitted to International Conference on Pattern Recognition (ICPR) 2024
☆ Physical formula enhanced multi-task learning for pharmacokinetics prediction
Artificial intelligence (AI) technology has demonstrated remarkable potential in drug dis-covery, where pharmacokinetics plays a crucial role in determining the dosage, safety, and efficacy of new drugs. A major challenge for AI-driven drug discovery (AIDD) is the scarcity of high-quality data, which often requires extensive wet-lab work. A typical example of this is pharmacokinetic experiments. In this work, we develop a physical formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously. By incorporating physical formulas into the multi-task framework, PEMAL facilitates effective knowledge sharing and target alignment among the pharmacokinetic parameters, thereby enhancing the accuracy of prediction. Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks. Moreover, we demonstrate that PEMAL enhances the robustness to noise, an advantage that conventional Neural Networks do not possess. Another advantage of PEMAL is its high flexibility, which can be potentially applied to other multi-task machine learning scenarios. Overall, our work illustrates the benefits and potential of using PEMAL in AIDD and other scenarios with data scarcity and noise.
☆ Rethinking the Graph Polynomial Filter via Positive and Negative Coupling Analysis
Recently, the optimization of polynomial filters within Spectral Graph Neural Networks (GNNs) has emerged as a prominent research focus. Existing spectral GNNs mainly emphasize polynomial properties in filter design, introducing computational overhead and neglecting the integration of crucial graph structure information. We argue that incorporating graph information into basis construction can enhance understanding of polynomial basis, and further facilitate simplified polynomial filter design. Motivated by this, we first propose a Positive and Negative Coupling Analysis (PNCA) framework, where the concepts of positive and negative activation are defined and their respective and mixed effects are analysed. Then, we explore PNCA from the message propagation perspective, revealing the subtle information hidden in the activation process. Subsequently, PNCA is used to analyze the mainstream polynomial filters, and a novel simple basis that decouples the positive and negative activation and fully utilizes graph structure information is designed. Finally, a simple GNN (called GSCNet) is proposed based on the new basis. Experimental results on the benchmark datasets for node classification verify that our GSCNet obtains better or comparable results compared with existing state-of-the-art GNNs while demanding relatively less computational time.
comment: 13 pages, 8 figures, 6 tables
☆ On the Use of Relative Validity Indices for Comparing Clustering Approaches
Relative Validity Indices (RVIs) such as the Silhouette Width Criterion, Calinski-Harabasz and Davie's Bouldin indices are the most popular tools for evaluating and optimising applications of clustering. Their ability to rank collections of candidate partitions has been used to guide the selection of the number of clusters, and to compare partitions from different clustering algorithms. Beyond these more conventional tasks, many examples can be found in the literature where RVIs have been used to compare and select other aspects of clustering approaches such as data normalisation procedures, data representation methods, and distance measures. The authors are not aware of any studies that have attempted to establish the suitability of RVIs for such comparisons. Moreover, given the impact of these aspects on pairwise similarities, it is not even immediately obvious how RVIs should be implemented when comparing these aspects. In this study, we conducted experiments with seven common RVIs on over 2.7 million clustering partitions for both synthetic and real-world datasets, encompassing feature-vector and time-series data. Our findings suggest that RVIs are not well-suited to these unconventional tasks, and that conclusions drawn from such applications may be misleading. It is recommended that normalisation procedures, representation methods, and distance measures instead be selected using external validation on high quality labelled datasets or carefully designed outcome-oriented objective criteria, both of which should be informed by relevant domain knowledge and clustering aims.
☆ Asset management, condition monitoring and Digital Twins: damage detection and virtual inspection on a reinforced concrete bridge
In April 2021 Stava bridge, a main bridge on E6 in Norway, was abruptly closed for traffic. A structural defect had seriously compromised the bridge structural integrity. The Norwegian Public Roads Administration (NPRA) closed it, made a temporary solution and reopened with severe traffic restrictions. The incident was alerted through what constitutes the bridge Digital Twin processing data from Internet of Things sensors. The solution was crucial in online and offline diagnostics, the case demonstrating the value of technologies to tackle emerging dangerous situations as well as acting preventively. A critical and rapidly developing damage was detected in time to stop the development, but not in time to avoid the incident altogether. The paper puts risk in a broader perspective for an organization responsible for highway infrastructure. It positions online monitoring and Digital Twins in the context of Risk- and Condition-Based Maintenance. The situation that arose at Stava bridge, and how it was detected, analyzed, and diagnosed during virtual inspection, is described. The case demonstrates how combining physics-based methods with Machine Learning can facilitate damage detection and diagnostics. A summary of lessons learnt, both from technical and organizational perspectives, as well as plans of future work, is presented.
☆ Graph neural network-based surrogate modelling for real-time hydraulic prediction of urban drainage networks
Physics-based models are computationally time-consuming and infeasible for real-time scenarios of urban drainage networks, and a surrogate model is needed to accelerate the online predictive modelling. Fully-connected neural networks (NNs) are potential surrogate models, but may suffer from low interpretability and efficiency in fitting complex targets. Owing to the state-of-the-art modelling power of graph neural networks (GNNs) and their match with urban drainage networks in the graph structure, this work proposes a GNN-based surrogate of the flow routing model for the hydraulic prediction problem of drainage networks, which regards recent hydraulic states as initial conditions, and future runoff and control policy as boundary conditions. To incorporate hydraulic constraints and physical relationships into drainage modelling, physics-guided mechanisms are designed on top of the surrogate model to restrict the prediction variables with flow balance and flooding occurrence constraints. According to case results in a stormwater network, the GNN-based model is more cost-effective with better hydraulic prediction accuracy than the NN-based model after equal training epochs, and the designed mechanisms further limit prediction errors with interpretable domain knowledge. As the model structure adheres to the flow routing mechanisms and hydraulic constraints in urban drainage networks, it provides an interpretable and effective solution for data-driven surrogate modelling. Simultaneously, the surrogate model accelerates the predictive modelling of urban drainage networks for real-time use compared with the physics-based model.
☆ CARE to Compare: A real-world dataset for anomaly detection in wind turbine data
Anomaly detection plays a crucial role in the field of predictive maintenance for wind turbines, yet the comparison of different algorithms poses a difficult task because domain specific public datasets are scarce. Many comparisons of different approaches either use benchmarks composed of data from many different domains, inaccessible data or one of the few publicly available datasets which lack detailed information about the faults. Moreover, many publications highlight a couple of case studies where fault detection was successful. With this paper we publish a high quality dataset that contains data from 36 wind turbines across 3 different wind farms as well as the most detailed fault information of any public wind turbine dataset as far as we know. The new dataset contains 89 years worth of real-world operating data of wind turbines, distributed across 44 labeled time frames for anomalies that led up to faults, as well as 51 time series representing normal behavior. Additionally, the quality of training data is ensured by turbine-status-based labels for each data point. Furthermore, we propose a new scoring method, called CARE (Coverage, Accuracy, Reliability and Earliness), which takes advantage of the information depth that is present in the dataset to identify a good all-around anomaly detection model. This score considers the anomaly detection performance, the ability to recognize normal behavior properly and the capability to raise as few false alarms as possible while simultaneously detecting anomalies early.
comment: 28 pages, 3 figures
☆ Application of Deep Learning Methods to Processing of Noisy Medical Video Data
Cells count become a challenging problem when the cells move in a continuous stream, and their boundaries are difficult for visual detection. To resolve this problem we modified the training and decision making processes using curriculum learning and multi-view predictions techniques, respectively.
☆ Awareness of uncertainty in classification using a multivariate model and multi-views
One of the ways to make artificial intelligence more natural is to give it some room for doubt. Two main questions should be resolved in that way. First, how to train a model to estimate uncertainties of its own predictions? And then, what to do with the uncertain predictions if they appear? First, we proposed an uncertainty-aware negative log-likelihood loss for the case of N-dimensional multivariate normal distribution with spherical variance matrix to the solution of N-classes classification tasks. The loss is similar to the heteroscedastic regression loss. The proposed model regularizes uncertain predictions, and trains to calculate both the predictions and their uncertainty estimations. The model fits well with the label smoothing technique. Second, we expanded the limits of data augmentation at the training and test stages, and made the trained model to give multiple predictions for a given number of augmented versions of each test sample. Given the multi-view predictions together with their uncertainties and confidences, we proposed several methods to calculate final predictions, including mode values and bin counts with soft and hard weights. For the latter method, we formalized the model tuning task in the form of multimodal optimization with non-differentiable criteria of maximum accuracy, and applied particle swarm optimization to solve the tuning task. The proposed methodology was tested using CIFAR-10 dataset with clean and noisy labels and demonstrated good results in comparison with other uncertainty estimation methods related to sample selection, co-teaching, and label smoothing.
☆ Wireless Earphone-based Real-Time Monitoring of Breathing Exercises: A Deep Learning Approach
Several therapy routines require deep breathing exercises as a key component and patients undergoing such therapies must perform these exercises regularly. Assessing the outcome of a therapy and tailoring its course necessitates monitoring a patient's compliance with the therapy. While therapy compliance monitoring is routine in a clinical environment, it is challenging to do in an at-home setting. This is so because a home setting lacks access to specialized equipment and skilled professionals needed to effectively monitor the performance of a therapy routine by a patient. For some types of therapies, these challenges can be addressed with the use of consumer-grade hardware, such as earphones and smartphones, as practical solutions. To accurately monitor breathing exercises using wireless earphones, this paper proposes a framework that has the potential for assessing a patient's compliance with an at-home therapy. The proposed system performs real-time detection of breathing phases and channels with high accuracy by processing a $\mathbf{500}$ ms audio signal through two convolutional neural networks. The first network, called a channel classifier, distinguishes between nasal and oral breathing, and a pause. The second network, called a phase classifier, determines whether the audio segment is from inhalation or exhalation. According to $k$-fold cross-validation, the channel and phase classifiers achieved a maximum F1 score of $\mathbf{97.99\%}$ and $\mathbf{89.46\%}$, respectively. The results demonstrate the potential of using commodity earphones for real-time breathing channel and phase detection for breathing therapy compliance monitoring.
comment: 4 pages, 2 figures. Paper accepted at IEEE International Conference on Engineering in Medicine & Biology Society, 2024
☆ Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs ICLR 2024
Large language models (LLMs) have shown remarkable performance in various natural language processing tasks. However, a primary constraint they face is the context limit, i.e., the maximum number of tokens they can process. Previous works have explored architectural changes and modifications in positional encoding to relax the constraint, but they often require expensive training or do not address the computational demands of self-attention. In this paper, we present Hierarchical cOntext MERging (HOMER), a new training-free scheme designed to overcome the limitations. HOMER uses a divide-and-conquer algorithm, dividing long inputs into manageable chunks. Each chunk is then processed collectively, employing a hierarchical strategy that merges adjacent chunks at progressive transformer layers. A token reduction technique precedes each merging, ensuring memory usage efficiency. We also propose an optimized computational order reducing the memory requirement to logarithmically scale with respect to input length, making it especially favorable for environments with tight memory restrictions. Our experiments demonstrate the proposed method's superior performance and memory efficiency, enabling the broader use of LLMs in contexts requiring extended context. Code is available at https://github.com/alinlab/HOMER.
comment: Accepted to ICLR 2024. The first two authors contributed equally
☆ LLM-Powered Test Case Generation for Detecting Tricky Bugs
Conventional automated test generation tools struggle to generate test oracles and tricky bug-revealing test inputs. Large Language Models (LLMs) can be prompted to produce test inputs and oracles for a program directly, but the precision of the tests can be very low for complex scenarios (only 6.3% based on our experiments). To fill this gap, this paper proposes AID, which combines LLMs with differential testing to generate fault-revealing test inputs and oracles targeting plausibly correct programs (i.e., programs that have passed all the existing tests). In particular, AID selects test inputs that yield diverse outputs on a set of program variants generated by LLMs, then constructs the test oracle based on the outputs. We evaluate AID on two large-scale datasets with tricky bugs: TrickyBugs and EvalPlus, and compare it with three state-of-the-art baselines. The evaluation results show that the recall, precision, and F1 score of AID outperform the state-of-the-art by up to 1.80x, 2.65x, and 1.66x, respectively.
☆ Long-form music generation with latent diffusion
Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.
☆ Clustering and Data Augmentation to Improve Accuracy of Sleep Assessment and Sleep Individuality Analysis
Recently, growing health awareness, novel methods allow individuals to monitor sleep at home. Utilizing sleep sounds offers advantages over conventional methods like smartwatches, being non-intrusive, and capable of detecting various physiological activities. This study aims to construct a machine learning-based sleep assessment model providing evidence-based assessments, such as poor sleep due to frequent movement during sleep onset. Extracting sleep sound events, deriving latent representations using VAE, clustering with GMM, and training LSTM for subjective sleep assessment achieved a high accuracy of 94.8% in distinguishing sleep satisfaction. Moreover, TimeSHAP revealed differences in impactful sound event types and timings for different individuals.
☆ Engineering software 2.0 by interpolating neural networks: unifying training, solving, and calibration
The evolution of artificial intelligence (AI) and neural network theories has revolutionized the way software is programmed, shifting from a hard-coded series of codes to a vast neural network. However, this transition in engineering software has faced challenges such as data scarcity, multi-modality of data, low model accuracy, and slow inference. Here, we propose a new network based on interpolation theories and tensor decomposition, the interpolating neural network (INN). Instead of interpolating training data, a common notion in computer science, INN interpolates interpolation points in the physical space whose coordinates and values are trainable. It can also extrapolate if the interpolation points reside outside of the range of training data and the interpolation functions have a larger support domain. INN features orders of magnitude fewer trainable parameters, faster training, a smaller memory footprint, and higher model accuracy compared to feed-forward neural networks (FFNN) or physics-informed neural networks (PINN). INN is poised to usher in Engineering Software 2.0, a unified neural network that spans various domains of space, time, parameters, and initial/boundary conditions. This has previously been computationally prohibitive due to the exponentially growing number of trainable parameters, easily exceeding the parameter size of ChatGPT, which is over 1 trillion. INN addresses this challenge by leveraging tensor decomposition and tensor product, with adaptable network architecture.
comment: 9 pages, 3 figures
☆ Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning
Inductive biases are crucial in disentangled representation learning for narrowing down an underspecified solution set. In this work, we consider endowing a neural network autoencoder with three select inductive biases from the literature: data compression into a grid-like latent space via quantization, collective independence amongst latents, and minimal functional influence of any latent on how other latents determine data generation. In principle, these inductive biases are deeply complementary: they most directly specify properties of the latent space, encoder, and decoder, respectively. In practice, however, naively combining existing techniques instantiating these inductive biases fails to yield significant benefits. To address this, we propose adaptations to the three techniques that simplify the learning problem, equip key regularization terms with stabilizing invariances, and quash degenerate incentives. The resulting model, Tripod, achieves state-of-the-art results on a suite of four image disentanglement benchmarks. We also verify that Tripod significantly improves upon its naive incarnation and that all three of its "legs" are necessary for best performance.
comment: 22 pages, 10 figures, code available at https://github.com/kylehkhsu/tripod
☆ OptiGrad: A Fair and more Efficient Price Elasticity Optimization via a Gradient Based Learning
This paper presents a novel approach to optimizing profit margins in non-life insurance markets through a gradient descent-based method, targeting three key objectives: 1) maximizing profit margins, 2) ensuring conversion rates, and 3) enforcing fairness criteria such as demographic parity (DP). Traditional pricing optimization, which heavily lean on linear and semi definite programming, encounter challenges in balancing profitability and fairness. These challenges become especially pronounced in situations that necessitate continuous rate adjustments and the incorporation of fairness criteria. Specifically, indirect Ratebook optimization, a widely-used method for new business price setting, relies on predictor models such as XGBoost or GLMs/GAMs to estimate on downstream individually optimized prices. However, this strategy is prone to sequential errors and struggles to effectively manage optimizations for continuous rate scenarios. In practice, to save time actuaries frequently opt for optimization within discrete intervals (e.g., range of [-20\%, +20\%] with fix increments) leading to approximate estimations. Moreover, to circumvent infeasible solutions they often use relaxed constraints leading to suboptimal pricing strategies. The reverse-engineered nature of traditional models complicates the enforcement of fairness and can lead to biased outcomes. Our method addresses these challenges by employing a direct optimization strategy in the continuous space of rates and by embedding fairness through an adversarial predictor model. This innovation not only reduces sequential errors and simplifies the complexities found in traditional models but also directly integrates fairness measures into the commercial premium calculation. We demonstrate improved margin performance and stronger enforcement of fairness highlighting the critical need to evolve existing pricing strategies.
comment: 17 pages, 5 figures
☆ Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
The challenge of imbalanced soil nutrient datasets significantly hampers accurate predictions of soil fertility. To tackle this, a new method is suggested in this research, combining Uniform Manifold Approximation and Projection (UMAP) with Least Absolute Shrinkage and Selection Operator (LASSO). The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision. The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset. UMAP is utilized initially to reduce data complexity, unveiling hidden structures and important patterns. Following this, LASSO is applied to refine features and enhance the model's interpretability. The experimental outcomes highlight the effectiveness of the UMAP and LASSO hybrid approach. The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%, demonstrating its capability in accurate soil fertility predictions. Additionally, it showcases a Precision of 91.25%, indicating its adeptness in identifying fertile soil instances accurately. The Recall metric stands at 90.90%, emphasizing the model's ability to capture true positive cases effectively.
☆ Social Choice for AI Alignment: Dealing with Diverse Human Feedback
Foundation models such as GPT-4 are fine-tuned to avoid unsafe or otherwise problematic behavior, so that, for example, they refuse to comply with requests for help with committing crimes or with producing racist text. One approach to fine-tuning, called reinforcement learning from human feedback, learns from humans' expressed preferences over multiple outputs. Another approach is constitutional AI, in which the input from humans is a list of high-level principles. But how do we deal with potentially diverging input from humans? How can we aggregate the input into consistent data about ''collective'' preferences or otherwise use it to make collective choices about model behavior? In this paper, we argue that the field of social choice is well positioned to address these questions, and we discuss ways forward for this agenda, drawing on discussions in a recent workshop on Social Choice for AI Ethics and Safety held in Berkeley, CA, USA in December 2023.
comment: 15 pages, 4 figures
☆ Lighter, Better, Faster Multi-Source Domain Adaptation with Gaussian Mixture Models and Optimal Transport
In this paper, we tackle Multi-Source Domain Adaptation (MSDA), a task in transfer learning where one adapts multiple heterogeneous, labeled source probability measures towards a different, unlabeled target measure. We propose a novel framework for MSDA, based on Optimal Transport (OT) and Gaussian Mixture Models (GMMs). Our framework has two key advantages. First, OT between GMMs can be solved efficiently via linear programming. Second, it provides a convenient model for supervised learning, especially classification, as components in the GMM can be associated with existing classes. Based on the GMM-OT problem, we propose a novel technique for calculating barycenters of GMMs. Based on this novel algorithm, we propose two new strategies for MSDA: GMM-WBT and GMM-DaDiL. We empirically evaluate our proposed methods on four benchmarks in image classification and fault diagnosis, showing that we improve over the prior art while being faster and involving fewer parameters.
comment: Under review
☆ Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy
The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.
☆ Privacy-Preserving Training-as-a-Service for On-Device Intelligence: Concept, Architectural Scheme, and Open Problems
On-device intelligence (ODI) enables artificial intelligence (AI) applications to run on end devices, providing real-time and customized AI services without relying on remote servers. However, training models for on-device deployment face significant challenges due to the decentralized and privacy-sensitive nature of users' data, along with end-side constraints related to network connectivity, computation efficiency, etc. Existing training paradigms, such as cloud-based training, federated learning, and transfer learning, fail to sufficiently address these practical constraints that are prevalent for devices. To overcome these challenges, we propose Privacy-Preserving Training-as-a-Service (PTaaS), a novel service computing paradigm that provides privacy-friendly, customized AI model training for end devices. PTaaS outsources the core training process to remote and powerful cloud or edge servers, efficiently developing customized on-device models based on uploaded anonymous queries, ensuring data privacy while reducing the computation load on individual devices. We explore the definition, goals, and design principles of PTaaS, alongside emerging technologies that support the PTaaS paradigm. An architectural scheme for PTaaS is also presented, followed by a series of open problems that set the stage for future research directions in the field of PTaaS.
comment: 7 pages, 3 figures
☆ Personalized Federated Learning via Stacking
Traditional Federated Learning (FL) methods typically train a single global model collaboratively without exchanging raw data. In contrast, Personalized Federated Learning (PFL) techniques aim to create multiple models that are better tailored to individual clients' data. We present a novel personalization approach based on stacked generalization where clients directly send each other privacy-preserving models to be used as base models to train a meta-model on private data. Our approach is flexible, accommodating various privacy-preserving techniques and model types, and can be applied in horizontal, hybrid, and vertically partitioned federations. Additionally, it offers a natural mechanism for assessing each client's contribution to the federation. Through comprehensive evaluations across diverse simulated data heterogeneity scenarios, we showcase the effectiveness of our method.
☆ Human-Algorithm Collaborative Bayesian Optimization for Engineering Systems
Bayesian optimization has been successfully applied throughout Chemical Engineering for the optimization of functions that are expensive-to-evaluate, or where gradients are not easily obtainable. However, domain experts often possess valuable physical insights that are overlooked in fully automated decision-making approaches, necessitating the inclusion of human input. In this article we re-introduce the human back into the data-driven decision making loop by outlining an approach for collaborative Bayesian optimization. Our methodology exploits the hypothesis that humans are more efficient at making discrete choices rather than continuous ones and enables experts to influence critical early decisions. We apply high-throughput (batch) Bayesian optimization alongside discrete decision theory to enable domain experts to influence the selection of experiments. At every iteration we apply a multi-objective approach that results in a set of alternate solutions that have both high utility and are reasonably distinct. The expert then selects the desired solution for evaluation from this set, allowing for the inclusion of expert knowledge and improving accountability, whilst maintaining the advantages of Bayesian optimization. We demonstrate our approach across a number of applied and numerical case studies including bioprocess optimization and reactor geometry design, demonstrating that even in the case of an uninformed practitioner our algorithm recovers the regret of standard Bayesian optimization. Through the inclusion of continuous expert opinion, our approach enables faster convergence, and improved accountability for Bayesian optimization in engineering systems.
comment: 31 pages with appendix and references
☆ What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning IJCAI 2024
In sequential decision-making problems involving sensitive attributes like race and gender, reinforcement learning (RL) agents must carefully consider long-term fairness while maximizing returns. Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear. In this paper, we address this gap in the literature by investigating the sources of inequality through a causal lens. We first analyse the causal relationships governing the data generation process and decompose the effect of sensitive attributes on long-term well-being into distinct components. We then introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics, distinguishing it from those induced by decision-making or inherited from the past. This notion requires evaluating the expected changes in the next state and the reward induced by changing the value of the sensitive attribute while holding everything else constant. To quantitatively evaluate this counterfactual concept, we derive identification formulas that allow us to obtain reliable estimations from data. Extensive experiments demonstrate the effectiveness of the proposed techniques in explaining, detecting, and reducing inequality in reinforcement learning.
comment: 13 pages, 9 figures, accepted by IJCAI 2024
♻ ☆ Large Language Models as Generalizable Policies for Embodied Tasks
We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement. Video examples of LLaRP in unseen Language Rearrangement instructions are at https://llm-rl.github.io.
♻ ☆ When can transformers reason with abstract symbols?
We investigate the capabilities of transformer models on relational reasoning tasks. In these tasks, models are trained on a set of strings encoding abstract relations, and are then tested out-of-distribution on data that contains symbols that did not appear in the training dataset. We prove that for any relational reasoning task in a large family of tasks, transformers learn the abstract relations and generalize to the test set when trained by gradient descent on sufficiently large quantities of training data. This is in contrast to classical fully-connected networks, which we prove fail to learn to reason. Our results inspire modifications of the transformer architecture that add only two trainable parameters per head, and that we empirically demonstrate improve data efficiency for learning to reason.
comment: 25 figures
♻ ☆ AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models
We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel freezing score, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85\%$ as evaluated on GLUE benchmark while yeilding up to $9.5\times$ fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to $1.86\times$ improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices. Code will be released.
comment: 5 pages, 5 figures
♻ ☆ Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
♻ ☆ Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients AISTATS 2024
As reinforcement learning techniques are increasingly applied to real-world decision problems, attention has turned to how these algorithms use potentially sensitive information. We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions. We give examples of how this setting covers real-world problems in privacy for sequential decision-making. We solve this problem in the policy gradients framework by introducing a regularizer based on the mutual information (MI) between the sensitive state and the actions. We develop a model-based stochastic gradient estimator for optimization of privacy-constrained policies. We also discuss an alternative MI regularizer that serves as an upper bound to our main MI regularizer and can be optimized in a model-free setting, and a powerful direct estimator that can be used in an environment with differentiable dynamics. We contrast previous work in differentially-private RL to our mutual-information formulation of information disclosure. Experimental results show that our training method results in policies that hide the sensitive state, even in challenging high-dimensional tasks.
comment: Accepted to AISTATS 2024
♻ ☆ RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning
Recent developments in large pre-trained language models have enabled unprecedented performance on a variety of downstream tasks. Achieving best performance with these models often leverages in-context learning, where a model performs a (possibly new) task given one or more examples. However, recent work has shown that the choice of examples can have a large impact on task performance and that finding an optimal set of examples is non-trivial. While there are many existing methods for selecting in-context examples, they generally score examples independently, ignoring the dependency between them and the order in which they are provided to the model. In this work, we propose Retrieval for In-Context Learning (RetICL), a learnable method for modeling and optimally selecting examples sequentially for in-context learning. We frame the problem of sequential example selection as a Markov decision process and train an example retriever using reinforcement learning. We evaluate RetICL on math word problem solving and scientific question answering tasks and show that it consistently outperforms or matches heuristic and learnable baselines. We also use case studies to show that RetICL implicitly learns representations of problem solving strategies.
♻ ☆ Gaussian process learning of nonlinear dynamics
One of the pivotal tasks in scientific machine learning is to represent underlying dynamical systems from time series data. Many methods for such dynamics learning explicitly require the derivatives of state data, which are not directly available and can be approximated conventionally by finite differences. However, the discrete approximations of time derivatives may result in poor estimations when state data are scarce and/or corrupted by noise, thus compromising the predictiveness of the learned dynamical models. To overcome this technical hurdle, we propose a new method that learns nonlinear dynamics through a Bayesian inference of characterizing model parameters. This method leverages a Gaussian process representation of states, and constructs a likelihood function using the correlation between state data and their derivatives, yet prevents explicit evaluations of time derivatives. Through a Bayesian scheme, a probabilistic estimate of the model parameters is given by the posterior distribution, and thus a quantification is facilitated for uncertainties from noisy state data and the learning process. Specifically, we will discuss the applicability of the proposed method to several typical scenarios for dynamical systems: identification and estimation with an affine parametrization, nonlinear parametric approximation without prior knowledge, and general parameter estimation for a given dynamical system.
♻ ☆ PCN: A Deep Learning Approach to Jet Tagging Utilizing Novel Graph Construction Methods and Chebyshev Graph Convolutions
Jet tagging is a classification problem in high-energy physics experiments that aims to identify the collimated sprays of subatomic particles, jets, from particle collisions and tag them to their emitter particle. Advances in jet tagging present opportunities for searches of new physics beyond the Standard Model. Current approaches use deep learning to uncover hidden patterns in complex collision data. However, the representation of jets as inputs to a deep learning model have been varied, and often, informative features are withheld from models. In this study, we propose a graph-based representation of a jet that encodes the most information possible. To learn best from this representation, we design Particle Chebyshev Network (PCN), a graph neural network (GNN) using Chebyshev graph convolutions (ChebConv). ChebConv has been demonstrated as an effective alternative to classical graph convolutions in GNNs and has yet to be explored in jet tagging. PCN achieves a substantial improvement in accuracy over existing taggers and opens the door to future studies into graph-based representations of jets and ChebConv layers in high-energy physics experiments. Code is available at https://github.com/YVSemlani/PCN-Jet-Tagging.
comment: 16 pages, 2 figures, and 7 tables
♻ ☆ Pixel to Elevation: Learning to Predict Elevation Maps at Long Range using Images for Autonomous Offroad Navigation
Understanding terrain topology at long-range is crucial for the success of off-road robotic missions, especially when navigating at high-speeds. LiDAR sensors, which are currently heavily relied upon for geometric mapping, provide sparse measurements when mapping at greater distances. To address this challenge, we present a novel learning-based approach capable of predicting terrain elevation maps at long-range using only onboard egocentric images in real-time. Our proposed method is comprised of three main elements. First, a transformer-based encoder is introduced that learns cross-view associations between the egocentric views and prior bird-eye-view elevation map predictions. Second, an orientation-aware positional encoding is proposed to incorporate the 3D vehicle pose information over complex unstructured terrain with multi-view visual image features. Lastly, a history-augmented learn-able map embedding is proposed to achieve better temporal consistency between elevation map predictions to facilitate the downstream navigational tasks. We experimentally validate the applicability of our proposed approach for autonomous offroad robotic navigation in complex and unstructured terrain using real-world offroad driving data. Furthermore, the method is qualitatively and quantitatively compared against the current state-of-the-art methods. Extensive field experiments demonstrate that our method surpasses baseline models in accurately predicting terrain elevation while effectively capturing the overall terrain topology at long-ranges. Finally, ablation studies are conducted to highlight and understand the effect of key components of the proposed approach and validate their suitability to improve offroad robotic navigation capabilities.
comment: 8 pages, 6 figures, Accepted in IEEE Robotics and Automation Letters
♻ ☆ Fast and Private Inference of Deep Neural Networks by Co-designing Activation Functions USENIX Security 2024
Machine Learning as a Service (MLaaS) is an increasingly popular design where a company with abundant computing resources trains a deep neural network and offers query access for tasks like image classification. The challenge with this design is that MLaaS requires the client to reveal their potentially sensitive queries to the company hosting the model. Multi-party computation (MPC) protects the client's data by allowing encrypted inferences. However, current approaches suffer from prohibitively large inference times. The inference time bottleneck in MPC is the evaluation of non-linear layers such as ReLU activation functions. Motivated by the success of previous work co-designing machine learning and MPC, we develop an activation function co-design. We replace all ReLUs with a polynomial approximation and evaluate them with single-round MPC protocols, which give state-of-the-art inference times in wide-area networks. Furthermore, to address the accuracy issues previously encountered with polynomial activations, we propose a novel training algorithm that gives accuracy competitive with plaintext models. Our evaluation shows between $3$ and $110\times$ speedups in inference time on large models with up to $23$ million parameters while maintaining competitive inference accuracy.
comment: To appear at USENIX Security 2024
♻ ☆ Understanding the Learning Dynamics of Alignment with Human Feedback
Aligning large language models (LLMs) with human intentions has become a critical task for safely deploying models in real-world systems. While existing alignment approaches have seen empirical success, theoretically understanding how these methods affect model behavior remains an open question. Our work provides an initial attempt to theoretically analyze the learning dynamics of human preference alignment. We formally show how the distribution of preference datasets influences the rate of model updates and provide rigorous guarantees on the training accuracy. Our theory also reveals an intricate phenomenon where the optimization is prone to prioritizing certain behaviors with higher preference distinguishability. We empirically validate our findings on contemporary LLMs and alignment tasks, reinforcing our theoretical insights and shedding light on considerations for future alignment approaches. Disclaimer: This paper contains potentially offensive text; reader discretion is advised.
♻ ☆ RiemannONets: Interpretable Neural Operators for Riemann Problems
Developing the proper representations for simulating high-speed flows with strong shock waves, rarefactions, and contact discontinuities has been a long-standing question in numerical analysis. Herein, we employ neural operators to solve Riemann problems encountered in compressible flows for extreme pressure jumps (up to $10^{10}$ pressure ratio). In particular, we first consider the DeepONet that we train in a two-stage process, following the recent work of \cite{lee2023training}, wherein the first stage, a basis is extracted from the trunk net, which is orthonormalized and subsequently is used in the second stage in training the branch net. This simple modification of DeepONet has a profound effect on its accuracy, efficiency, and robustness and leads to very accurate solutions to Riemann problems compared to the vanilla version. It also enables us to interpret the results physically as the hierarchical data-driven produced basis reflects all the flow features that would otherwise be introduced using ad hoc feature expansion layers. We also compare the results with another neural operator based on the U-Net for low, intermediate, and very high-pressure ratios that are very accurate for Riemann problems, especially for large pressure ratios, due to their multiscale nature but computationally more expensive. Overall, our study demonstrates that simple neural network architectures, if properly pre-trained, can achieve very accurate solutions of Riemann problems for real-time forecasting. The source code, along with its corresponding data, can be found at the following URL: https://github.com/apey236/RiemannONet/tree/main
♻ ☆ Analyzing Explainer Robustness via Probabilistic Lipschitzness of Prediction Functions
Machine learning methods have significantly improved in their predictive capabilities, but at the same time they are becoming more complex and less transparent. As a result, explainers are often relied on to provide interpretability to these black-box prediction models. As crucial diagnostics tools, it is important that these explainers themselves are robust. In this paper we focus on one particular aspect of robustness, namely that an explainer should give similar explanations for similar data inputs. We formalize this notion by introducing and defining explainer astuteness, analogous to astuteness of prediction functions. Our formalism allows us to connect explainer robustness to the predictor's probabilistic Lipschitzness, which captures the probability of local smoothness of a function. We provide lower bound guarantees on the astuteness of a variety of explainers (e.g., SHAP, RISE, CXPlain) given the Lipschitzness of the prediction function. These theoretical results imply that locally smooth prediction functions lend themselves to locally robust explanations. We evaluate these results empirically on simulated as well as real datasets.
♻ ☆ Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning AAMAS
Existing value-based algorithms for cooperative multi-agent reinforcement learning (MARL) commonly rely on random exploration, such as $\epsilon$-greedy, to explore the environment. However, such exploration is inefficient at finding effective joint actions in states that require cooperation of multiple agents. In this work, we propose ensemble value functions for multi-agent exploration (EMAX), a general framework to seamlessly extend value-based MARL algorithms with ensembles of value functions. EMAX leverages the ensemble of value functions to guide the exploration of agents, stabilises their optimisation, and makes their policies more robust to miscoordination. These benefits are achieved by using a combination of three techniques. (1) EMAX uses the uncertainty of value estimates across the ensemble in a UCB policy to guide the exploration. This exploration policy focuses on parts of the environment which require cooperation across agents and, thus, enables agents to more efficiently learn how to cooperate. (2) During the optimisation, EMAX computes target values as average value estimates across the ensemble. These targets exhibit lower variance compared to commonly applied target networks, leading to significant benefits in MARL which commonly suffers from high variance caused by the exploration and non-stationary policies of other agents. (3) During evaluation, EMAX selects actions following a majority vote across the ensemble, which reduces the likelihood of selecting sub-optimal actions. We instantiate three value-based MARL algorithms with EMAX, independent DQN, VDN and QMIX, and evaluate them in 21 tasks across four environments. Using ensembles of five value functions, EMAX improves sample efficiency and final evaluation returns of these algorithms by 60%, 47%, and 539%, respectively, averaged across 21 tasks.
comment: Preprint. Previously presented at the Adaptive and Learning Agents Workshop (ALA) at the AAMAS conference 2023
♻ ☆ Emoji Promotes Developer Participation and Issue Resolution on GitHub AAAI
Although remote working is increasingly adopted during the pandemic, many are concerned by the low-efficiency in the remote working. Missing in text-based communication are non-verbal cues such as facial expressions and body language, which hinders the effective communication and negatively impacts the work outcomes. Prevalent on social media platforms, emojis, as alternative non-verbal cues, are gaining popularity in the virtual workspaces well. In this paper, we study how emoji usage influences developer participation and issue resolution in virtual workspaces. To this end, we collect GitHub issues for a one-year period and apply causal inference techniques to measure the causal effect of emojis on the outcome of issues, controlling for confounders such as issue content, repository, and author information. We find that emojis can significantly reduce the resolution time of issues and attract more user participation. We also compare the heterogeneous effect on different types of issues. These findings deepen our understanding of the developer communities, and they provide design implications on how to facilitate interactions and broaden developer participation.
comment: Accepted by the 18th International AAAI Conference on Web and Social Media (ICWSM 2024)
♻ ☆ Evolutionary Optimization of 1D-CNN for Non-contact Respiration Pattern Classification
In this study, we present a deep learning-based approach for time-series respiration data classification. The dataset contains regular breathing patterns as well as various forms of abnormal breathing, obtained through non-contact incoherent light-wave sensing (LWS) technology. Given the one-dimensional (1D) nature of the data, we employed a 1D convolutional neural network (1D-CNN) for classification purposes. Genetic algorithm was employed to optimize the 1D-CNN architecture to maximize classification accuracy. Addressing the computational complexity associated with training the 1D-CNN across multiple generations, we implemented transfer learning from a pre-trained model. This approach significantly reduced the computational time required for training, thereby enhancing the efficiency of the optimization process. This study contributes valuable insights into the potential applications of deep learning methodologies for enhancing respiratory anomaly detection through precise and efficient respiration classification.
comment: 7 pages, 8 figures, accepted in International Conference on Fuzzy Systems, Soft Computing, and Explainable AI (NAFIPS2024)
♻ ☆ Noncontact Respiratory Anomaly Detection Using Infrared Light-Wave Sensing
Human respiratory rate and its pattern convey essential information about the physical and psychological states of the subject. Abnormal breathing can indicate fatal health issues leading to further diagnosis and treatment. Wireless light-wave sensing (LWS) using incoherent infrared light shows promise in safe, discreet, efficient, and non-invasive human breathing monitoring without raising privacy concerns. The respiration monitoring system needs to be trained on different types of breathing patterns to identify breathing anomalies.The system must also validate the collected data as a breathing waveform, discarding any faulty data caused by external interruption, user movement, or system malfunction. To address these needs, this study simulated normal and different types of abnormal respiration using a robot that mimics human breathing patterns. Then, time-series respiration data were collected using infrared light-wave sensing technology. Three machine learning algorithms, decision tree, random forest and XGBoost, were applied to detect breathing anomalies and faulty data. Model performances were evaluated through cross-validation, assessing classification accuracy, precision and recall scores. The random forest model achieved the highest classification accuracy of 96.75% with data collected at a 0.5m distance. In general, ensemble models like random forest and XGBoost performed better than a single model in classifying the data collected at multiple distances from the light-wave sensing setup.
comment: 12 pages, 15 figures, published in IEEE Transactions on Human-Machine Systems
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. Our project is public at https://github.com/baochi0212/LaVy
comment: 5 pages
♻ ☆ Mori-Zwanzig latent space Koopman closure for nonlinear autoencoder
The Koopman operator presents an attractive approach to achieve global linearization of nonlinear systems, making it a valuable method for simplifying the understanding of complex dynamics. While data-driven methodologies have exhibited promise in approximating finite Koopman operators, they grapple with various challenges, such as the judicious selection of observables, dimensionality reduction, and the ability to predict complex system behaviors accurately. This study presents a novel approach termed Mori-Zwanzig autoencoder (MZ-AE) to robustly approximate the Koopman operator in low-dimensional spaces. The proposed method leverages a nonlinear autoencoder to extract key observables for approximating a finite invariant Koopman subspace and integrates a non-Markovian correction mechanism using the Mori-Zwanzig formalism. Consequently, this approach yields a closed representation of dynamics within the latent manifold of the nonlinear autoencoder, thereby enhancing the precision and stability of the Koopman operator approximation. Demonstrations showcase the technique's ability to capture regime transitions in the flow around a cylinder. It also provides a low dimensional approximation for Kuramoto-Sivashinsky with promising short-term predictability and robust long-term statistical performance. By bridging the gap between data-driven techniques and the mathematical foundations of Koopman theory, MZ-AE offers a promising avenue for improved understanding and prediction of complex nonlinear dynamics.
comment: 22 pages, 11 figures
♻ ☆ HOEG: A New Approach for Object-Centric Predictive Process Monitoring
Predictive Process Monitoring focuses on predicting future states of ongoing process executions, such as forecasting the remaining time. Recent developments in Object-Centric Process Mining have enriched event data with objects and their explicit relations between events. To leverage this enriched data, we propose the Heterogeneous Object Event Graph encoding (HOEG), which integrates events and objects into a graph structure with diverse node types. It does so without aggregating object features, thus creating a more nuanced and informative representation. We then adopt a heterogeneous Graph Neural Network architecture, which incorporates these diverse object features in prediction tasks. We evaluate the performance and scalability of HOEG in predicting remaining time, benchmarking it against two established graph-based encodings and two baseline models. Our evaluation uses three Object-Centric Event Logs (OCELs), including one from a real-life process at a major Dutch financial institution. The results indicate that HOEG competes well with existing models and surpasses them when OCELs contain informative object attributes and event-object interactions.
comment: accepted to 36th International Conference on Advanced Information Systems Engineering (CAISE), 2024
♻ ☆ WebArena: A Realistic Web Environment for Building Autonomous Agents
With advances in generative AI, there is now potential for autonomous agents to manage daily tasks via natural language commands. However, current agents are primarily created and tested in simplified synthetic environments, leading to a disconnect with real-world scenarios. In this paper, we build an environment for language-guided agents that is highly realistic and reproducible. Specifically, we focus on agents that perform tasks on the web, and create an environment with fully functional websites from four common domains: e-commerce, social forum discussions, collaborative software development, and content management. Our environment is enriched with tools (e.g., a map) and external knowledge bases (e.g., user manuals) to encourage human-like task-solving. Building upon our environment, we release a set of benchmark tasks focusing on evaluating the functional correctness of task completions. The tasks in our benchmark are diverse, long-horizon, and designed to emulate tasks that humans routinely perform on the internet. We experiment with several baseline agents, integrating recent techniques such as reasoning before acting. The results demonstrate that solving complex tasks is challenging: our best GPT-4-based agent only achieves an end-to-end task success rate of 14.41%, significantly lower than the human performance of 78.24%. These results highlight the need for further development of robust agents, that current state-of-the-art large language models are far from perfect performance in these real-life tasks, and that WebArena can be used to measure such progress.
comment: Our code, data, environment reproduction resources, and video demonstrations are publicly available at https://webarena.dev/
♻ ☆ Anatomy of Industrial Scale Multilingual ASR
This paper describes AssemblyAI's industrial-scale automatic speech recognition (ASR) system, designed to meet the requirements of large-scale, multilingual ASR serving various application needs. Our system leverages a diverse training dataset comprising unsupervised (12.5M hours), supervised (188k hours), and pseudo-labeled (1.6M hours) data across four languages. We provide a detailed description of our model architecture, consisting of a full-context 600M-parameter Conformer encoder pre-trained with BEST-RQ and an RNN-T decoder fine-tuned jointly with the encoder. Our extensive evaluation demonstrates competitive word error rates (WERs) against larger and more computationally expensive models, such as Whisper large and Canary-1B. Furthermore, our architectural choices yield several key advantages, including an improved code-switching capability, a 5x inference speedup compared to an optimized Whisper baseline, a 30% reduction in hallucination rate on speech data, and a 90% reduction in ambient noise compared to Whisper, along with significantly improved time-stamp accuracy. Throughout this work, we adopt a system-centric approach to analyzing various aspects of fully-fledged ASR models to gain practically relevant insights useful for real-world services operating at scale.
♻ ☆ A Systematic Review of Low-Rank and Local Low-Rank Matrix Approximation in Big Data Medical Imaging
The large volume and complexity of medical imaging datasets are bottlenecks for storage, transmission, and processing. To tackle these challenges, the application of low-rank matrix approximation (LRMA) and its derivative, local LRMA (LLRMA) has demonstrated potential. A detailed analysis of the literature identifies LRMA and LLRMA methods applied to various imaging modalities, and the challenges and limitations associated with existing LRMA and LLRMA methods are addressed. We note a significant shift towards a preference for LLRMA in the medical imaging field since 2015, demonstrating its potential and effectiveness in capturing complex structures in medical data compared to LRMA. Acknowledging the limitations of shallow similarity methods used with LLRMA, we suggest advanced semantic image segmentation for similarity measure, explaining in detail how it can measure similar patches and their feasibility. We note that LRMA and LLRMA are mainly applied to unstructured medical data, and we propose extending their application to different medical data types, including structured and semi-structured. This paper also discusses how LRMA and LLRMA can be applied to regular data with missing entries and the impact of inaccuracies in predicting missing values and their effects. We discuss the impact of patch size and propose the use of random search (RS) to determine the optimal patch size. To enhance feasibility, a hybrid approach using Bayesian optimization and RS is proposed, which could improve the application of LRMA and LLRMA in medical imaging.
♻ ☆ E3: Ensemble of Expert Embedders for Adapting Synthetic Image Detectors to New Generators Using Limited Data CVPR
As generative AI progresses rapidly, new synthetic image generators continue to emerge at a swift pace. Traditional detection methods face two main challenges in adapting to these generators: the forensic traces of synthetic images from new techniques can vastly differ from those learned during training, and access to data for these new generators is often limited. To address these issues, we introduce the Ensemble of Expert Embedders (E3), a novel continual learning framework for updating synthetic image detectors. E3 enables the accurate detection of images from newly emerged generators using minimal training data. Our approach does this by first employing transfer learning to develop a suite of expert embedders, each specializing in the forensic traces of a specific generator. Then, all embeddings are jointly analyzed by an Expert Knowledge Fusion Network to produce accurate and reliable detection decisions. Our experiments demonstrate that E3 outperforms existing continual learning methods, including those developed specifically for synthetic image detection.
comment: 11 pages, 4 figures, To be published in CVPRWMF24
♻ ☆ DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning
Text-to-image diffusion models have been shown to suffer from sample-level memorization, possibly reproducing near-perfect replica of images that they are trained on, which may be undesirable. To remedy this issue, we develop the first differentially private (DP) retrieval-augmented generation algorithm that is capable of generating high-quality image samples while providing provable privacy guarantees. Specifically, we assume access to a text-to-image diffusion model trained on a small amount of public data, and design a DP retrieval mechanism to augment the text prompt with samples retrieved from a private retrieval dataset. Our \emph{differentially private retrieval-augmented diffusion model} (DP-RDM) requires no fine-tuning on the retrieval dataset to adapt to another domain, and can use state-of-the-art generative models to generate high-quality image samples while satisfying rigorous DP guarantees. For instance, when evaluated on MS-COCO, our DP-RDM can generate samples with a privacy budget of $\epsilon=10$, while providing a $3.5$ point improvement in FID compared to public-only retrieval for up to $10,000$ queries.
♻ ☆ A Framework for Interpretability in Machine Learning for Medical Imaging
Interpretability for machine learning models in medical imaging (MLMI) is an important direction of research. However, there is a general sense of murkiness in what interpretability means. Why does the need for interpretability in MLMI arise? What goals does one actually seek to address when interpretability is needed? To answer these questions, we identify a need to formalize the goals and elements of interpretability in MLMI. By reasoning about real-world tasks and goals common in both medical image analysis and its intersection with machine learning, we identify five core elements of interpretability: localization, visual recognizability, physical attribution, model transparency, and actionability. From this, we arrive at a framework for interpretability in MLMI, which serves as a step-by-step guide to approaching interpretability in this context. Overall, this paper formalizes interpretability needs in the context of medical imaging, and our applied perspective clarifies concrete MLMI-specific goals and considerations in order to guide method design and improve real-world usage. Our goal is to provide practical and didactic information for model designers and practitioners, inspire developers of models in the medical imaging field to reason more deeply about what interpretability is achieving, and suggest future directions of interpretability research.
comment: Published in IEEE Access
♻ ☆ Deep Video Codec Control for Vision Models CVPR 2024
Standardized lossy video coding is at the core of almost all real-world video processing pipelines. Rate control is used to enable standard codecs to adapt to different network bandwidth conditions or storage constraints. However, standard video codecs (e.g., H.264) and their rate control modules aim to minimize video distortion w.r.t. human quality assessment. We demonstrate empirically that standard-coded videos vastly deteriorate the performance of deep vision models. To overcome the deterioration of vision performance, this paper presents the first end-to-end learnable deep video codec control that considers both bandwidth constraints and downstream deep vision performance, while adhering to existing standardization. We demonstrate that our approach better preserves downstream deep vision performance than traditional standard video coding.
comment: Accepted at CVPR 2024 Workshop on AI for Streaming (AIS)
♻ ☆ Sharp error bounds for imbalanced classification: how many examples in the minority class?
When dealing with imbalanced classification data, reweighting the loss function is a standard procedure allowing to equilibrate between the true positive and true negative rates within the risk measure. Despite significant theoretical work in this area, existing results do not adequately address a main challenge within the imbalanced classification framework, which is the negligible size of one class in relation to the full sample size and the need to rescale the risk function by a probability tending to zero. To address this gap, we present two novel contributions in the setting where the rare class probability approaches zero: (1) a non asymptotic fast rate probability bound for constrained balanced empirical risk minimization, and (2) a consistent upper bound for balanced nearest neighbors estimates. Our findings provide a clearer understanding of the benefits of class-weighting in realistic settings, opening new avenues for further research in this field.
♻ ☆ Regularization by Texts for Latent Diffusion Inverse Solvers
The recent advent of diffusion models has led to significant progress in solving inverse problems, leveraging these models as effective generative priors. Nonetheless, there remain challenges related to the ill-posed nature of such problems, often due to inherent ambiguities in measurements or intrinsic system symmetries. To address this, drawing inspiration from the human ability to resolve visual ambiguities through perceptual biases, here we introduce a novel latent diffusion inverse solver by regularization by texts (TReg). Specifically, TReg applies the textual description of the preconception of the solution during the reverse diffusion sampling, of which the description is dynamically reinforced through null-text optimization for adaptive negation. Our comprehensive experimental results demonstrate that TReg successfully mitigates ambiguity in the inverse problems, enhancing their effectiveness and accuracy.
♻ ☆ Fossil 2.0: Formal Certificate Synthesis for the Verification and Control of Dynamical Models SC
This paper presents Fossil 2.0, a new major release of a software tool for the synthesis of certificates (e.g., Lyapunov and barrier functions) for dynamical systems modelled as ordinary differential and difference equations. Fossil 2.0 is much improved from its original release, including new interfaces, a significantly expanded certificate portfolio, controller synthesis and enhanced extensibility. We present these new features as part of this tool paper. Fossil implements a counterexample-guided inductive synthesis (CEGIS) loop ensuring the soundness of the method. Our tool uses neural networks as templates to generate candidate functions, which are then formally proven by an SMT solver acting as an assertion verifier. Improvements with respect to the first release include a wider range of certificates, synthesis of control laws, and support for discrete-time models.
comment: HSCC 2024 Tool Paper
♻ ☆ VFLAIR: A Research Library and Benchmark for Vertical Federated Learning
Vertical Federated Learning (VFL) has emerged as a collaborative training paradigm that allows participants with different features of the same group of users to accomplish cooperative training without exposing their raw data or model parameters. VFL has gained significant attention for its research potential and real-world applications in recent years, but still faces substantial challenges, such as in defending various kinds of data inference and backdoor attacks. Moreover, most of existing VFL projects are industry-facing and not easily used for keeping track of the current research progress. To address this need, we present an extensible and lightweight VFL framework VFLAIR (available at https://github.com/FLAIR-THU/VFLAIR), which supports VFL training with a variety of models, datasets and protocols, along with standardized modules for comprehensive evaluations of attacks and defense strategies. We also benchmark 11 attacks and 8 defenses performance under different communication and model partition settings and draw concrete insights and recommendations on the choice of defense strategies for different practical VFL deployment scenarios.
comment: 39 pages, 22 figures, 19 tabels
♻ ☆ Rotate to Scan: UNet-like Mamba with Triplet SSM Module for Medical Image Segmentation
Image segmentation holds a vital position in the realms of diagnosis and treatment within the medical domain. Traditional convolutional neural networks (CNNs) and Transformer models have made significant advancements in this realm, but they still encounter challenges because of limited receptive field or high computing complexity. Recently, State Space Models (SSMs), particularly Mamba and its variants, have demonstrated notable performance in the field of vision. However, their feature extraction methods may not be sufficiently effective and retain some redundant structures, leaving room for parameter reduction. Motivated by previous spatial and channel attention methods, we propose Triplet Mamba-UNet. The method leverages residual VSS Blocks to extract intensive contextual features, while Triplet SSM is employed to fuse features across spatial and channel dimensions. We conducted experiments on ISIC17, ISIC18, CVC-300, CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, and Kvasir-Instrument datasets, demonstrating the superior segmentation performance of our proposed TM-UNet. Additionally, compared to the previous VM-UNet, our model achieves a one-third reduction in parameters.
♻ ☆ Instabilities in Convnets for Raw Audio SP
What makes waveform-based deep learning so hard? Despite numerous attempts at training convolutional neural networks (convnets) for filterbank design, they often fail to outperform hand-crafted baselines. These baselines are linear time-invariant systems: as such, they can be approximated by convnets with wide receptive fields. Yet, in practice, gradient-based optimization leads to suboptimal approximations. In our article, we approach this phenomenon from the perspective of initialization. We present a theory of large deviations for the energy response of FIR filterbanks with random Gaussian weights. We find that deviations worsen for large filters and locally periodic input signals, which are both typical for audio signal processing applications. Numerical simulations align with our theory and suggest that the condition number of a convolutional layer follows a logarithmic scaling law between the number and length of the filters, which is reminiscent of discrete wavelet bases.
comment: 4 pages, 5 figures, 1 page appendix, published in IEEE SPL
♻ ☆ A Systematic Review of Aspect-based Sentiment Analysis (ABSA): Domains, Methods, and Trends
Aspect-based Sentiment Analysis (ABSA) is a fine-grained type of sentiment analysis that identifies aspects and their associated opinions from a given text. With the surge of digital opinionated text data, ABSA gained increasing popularity for its ability to mine more detailed and targeted insights. Many review papers on ABSA subtasks and solution methodologies exist, however, few focus on trends over time or systemic issues relating to research application domains, datasets, and solution approaches. To fill the gap, this paper presents a Systematic Literature Review (SLR) of ABSA studies with a focus on trends and high-level relationships among these fundamental components. This review is one of the largest SLRs on ABSA, and also, to our knowledge, the first that systematically examines the trends and inter-relations among ABSA research and data distribution across domains and solution paradigms and approaches. Our sample includes 519 primary studies screened from 4191 search results without time constraints via an innovative automatic filtering process. Our quantitative analysis not only identifies trends in nearly two decades of ABSA research development but also unveils a systemic lack of dataset and domain diversity as well as domain mismatch that may hinder the development of future ABSA research. We discuss these findings and their implications and propose suggestions for future research.
♻ ☆ Minerva: A File-Based Ransomware Detector
Ransomware attacks have caused billions of dollars in damages in recent years, and are expected to cause billions more in the future. Consequently, significant effort has been devoted to ransomware detection and mitigation. Behavioral-based ransomware detection approaches have garnered considerable attention recently. These behavioral detectors typically rely on process-based behavioral profiles to identify malicious behaviors. However, with an increasing body of literature highlighting the vulnerability of such approaches to evasion attacks, a comprehensive solution to the ransomware problem remains elusive. This paper presents Minerva, a novel robust approach to ransomware detection. Minerva is engineered to be robust by design against evasion attacks, with architectural and feature selection choices informed by their resilience to adversarial manipulation. We conduct a comprehensive analysis of Minerva across a diverse spectrum of ransomware types, encompassing unseen ransomware as well as variants designed specifically to evade Minerva. Our evaluation showcases the ability of Minerva to accurately identify ransomware, generalize to unseen threats, and withstand evasion attacks. Furthermore, Minerva achieves remarkably low detection times, enabling the adoption of data loss prevention techniques with near-zero overhead.
comment: 14 pages
♻ ☆ On Training Data Influence of GPT Models
Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
♻ ☆ Mind-to-Image: Projecting Visual Mental Imagination of the Brain from fMRI
The reconstruction of images observed by subjects from fMRI data collected during visual stimuli has made significant strides in the past decade, thanks to the availability of extensive fMRI datasets and advancements in generative models for image generation. However, the application of visual reconstruction has remained limited. Reconstructing visual imagination presents a greater challenge, with potentially revolutionary applications ranging from aiding individuals with disabilities to verifying witness accounts in court. The primary hurdles in this field are the absence of data collection protocols for visual imagery and the lack of datasets on the subject. Traditionally, fMRI-to-image relies on data collected from subjects exposed to visual stimuli, which poses issues for generating visual imagery based on the difference of brain activity between visual stimulation and visual imagery. For the first time, we have compiled a substantial dataset (around 6h of scans) on visual imagery along with a proposed data collection protocol. We then train a modified version of an fMRI-to-image model and demonstrate the feasibility of reconstructing images from two modes of imagination: from memory and from pure imagination. This marks an important step towards creating a technology that allow direct reconstruction of visual imagery.
comment: Pre-print to be updated. Work in progress
♻ ☆ Incentivising the federation: gradient-based metrics for data selection and valuation in private decentralised training
Obtaining high-quality data for collaborative training of machine learning models can be a challenging task due to A) regulatory concerns and B) a lack of data owner incentives to participate. The first issue can be addressed through the combination of distributed machine learning techniques (e.g. federated learning) and privacy enhancing technologies (PET), such as the differentially private (DP) model training. The second challenge can be addressed by rewarding the participants for giving access to data which is beneficial to the training model, which is of particular importance in federated settings, where the data is unevenly distributed. However, DP noise can adversely affect the underrepresented and the atypical (yet often informative) data samples, making it difficult to assess their usefulness. In this work, we investigate how to leverage gradient information to permit the participants of private training settings to select the data most beneficial for the jointly trained model. We assess two such methods, namely variance of gradients (VoG) and the privacy loss-input susceptibility score (PLIS). We show that these techniques can provide the federated clients with tools for principled data selection even in stricter privacy settings.
comment: Accepted at EICC 2024
♻ ☆ Emerging Platforms Meet Emerging LLMs: A Year-Long Journey of Top-Down Development
Deploying machine learning (ML) on diverse computing platforms is crucial to accelerate and broaden their applications. However, it presents significant software engineering challenges due to the fast evolution of models, especially the recent Large Language Models (LLMs), and the emergence of new computing platforms. Current ML frameworks are primarily engineered for CPU and CUDA platforms, leaving a big gap in enabling emerging ones like Metal, Vulkan, and WebGPU. While a traditional bottom-up development pipeline fails to close the gap timely, we introduce TapML, a top-down approach and tooling designed to streamline the deployment of ML systems on diverse platforms, optimized for developer productivity. Unlike traditional bottom-up methods, which involve extensive manual testing and debugging, TapML automates unit testing through test carving and adopts a migration-based strategy for gradually offloading model computations from mature source platforms to emerging target platforms. By leveraging realistic inputs and remote connections for gradual target offloading, TapML accelerates the validation and minimizes debugging scopes, significantly optimizing development efforts. TapML was developed and applied through a year-long, real-world effort that successfully deployed significant emerging models and platforms. Through serious deployments of 82 emerging models in 17 distinct architectures across 5 emerging platforms, we showcase the effectiveness of TapML in enhancing developer productivity while ensuring model reliability and efficiency. Furthermore, we summarize comprehensive case studies from our real-world development, offering best practices for developing emerging ML systems.
♻ ☆ Manifold Gaussian Variational Bayes on the Precision Matrix
We propose an optimization algorithm for Variational Inference (VI) in complex models. Our approach relies on natural gradient updates where the variational space is a Riemann manifold. We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix. Our Manifold Gaussian Variational Bayes on the Precision matrix (MGVBP) solution provides simple update rules, is straightforward to implement, and the use of the precision matrix parametrization has a significant computational advantage. Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models. Over five datasets, we empirically validate our feasible approach on different statistical and econometric models, discussing its performance with respect to baseline methods.
♻ ☆ Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States
As control engineering methods are applied to increasingly complex systems, data-driven approaches for system identification appear as a promising alternative to physics-based modeling. While the Bayesian approaches prevalent for safety-critical applications usually rely on the availability of state measurements, the states of a complex system are often not directly measurable. It may then be necessary to jointly estimate the dynamics and the latent state, making the quantification of uncertainties and the design of controllers with formal performance guarantees considerably more challenging. This paper proposes a novel method for the computation of an optimal input trajectory for unknown nonlinear systems with latent states based on a combination of particle Markov chain Monte Carlo methods and scenario theory. Probabilistic performance guarantees are derived for the resulting input trajectory, and an approach to validate the performance of arbitrary control laws is presented. The effectiveness of the proposed method is demonstrated in a numerical simulation.
comment: Accepted version submitted to the 22nd European Control Conference
♻ ☆ Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding
This research aims to accelerate the inference speed of large language models (LLMs) with billions of parameters. We propose \textbf{S}mart \textbf{P}arallel \textbf{A}uto-\textbf{C}orrect d\textbf{E}coding (SPACE), an innovative approach designed for achieving lossless acceleration of LLMs. By integrating semi-autoregressive inference and speculative decoding capabilities, SPACE uniquely enables autoregressive LLMs to parallelize token generation and verification. This is realized through a specialized semi-autoregressive supervised fine-tuning process that equips existing LLMs with the ability to simultaneously predict multiple tokens. Additionally, an auto-correct decoding algorithm facilitates the simultaneous generation and verification of token sequences within a single model invocation. Through extensive experiments on a range of LLMs, SPACE has demonstrated inference speedup ranging from 2.7x-4.0x on HumanEval-X while maintaining output quality.
♻ ☆ Neuron-centric Hebbian Learning GECCO 2024
One of the most striking capabilities behind the learning mechanisms of the brain is the adaptation, through structural and functional plasticity, of its synapses. While synapses have the fundamental role of transmitting information across the brain, several studies show that it is the neuron activations that produce changes on synapses. Yet, most plasticity models devised for artificial Neural Networks (NNs), e.g., the ABCD rule, focus on synapses, rather than neurons, therefore optimizing synaptic-specific Hebbian parameters. This approach, however, increases the complexity of the optimization process since each synapse is associated to multiple Hebbian parameters. To overcome this limitation, we propose a novel plasticity model, called Neuron-centric Hebbian Learning (NcHL), where optimization focuses on neuron- rather than synaptic-specific Hebbian parameters. Compared to the ABCD rule, NcHL reduces the parameters from $5W$ to $5N$, being $W$ and $N$ the number of weights and neurons, and usually $N \ll W$. We also devise a ``weightless'' NcHL model, which requires less memory by approximating the weights based on a record of neuron activations. Our experiments on two robotic locomotion tasks reveal that NcHL performs comparably to the ABCD rule, despite using up to $\sim97$ times less parameters, thus allowing for scalable plasticity
comment: Accepted at Genetic and Evolutionary Computation Conference (GECCO 2024)
♻ ☆ Large Language User Interfaces: Voice Interactive User Interfaces powered by LLMs
The evolution of Large Language Models (LLMs) has showcased remarkable capacities for logical reasoning and natural language comprehension. These capabilities can be leveraged in solutions that semantically and textually model complex problems. In this paper, we present our efforts toward constructing a framework that can serve as an intermediary between a user and their user interface (UI), enabling dynamic and real-time interactions. We employ a system that stands upon textual semantic mappings of UI components, in the form of annotations. These mappings are stored, parsed, and scaled in a custom data structure, supplementary to an agent-based prompting backend engine. Employing textual semantic mappings allows each component to not only explain its role to the engine but also provide expectations. By comprehending the needs of both the user and the components, our LLM engine can classify the most appropriate application, extract relevant parameters, and subsequently execute precise predictions of the user's expected actions. Such an integration evolves static user interfaces into highly dynamic and adaptable solutions, introducing a new frontier of intelligent and responsive user experiences.
comment: Accepted as peer-reviewed publication
♻ ☆ Topic-based Watermarks for LLM-Generated Text
Recent advancements of large language models (LLMs) have resulted in indistinguishable text outputs comparable to human-generated text. Watermarking algorithms are potential tools that offer a way to differentiate between LLM- and human-generated text by embedding detectable signatures within LLM-generated output. However, current watermarking schemes lack robustness against known attacks against watermarking algorithms. In addition, they are impractical considering an LLM generates tens of thousands of text outputs per day and the watermarking algorithm needs to memorize each output it generates for the detection to work. In this work, focusing on the limitations of current watermarking schemes, we propose the concept of a "topic-based watermarking algorithm" for LLMs. The proposed algorithm determines how to generate tokens for the watermarked LLM output based on extracted topics of an input prompt or the output of a non-watermarked LLM. Inspired from previous work, we propose using a pair of lists (that are generated based on the specified extracted topic(s)) that specify certain tokens to be included or excluded while generating the watermarked output of the LLM. Using the proposed watermarking algorithm, we show the practicality of a watermark detection algorithm. Furthermore, we discuss a wide range of attacks that can emerge against watermarking algorithms for LLMs and the benefit of the proposed watermarking scheme for the feasibility of modeling a potential attacker considering its benefit vs. loss.
comment: 11 pages
♻ ☆ Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length
The quadratic complexity and weak length extrapolation of Transformers limits their ability to scale to long sequences, and while sub-quadratic solutions like linear attention and state space models exist, they empirically underperform Transformers in pretraining efficiency and downstream task accuracy. We introduce Megalodon, a neural architecture for efficient sequence modeling with unlimited context length. Megalodon inherits the architecture of Mega (exponential moving average with gated attention), and further introduces multiple technical components to improve its capability and stability, including complex exponential moving average (CEMA), timestep normalization layer, normalized attention mechanism and pre-norm with two-hop residual configuration. In a controlled head-to-head comparison with Llama2, Megalodon achieves better efficiency than Transformer in the scale of 7 billion parameters and 2 trillion training tokens. Megalodon reaches a training loss of 1.70, landing mid-way between Llama2-7B (1.75) and 13B (1.67). Code: https://github.com/XuezheMax/megalodon
comment: 9 pages, 6 figures and 8 tables
♻ ☆ Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems
Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian belief propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages in a graphical model structure. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach is suited to distributed computing and can efficiently handle complex dependence structures. GEnBP is particularly advantageous when the ensemble size is considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including jointly learning system parameters, observation parameters, and latent state variables.
comment: Under conference submission
♻ ☆ Atom: Low-bit Quantization for Efficient and Accurate LLM Serving
The growing demand for Large Language Models (LLMs) in applications such as content generation, intelligent chatbots, and sentiment analysis poses considerable challenges for LLM service providers. To efficiently use GPU resources and boost throughput, batching multiple requests has emerged as a popular paradigm; to further speed up batching, LLM quantization techniques reduce memory consumption and increase computing capacity. However, prevalent quantization schemes (e.g., 8-bit weight-activation quantization) cannot fully leverage the capabilities of modern GPUs, such as 4-bit integer operators, resulting in sub-optimal performance. To maximize LLMs' serving throughput, we introduce Atom, a low-bit quantization method that achieves high throughput improvements with negligible accuracy loss. Atom significantly boosts serving throughput by using low-bit operators and considerably reduces memory consumption via low-bit quantization. It attains high accuracy by applying a novel mixed-precision and fine-grained quantization process. We evaluate Atom on 4-bit weight-activation quantization in the serving context. Atom improves end-to-end throughput (token/s) by up to $7.7\times$ compared to the FP16 and by $2.5\times$ compared to INT8 quantization, while maintaining the same latency target.
♻ ☆ Human-in-the-Loop Segmentation of Multi-species Coral Imagery CVPR2024
Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery, however it is costly and time-consuming for domain experts to label images. Point label propagation is an approach used to leverage existing image data labeled with sparse point labels. The resulting augmented ground truth generated is then used to train a semantic segmentation model. Here, we first demonstrate that recent advances in foundation models enable generation of multi-species coral augmented ground truth masks using denoised DINOv2 features and K-Nearest Neighbors (KNN), without the need for any pre-training or custom-designed algorithms. For extremely sparsely labeled images, we propose a labeling regime based on human-in-the-loop principles, resulting in significant improvement in annotation efficiency: If only 5 point labels per image are available, our proposed human-in-the-loop approach improves on the state-of-the-art by 17.3% for pixel accuracy and 22.6% for mIoU; and by 10.6% and 19.1% when 10 point labels per image are available. Even if the human-in-the-loop labeling regime is not used, the denoised DINOv2 features with a KNN outperforms the prior state-of-the-art by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points). We also provide a detailed analysis of how point labeling style and the quantity of points per image affects the point label propagation quality and provide general recommendations on maximizing point label efficiency.
comment: Accepted at the CVPR2024 3rd Workshop on Learning with Limited Labelled Data for Image and Video Understanding (L3D-IVU), 10 pages, 6 figures, an additional 4 pages of supplementary material
♻ ☆ Evaluating Large Language Models at Evaluating Instruction Following ICLR 2024
As research in large language models (LLMs) continues to accelerate, LLM-based evaluation has emerged as a scalable and cost-effective alternative to human evaluations for comparing the ever increasing list of models. This paper investigates the efficacy of these ``LLM evaluators'', particularly in using them to assess instruction following, a metric that gauges how closely generated text adheres to the given instruction. We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs. The authors manually curated 419 pairs of outputs, one adhering to instructions while the other diverging, yet may possess deceptive qualities that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs and prompts) exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement. We also present a novel suite of prompting strategies that further close the gap between LLM and human evaluators. With LLMBar, we hope to offer more insight into LLM evaluators and foster future research in developing better instruction-following models.
comment: ICLR 2024
♻ ☆ DE-HNN: An effective neural model for Circuit Netlist representation
The run-time for optimization tools used in chip design has grown with the complexity of designs to the point where it can take several days to go through one design cycle which has become a bottleneck. Designers want fast tools that can quickly give feedback on a design. Using the input and output data of the tools from past designs, one can attempt to build a machine learning model that predicts the outcome of a design in significantly shorter time than running the tool. The accuracy of such models is affected by the representation of the design data, which is usually a netlist that describes the elements of the digital circuit and how they are connected. Graph representations for the netlist together with graph neural networks have been investigated for such models. However, the characteristics of netlists pose several challenges for existing graph learning frameworks, due to the large number of nodes and the importance of long-range interactions between nodes. To address these challenges, we represent the netlist as a directed hypergraph and propose a Directional Equivariant Hypergraph Neural Network (DE-HNN) for the effective learning of (directed) hypergraphs. Theoretically, we show that our DE-HNN can universally approximate any node or hyperedge based function that satisfies certain permutation equivariant and invariant properties natural for directed hypergraphs. We compare the proposed DE-HNN with several State-of-the-art (SOTA) machine learning models for (hyper)graphs and netlists, and show that the DE-HNN significantly outperforms them in predicting the outcome of optimized place-and-route tools directly from the input netlists. Our source code and the netlists data used are publicly available at https://github.com/YusuLab/chips.git
♻ ☆ Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs
Heterogeneous graph few-shot learning (HGFL) has been developed to address the label sparsity issue in heterogeneous graphs (HGs), which consist of various types of nodes and edges. The core concept of HGFL is to extract knowledge from rich-labeled classes in a source HG, transfer this knowledge to a target HG to facilitate learning new classes with few-labeled training data, and finally make predictions on unlabeled testing data. Existing methods typically assume that the source HG, training data, and testing data all share the same distribution. However, in practice, distribution shifts among these three types of data are inevitable due to two reasons: (1) the limited availability of the source HG that matches the target HG distribution, and (2) the unpredictable data generation mechanism of the target HG. Such distribution shifts result in ineffective knowledge transfer and poor learning performance in existing methods, thereby leading to a novel problem of out-of-distribution (OOD) generalization in HGFL. To address this challenging problem, we propose a novel Causal OOD Heterogeneous graph Few-shot learning model, namely COHF. In COHF, we first characterize distribution shifts in HGs with a structural causal model, establishing an invariance principle for OOD generalization in HGFL. Then, following this invariance principle, we propose a new variational autoencoder-based heterogeneous graph neural network to mitigate the impact of distribution shifts. Finally, by integrating this network with a novel meta-learning framework, COHF effectively transfers knowledge to the target HG to predict new classes with few-labeled data. Extensive experiments on seven real-world datasets have demonstrated the superior performance of COHF over the state-of-the-art methods.
♻ ☆ Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling
Traffic congestion at intersections is a significant issue in urban areas, leading to increased commute times, safety hazards, and operational inefficiencies. This study aims to develop a predictive model for congestion at intersections in major U.S. cities, utilizing a dataset of trip-logging metrics from commercial vehicles across 4,800 intersections. The dataset encompasses 27 features, including intersection coordinates, street names, time of day, and traffic metrics (Kashyap et al., 2019). Additional features, such as rainfall/snowfall percentage, distance from downtown and outskirts, and road types, were incorporated to enhance the model's predictive power. The methodology involves data exploration, feature transformation, and handling missing values through low-rank models and label encoding. The proposed model has the potential to assist city planners and governments in anticipating traffic hot spots, optimizing operations, and identifying infrastructure challenges.
♻ ☆ Laissez-Faire Harms: Algorithmic Biases in Generative Language Models
The rapid deployment of generative language models (LMs) has raised concerns about social biases affecting the well-being of diverse consumers. The extant literature on generative LMs has primarily examined bias via explicit identity prompting. However, prior research on bias in earlier language-based technology platforms, including search engines, has shown that discrimination can occur even when identity terms are not specified explicitly. Studies of bias in LM responses to open-ended prompts (where identity classifications are left unspecified) are lacking and have not yet been grounded in end-consumer harms. Here, we advance studies of generative LM bias by considering a broader set of natural use cases via open-ended prompting. In this "laissez-faire" setting, we find that synthetically generated texts from five of the most pervasive LMs (ChatGPT3.5, ChatGPT4, Claude2.0, Llama2, and PaLM2) perpetuate harms of omission, subordination, and stereotyping for minoritized individuals with intersectional race, gender, and/or sexual orientation identities (AI/AN, Asian, Black, Latine, MENA, NH/PI, Female, Non-binary, Queer). We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs that portray their identities in a subordinated manner compared to representative or empowering portrayals. We also document a prevalence of stereotypes (e.g. perpetual foreigner) in LM-generated outputs that are known to trigger psychological harms that disproportionately affect minoritized individuals. These include stereotype threat, which leads to impaired cognitive performance and increased negative self-perception. Our findings highlight the urgent need to protect consumers from discriminatory harms caused by language models and invest in critical AI education programs tailored towards empowering diverse consumers.
comment: 16 pages (43 if including supplementals), 8 figures (23 if including supplementals)
♻ ☆ Predicting the Geothermal Gradient in Colombia: a Machine Learning Approach
Accurate determination of the geothermal gradient is critical for assessing the geothermal energy potential of a given region. Of particular interest is the case of Colombia, a country with abundant geothermal resources. A history of active oil and gas exploration and production has left drilled boreholes in different geological settings, providing direct measurements of the geothermal gradient. Unfortunately, large regions of the country where geothermal resources might exist lack such measurements. Indirect geophysical measurements are costly and difficult to perform at regional scales. Computational thermal models could be constructed, but they require very detailed knowledge of the underlying geology and uniform sampling of subsurface temperatures to be well-constrained. We present an alternative approach that leverages recent advances in supervised machine learning and available direct measurements to predict the geothermal gradient in regions where only global-scale geophysical datasets and course geological knowledge are available. We find that a Gradient Boosted Regression Tree algorithm yields optimal predictions and extensively validate the trained model. We show that predictions of our model are within 12\% accuracy and that independent measurements performed by other authors agree well with our model. Finnally, we present a geothermal gradient map for Colombia that highlights regions where futher exploration and data collection should be performed.
comment: This is the version we re-submitted to the journal after addressing all the peer review requirements
♻ ☆ Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study ICMR'24
The innovative Federated Multi-Task Learning (FMTL) approach consolidates the benefits of Federated Learning (FL) and Multi-Task Learning (MTL), enabling collaborative model training on multi-task learning datasets. However, a comprehensive evaluation method, integrating the unique features of both FL and MTL, is currently absent in the field. This paper fills this void by introducing a novel framework, FMTL-Bench, for systematic evaluation of the FMTL paradigm. This benchmark covers various aspects at the data, model, and optimization algorithm levels, and comprises seven sets of comparative experiments, encapsulating a wide array of non-independent and identically distributed (Non-IID) data partitioning scenarios. We propose a systematic process for comparing baselines of diverse indicators and conduct a case study on communication expenditure, time, and energy consumption. Through our exhaustive experiments, we aim to provide valuable insights into the strengths and limitations of existing baseline methods, contributing to the ongoing discourse on optimal FMTL application in practical scenarios. The source code can be found on https://github.com/youngfish42/FMTL-Benchmark .
comment: Accepted by ICMR'24
♻ ☆ Automatic Macro Mining from Interaction Traces at Scale
Macros are building block tasks of our everyday smartphone activity (e.g., "login", or "booking a flight"). Effectively extracting macros is important for understanding mobile interaction and enabling task automation. These macros are however difficult to extract at scale as they can be comprised of multiple steps yet hidden within programmatic components of mobile apps. In this paper, we introduce a novel approach based on Large Language Models (LLMs) to automatically extract semantically meaningful macros from both random and user-curated mobile interaction traces. The macros produced by our approach are automatically tagged with natural language descriptions and are fully executable. We conduct multiple studies to validate the quality of extracted macros, including user evaluation, comparative analysis against human-curated tasks, and automatic execution of these macros. These experiments and analyses show the effectiveness of our approach and the usefulness of extracted macros in various downstream applications.
comment: Accepted to CHI 2024
♻ ☆ Attention-based Shape-Deformation Networks for Artifact-Free Geometry Reconstruction of Lumbar Spine from MR Images
Lumbar disc degeneration, a progressive structural wear and tear of lumbar intervertebral disc, is regarded as an essential role on low back pain, a significant global health concern. Automated lumbar spine geometry reconstruction from MR images will enable fast measurement of medical parameters to evaluate the lumbar status, in order to determine a suitable treatment. Existing image segmentation-based techniques often generate erroneous segments or unstructured point clouds, unsuitable for medical parameter measurement. In this work, we present TransDeformer: a novel attention-based deep learning approach that reconstructs the geometry of the lumbar spine with high spatial accuracy and mesh correspondence across patients, and we also present a variant of TransDeformer for error estimation. Specially, we devise new attention modules with a new attention formula, which integrate image features and tokenized contour features to predict the displacements of the points on a shape template without the need for image segmentation. The deformed template reveals the lumbar spine geometry in an image. Experiment results show that our TransDeformer generates artifact-free geometry outputs, and its variant predicts the error of a reconstructed geometry. Our code is available at https://github.com/linchenq/TransDeformer-Mesh.
♻ ☆ The Marginal Value of Momentum for Small Learning Rate SGD
Momentum is known to accelerate the convergence of gradient descent in strongly convex settings without stochastic gradient noise. In stochastic optimization, such as training neural networks, folklore suggests that momentum may help deep learning optimization by reducing the variance of the stochastic gradient update, but previous theoretical analyses do not find momentum to offer any provable acceleration. Theoretical results in this paper clarify the role of momentum in stochastic settings where the learning rate is small and gradient noise is the dominant source of instability, suggesting that SGD with and without momentum behave similarly in the short and long time horizons. Experiments show that momentum indeed has limited benefits for both optimization and generalization in practical training regimes where the optimal learning rate is not very large, including small- to medium-batch training from scratch on ImageNet and fine-tuning language models on downstream tasks.
♻ ☆ APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
Large Language Models (LLMs) have greatly advanced the natural language processing paradigm. However, the high computational load and huge model sizes pose a grand challenge for deployment on edge devices. To this end, we propose APTQ (Attention-aware Post-Training Mixed-Precision Quantization) for LLMs, which considers not only the second-order information of each layer's weights, but also, for the first time, the nonlinear effect of attention outputs on the entire model. We leverage the Hessian trace as a sensitivity metric for mixed-precision quantization, ensuring an informed precision reduction that retains model performance. Experiments show APTQ surpasses previous quantization methods, achieving an average of 4 bit width a 5.22 perplexity nearly equivalent to full precision in the C4 dataset. In addition, APTQ attains state-of-the-art zero-shot accuracy of 68.24\% and 70.48\% at an average bitwidth of 3.8 in LLaMa-7B and LLaMa-13B, respectively, demonstrating its effectiveness to produce high-quality quantized LLMs.
comment: 6 pages, 2 figures, published to DAC 2024: 61st IEEE/ACM Design Automation Conference. (DAC'24)
♻ ☆ Towards Understanding Variants of Invariant Risk Minimization through the Lens of Calibration
Machine learning models traditionally assume that training and test data are independently and identically distributed. However, in real-world applications, the test distribution often differs from training. This problem, known as out-of-distribution generalization, challenges conventional models. Invariant Risk Minimization (IRM) emerges as a solution, aiming to identify features invariant across different environments to enhance out-of-distribution robustness. However, IRM's complexity, particularly its bi-level optimization, has led to the development of various approximate methods. Our study investigates these approximate IRM techniques, employing the Expected Calibration Error (ECE) as a key metric. ECE, which measures the reliability of model prediction, serves as an indicator of whether models effectively capture environment-invariant features. Through a comparative analysis of datasets with distributional shifts, we observe that Information Bottleneck-based IRM, which condenses representational information, achieves a balance in improving ECE while preserving accuracy relatively. This finding is pivotal, as it demonstrates a feasible path to maintaining robustness without compromising accuracy. Nonetheless, our experiments also caution against over-regularization, which can diminish accuracy. This underscores the necessity for a systematic approach in evaluating out-of-distribution generalization metrics, one that beyond mere accuracy to address the nuanced interplay between accuracy and calibration.
♻ ☆ Generalization of Graph Neural Networks through the Lens of Homomorphism
Despite the celebrated popularity of Graph Neural Networks (GNNs) across numerous applications, the ability of GNNs to generalize remains less explored. In this work, we propose to study the generalization of GNNs through a novel perspective - analyzing the entropy of graph homomorphism. By linking graph homomorphism with information-theoretic measures, we derive generalization bounds for both graph and node classifications. These bounds are capable of capturing subtleties inherent in various graph structures, including but not limited to paths, cycles and cliques. This enables a data-dependent generalization analysis with robust theoretical guarantees. To shed light on the generality of of our proposed bounds, we present a unifying framework that can characterize a broad spectrum of GNN models through the lens of graph homomorphism. We validate the practical applicability of our theoretical findings by showing the alignment between the proposed bounds and the empirically observed generalization gaps over both real-world and synthetic datasets.
comment: 17 pages, 3 figures
♻ ☆ Multi-Constraint Safe RL with Objective Suppression for Safety-Critical Applications
Safe reinforcement learning tasks with multiple constraints are a challenging domain despite being very common in the real world. In safety-critical domains, properly handling the constraints becomes even more important. To address this challenge, we first describe the multi-constraint problem with a stronger Uniformly Constrained MDP (UCMDP) model; we then propose Objective Suppression, a novel method that adaptively suppresses the task reward maximizing objectives according to a safety critic, as a solution to the Lagrangian dual of a UCMDP. We benchmark Objective Suppression in two multi-constraint safety domains, including an autonomous driving domain where any incorrect behavior can lead to disastrous consequences. Empirically, we demonstrate that our proposed method, when combined with existing safe RL algorithms, can match the task reward achieved by our baselines with significantly fewer constraint violations.
♻ ☆ Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach NeurIPS 2023
In this paper, we propose an online convex optimization approach with two different levels of adaptivity. On a higher level, our approach is agnostic to the unknown types and curvatures of the online functions, while at a lower level, it can exploit the unknown niceness of the environments and attain problem-dependent guarantees. Specifically, we obtain $\mathcal{O}(\log V_T)$, $\mathcal{O}(d \log V_T)$ and $\hat{\mathcal{O}}(\sqrt{V_T})$ regret bounds for strongly convex, exp-concave and convex loss functions, respectively, where $d$ is the dimension, $V_T$ denotes problem-dependent gradient variations and the $\hat{\mathcal{O}}(\cdot)$-notation omits $\log V_T$ factors. Our result not only safeguards the worst-case guarantees but also directly implies the small-loss bounds in analysis. Moreover, when applied to adversarial/stochastic convex optimization and game theory problems, our result enhances the existing universal guarantees. Our approach is based on a multi-layer online ensemble framework incorporating novel ingredients, including a carefully designed optimism for unifying diverse function types and cascaded corrections for algorithmic stability. Notably, despite its multi-layer structure, our algorithm necessitates only one gradient query per round, making it favorable when the gradient evaluation is time-consuming. This is facilitated by a novel regret decomposition equipped with carefully designed surrogate losses.
comment: NeurIPS 2023
♻ ☆ What Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Selection in Instruction Tuning ICLR2024
Instruction tuning is a standard technique employed to align large language models to end tasks and user preferences after the initial pretraining phase. Recent research indicates the critical role of data engineering in instruction tuning -- when appropriately selected, only limited data is necessary to achieve superior performance. However, we still lack a principled understanding of what makes good instruction tuning data for alignment, and how we should select data automatically and effectively. In this work, we delve deeply into automatic data selection strategies for alignment. We start with controlled studies to measure data across three dimensions: complexity, quality, and diversity, along which we examine existing methods and introduce novel techniques for enhanced data measurement. Subsequently, we propose a simple strategy to select data samples based on the measurement. We present deita (short for Data-Efficient Instruction Tuning for Alignment), a series of models fine-tuned from LLaMA and Mistral models using data samples automatically selected with our proposed approach. Empirically, deita performs better or on par with the state-of-the-art open-source alignment models with only 6K SFT training data samples -- over 10x less than the data used in the baselines. When further trained with direct preference optimization (DPO), deita-Mistral-7B + DPO trained with 6K SFT and 10K DPO samples achieve 7.55 MT-Bench and 90.06% AlpacaEval scores. We anticipate this work to provide tools on automatic data selection, facilitating data-efficient alignment. We release our models as well as the selected datasets for future researches to effectively align models more efficiently.
comment: ICLR2024 Camera Ready. Data and model checkpoints are available at https://github.com/hkust-nlp/deita
♻ ☆ Drift Control of High-Dimensional RBM: A Computational Method Based on Neural Networks
Motivated by applications in queueing theory, we consider a stochastic control problem whose state space is the $d$-dimensional positive orthant. The controlled process $Z$ evolves as a reflected Brownian motion whose covariance matrix is exogenously specified, as are its directions of reflection from the orthant's boundary surfaces. A system manager chooses a drift vector $\theta(t)$ at each time $t$ based on the history of $Z$, and the cost rate at time $t$ depends on both $Z(t)$ and $\theta(t)$. In our initial problem formulation, the objective is to minimize expected discounted cost over an infinite planning horizon, after which we treat the corresponding ergodic control problem. Extending earlier work by Han et al. (Proceedings of the National Academy of Sciences, 2018, 8505-8510), we develop and illustrate a simulation-based computational method that relies heavily on deep neural network technology. For test problems studied thus far, our method is accurate to within a fraction of one percent, and is computationally feasible in dimensions up to at least $d=30$.
♻ ☆ Persistent Homological State-Space Estimation of Functional Human Brain Networks at Rest
We introduce an innovative, data-driven topological data analysis (TDA) technique for estimating the state spaces of dynamically changing functional human brain networks at rest. Our method utilizes the Wasserstein distance to measure topological differences, enabling the clustering of brain networks into distinct topological states. This technique outperforms the commonly used k-means clustering in identifying brain network state spaces by effectively incorporating the temporal dynamics of the data without the need for explicit model specification. We further investigate the genetic underpinnings of these topological features using a twin study design, examining the heritability of such state changes. Our findings suggest that the topology of brain networks, particularly in their dynamic state changes, may hold significant hidden genetic information. MATLAB code for the method is available at https://github.com/laplcebeltrami/PH-STAT.
comment: To be published in PLOS Computational Biology
♻ ☆ Training neural operators to preserve invariant measures of chaotic attractors NeurIPS 2023
Chaotic systems make long-horizon forecasts difficult because small perturbations in initial conditions cause trajectories to diverge at an exponential rate. In this setting, neural operators trained to minimize squared error losses, while capable of accurate short-term forecasts, often fail to reproduce statistical or structural properties of the dynamics over longer time horizons and can yield degenerate results. In this paper, we propose an alternative framework designed to preserve invariant measures of chaotic attractors that characterize the time-invariant statistical properties of the dynamics. Specifically, in the multi-environment setting (where each sample trajectory is governed by slightly different dynamics), we consider two novel approaches to training with noisy data. First, we propose a loss based on the optimal transport distance between the observed dynamics and the neural operator outputs. This approach requires expert knowledge of the underlying physics to determine what statistical features should be included in the optimal transport loss. Second, we show that a contrastive learning framework, which does not require any specialized prior knowledge, can preserve statistical properties of the dynamics nearly as well as the optimal transport approach. On a variety of chaotic systems, our method is shown empirically to preserve invariant measures of chaotic attractors.
comment: Accepted at NeurIPS 2023
♻ ☆ Learning Algorithm Generalization Error Bounds via Auxiliary Distributions
Generalization error bounds are essential for comprehending how well machine learning models work. In this work, we suggest a novel method, i.e., the Auxiliary Distribution Method, that leads to new upper bounds on expected generalization errors that are appropriate for supervised learning scenarios. We show that our general upper bounds can be specialized under some conditions to new bounds involving the $\alpha$-Jensen-Shannon, $\alpha$-R\'enyi ($0< \alpha < 1$) information between a random variable modeling the set of training samples and another random variable modeling the set of hypotheses. Our upper bounds based on $\alpha$-Jensen-Shannon information are also finite. Additionally, we demonstrate how our auxiliary distribution method can be used to derive the upper bounds on excess risk of some learning algorithms in the supervised learning context {\blue and the generalization error under the distribution mismatch scenario in supervised learning algorithms, where the distribution mismatch is modeled as $\alpha$-Jensen-Shannon or $\alpha$-R\'enyi divergence between the distribution of test and training data samples distributions.} We also outline the conditions for which our proposed upper bounds might be tighter than other earlier upper bounds.
comment: Accepted in IEEE Journal on Selected Areas in Information Theory
♻ ☆ ScribbleGen: Generative Data Augmentation Improves Scribble-supervised Semantic Segmentation
Recent advances in generative models, such as diffusion models, have made generating high-quality synthetic images widely accessible. Prior works have shown that training on synthetic images improves many perception tasks, such as image classification, object detection, and semantic segmentation. We are the first to explore generative data augmentations for scribble-supervised semantic segmentation. We propose ScribbleGen, a generative data augmentation method that leverages a ControlNet diffusion model conditioned on semantic scribbles to produce high-quality training data. However, naive implementations of generative data augmentations may inadvertently harm the performance of the downstream segmentor rather than improve it. We leverage classifier-free diffusion guidance to enforce class consistency and introduce encode ratios to trade off data diversity for data realism. Using the guidance scale and encode ratio, we can generate a spectrum of high-quality training images. We propose multiple augmentation schemes and find that these schemes significantly impact model performance, especially in the low-data regime. Our framework further reduces the gap between the performance of scribble-supervised segmentation and that of fully-supervised segmentation. We also show that our framework significantly improves segmentation performance on small datasets, even surpassing fully-supervised segmentation. The code is available at https://github.com/mengtang-lab/scribblegen.
♻ ☆ MUBen: Benchmarking the Uncertainty of Molecular Representation Models
Large molecular representation models pre-trained on massive unlabeled data have shown great success in predicting molecular properties. However, these models may tend to overfit the fine-tuning data, resulting in over-confident predictions on test data that fall outside of the training distribution. To address this issue, uncertainty quantification (UQ) methods can be used to improve the models' calibration of predictions. Although many UQ approaches exist, not all of them lead to improved performance. While some studies have included UQ to improve molecular pre-trained models, the process of selecting suitable backbone and UQ methods for reliable molecular uncertainty estimation remains underexplored. To address this gap, we present MUBen, which evaluates different UQ methods for state-of-the-art backbone molecular representation models to investigate their capabilities. By fine-tuning various backbones using different molecular descriptors as inputs with UQ methods from different categories, we assess the influence of architectural decisions and training strategies. Our study offers insights for selecting UQ for backbone models, which can facilitate research on uncertainty-critical applications in fields such as materials science and drug discovery.
comment: 58 pages, 10 figures, 39 tables, in TMLR
♻ ☆ Structured Reinforcement Learning for Media Streaming at the Wireless Edge
Media streaming is the dominant application over wireless edge (access) networks. The increasing softwarization of such networks has led to efforts at intelligent control, wherein application-specific actions may be dynamically taken to enhance the user experience. The goal of this work is to develop and demonstrate learning-based policies for optimal decision making to determine which clients to dynamically prioritize in a video streaming setting. We formulate the policy design question as a constrained Markov decision problem (CMDP), and observe that by using a Lagrangian relaxation we can decompose it into single-client problems. Further, the optimal policy takes a threshold form in the video buffer length, which enables us to design an efficient constrained reinforcement learning (CRL) algorithm to learn it. Specifically, we show that a natural policy gradient (NPG) based algorithm that is derived using the structure of our problem converges to the globally optimal policy. We then develop a simulation environment for training, and a real-world intelligent controller attached to a WiFi access point for evaluation. We empirically show that the structured learning approach enables fast learning. Furthermore, such a structured policy can be easily deployed due to low computational complexity, leading to policy execution taking only about 15$\mu$s. Using YouTube streaming experiments in a resource constrained scenario, we demonstrate that the CRL approach can increase quality of experience (QOE) by over 30\%.
comment: 15 pages, 14 figures
♻ ☆ Improving Semi-Supervised Semantic Segmentation with Dual-Level Siamese Structure Network ACM MM 2023
Semi-supervised semantic segmentation (SSS) is an important task that utilizes both labeled and unlabeled data to reduce expenses on labeling training examples. However, the effectiveness of SSS algorithms is limited by the difficulty of fully exploiting the potential of unlabeled data. To address this, we propose a dual-level Siamese structure network (DSSN) for pixel-wise contrastive learning. By aligning positive pairs with a pixel-wise contrastive loss using strong augmented views in both low-level image space and high-level feature space, the proposed DSSN is designed to maximize the utilization of available unlabeled data. Additionally, we introduce a novel class-aware pseudo-label selection strategy for weak-to-strong supervision, which addresses the limitations of most existing methods that do not perform selection or apply a predefined threshold for all classes. Specifically, our strategy selects the top high-confidence prediction of the weak view for each class to generate pseudo labels that supervise the strong augmented views. This strategy is capable of taking into account the class imbalance and improving the performance of long-tailed classes. Our proposed method achieves state-of-the-art results on two datasets, PASCAL VOC 2012 and Cityscapes, outperforming other SSS algorithms by a significant margin. The source code is available at https://github.com/kunzhan/DSSN.
comment: ACM MM 2023
Multimedia 7
☆ Retrieval Augmented Verification : Unveiling Disinformation with Structured Representations for Zero-Shot Real-Time Evidence-guided Fact-Checking of Multi-modal Social media posts
Social Media posts, where real images are unscrupulously reused along with provocative text to promote a particular idea, have been one of the major sources of disinformation. By design, these claims are without editorial oversight and accessible to a vast population who otherwise may not have access to multiple information sources. This implies the need to fact-check these posts and clearly explain which parts of the posts are fake. In the supervised learning setup, this is often reduced to a binary classification problem, neglecting all intermediate stages. Further, these claims often involve recent events on which systems trained on historical data are prone to fail. In this work, we propose a zero-shot approach by retrieving real-time web-scraped evidence from multiple news websites and matching them with the claim text and image using pretrained language vision systems. We propose a graph structured representation, which a) allows us to gather evidence automatically and b) helps generate interpretable results by explicitly pointing out which parts of the claim can not be verified. Our zero-shot method, with improved interpretability, generates competitive results against the state-of-the-art methods
☆ AllTheDocks road safety dataset: A cyclist's perspective and experience
Active travel is an essential component in intelligent transportation systems. Cycling, as a form of active travel, shares the road space with motorised traffic which often affects the cyclists' safety and comfort and therefore peoples' propensity to uptake cycling instead of driving. This paper presents a unique dataset, collected by cyclists across London, that includes video footage, accelerometer, GPS, and gyroscope data. The dataset is then labelled by an independent group of London cyclists to rank the safety level of each frame and to identify objects in the cyclist's field of vision that might affect their experience. Furthermore, in this dataset, the quality of the road is measured by the international roughness index of the surface, which indicates the comfort of cycling on the road. The dataset will be made available for open access in the hope of motivating more research in this area to underpin the requirements for cyclists' safety and comfort and encourage more people to replace vehicle travel with cycling.
☆ Referring Flexible Image Restoration
In reality, images often exhibit multiple degradations, such as rain and fog at night (triple degradations). However, in many cases, individuals may not want to remove all degradations, for instance, a blurry lens revealing a beautiful snowy landscape (double degradations). In such scenarios, people may only desire to deblur. These situations and requirements shed light on a new challenge in image restoration, where a model must perceive and remove specific degradation types specified by human commands in images with multiple degradations. We term this task Referring Flexible Image Restoration (RFIR). To address this, we first construct a large-scale synthetic dataset called RFIR, comprising 153,423 samples with the degraded image, text prompt for specific degradation removal and restored image. RFIR consists of five basic degradation types: blur, rain, haze, low light and snow while six main sub-categories are included for varying degrees of degradation removal. To tackle the challenge, we propose a novel transformer-based multi-task model named TransRFIR, which simultaneously perceives degradation types in the degraded image and removes specific degradation upon text prompt. TransRFIR is based on two devised attention modules, Multi-Head Agent Self-Attention (MHASA) and Multi-Head Agent Cross Attention (MHACA), where MHASA and MHACA introduce the agent token and reach the linear complexity, achieving lower computation cost than vanilla self-attention and cross-attention and obtaining competitive performances. Our TransRFIR achieves state-of-the-art performances compared with other counterparts and is proven as an effective architecture for image restoration. We release our project at https://github.com/GuanRunwei/FIR-CP.
comment: 15 pages, 19 figures
☆ From Data Deluge to Data Curation: A Filtering-WoRA Paradigm for Efficient Text-based Person Search
In text-based person search endeavors, data generation has emerged as a prevailing practice, addressing concerns over privacy preservation and the arduous task of manual annotation. Although the number of synthesized data can be infinite in theory, the scientific conundrum persists that how much generated data optimally fuels subsequent model training. We observe that only a subset of the data in these constructed datasets plays a decisive role. Therefore, we introduce a new Filtering-WoRA paradigm, which contains a filtering algorithm to identify this crucial data subset and WoRA (Weighted Low-Rank Adaptation) learning strategy for light fine-tuning. The filtering algorithm is based on the cross-modality relevance to remove the lots of coarse matching synthesis pairs. As the number of data decreases, we do not need to fine-tune the entire model. Therefore, we propose a WoRA learning strategy to efficiently update a minimal portion of model parameters. WoRA streamlines the learning process, enabling heightened efficiency in extracting knowledge from fewer, yet potent, data instances. Extensive experimentation validates the efficacy of pretraining, where our model achieves advanced and efficient retrieval performance on challenging real-world benchmarks. Notably, on the CUHK-PEDES dataset, we have achieved a competitive mAP of 67.02% while reducing model training time by 19.82%.
☆ AniFrame: A Programming Language for 2D Drawing and Frame-Based Animation SC 2024
Creative coding is an experimentation-heavy activity that requires translating high-level visual ideas into code. However, most languages and libraries for creative coding may not be adequately intuitive for beginners. In this paper, we present AniFrame, a domain-specific language for drawing and animation. Designed for novice programmers, it (i) features animation-specific data types, operations, and built-in functions to simplify the creation and animation of composite objects, (ii) allows for fine-grained control over animation sequences through explicit specification of the target object and the start and end frames, (iii) reduces the learning curve through a Python-like syntax, type inferencing, and a minimal set of control structures and keywords that map closely to their semantic intent, and (iv) promotes computational expressivity through support for common mathematical operations, built-in trigonometric functions, and user-defined recursion. Our usability test demonstrates AniFrame's potential to enhance readability and writability for multiple creative coding use cases. AniFrame is open-source, and its implementation and reference are available at https://github.com/memgonzales/aniframe-language.
comment: Accepted for paper presentation at the 24th Philippine Computing Science Congress (PCSC 2024), held in Laguna, Philippines
☆ Dynamic Self-adaptive Multiscale Distillation from Pre-trained Multimodal Large Model for Efficient Cross-modal Representation Learning
In recent years, pre-trained multimodal large models have attracted widespread attention due to their outstanding performance in various multimodal applications. Nonetheless, the extensive computational resources and vast datasets required for their training present significant hurdles for deployment in environments with limited computational resources. To address this challenge, we propose a novel dynamic self-adaptive multiscale distillation from pre-trained multimodal large model for efficient cross-modal representation learning for the first time. Unlike existing distillation methods, our strategy employs a multiscale perspective, enabling the extraction structural knowledge across from the pre-trained multimodal large model. Ensuring that the student model inherits a comprehensive and nuanced understanding of the teacher knowledge. To optimize each distillation loss in a balanced and efficient manner, we propose a dynamic self-adaptive distillation loss balancer, a novel component eliminating the need for manual loss weight adjustments and dynamically balances each loss item during the distillation process. Our methodology streamlines pre-trained multimodal large models using only their output features and original image-level information, requiring minimal computational resources. This efficient approach is suited for various applications and allows the deployment of advanced multimodal technologies even in resource-limited settings. Extensive experiments has demonstrated that our method maintains high performance while significantly reducing model complexity and training costs. Moreover, our distilled student model utilizes only image-level information to achieve state-of-the-art performance on cross-modal retrieval tasks, surpassing previous methods that relied on region-level information.
comment: 10 pages
♻ ☆ Deep Video Codec Control for Vision Models CVPR 2024
Standardized lossy video coding is at the core of almost all real-world video processing pipelines. Rate control is used to enable standard codecs to adapt to different network bandwidth conditions or storage constraints. However, standard video codecs (e.g., H.264) and their rate control modules aim to minimize video distortion w.r.t. human quality assessment. We demonstrate empirically that standard-coded videos vastly deteriorate the performance of deep vision models. To overcome the deterioration of vision performance, this paper presents the first end-to-end learnable deep video codec control that considers both bandwidth constraints and downstream deep vision performance, while adhering to existing standardization. We demonstrate that our approach better preserves downstream deep vision performance than traditional standard video coding.
comment: Accepted at CVPR 2024 Workshop on AI for Streaming (AIS)
Computation and Language 95
☆ Personalized Collaborative Fine-Tuning for On-Device Large Language Models
We explore on-device self-supervised collaborative fine-tuning of large language models with limited local data availability. Taking inspiration from the collaborative learning community, we introduce three distinct trust-weighted gradient aggregation schemes: weight similarity-based, prediction similarity-based and validation performance-based. To minimize communication overhead, we integrate Low-Rank Adaptation (LoRA) and only exchange LoRA weight updates. Our protocols, driven by prediction and performance metrics, surpass both FedAvg and local fine-tuning methods, which is particularly evident in realistic scenarios with more diverse local data distributions. The results underscore the effectiveness of our approach in addressing heterogeneity and scarcity within local datasets.
☆ Quantization of Large Language Models with an Overdetermined Basis
In this paper, we introduce an algorithm for data quantization based on the principles of Kashin representation. This approach hinges on decomposing any given vector, matrix, or tensor into two factors. The first factor maintains a small infinity norm, while the second exhibits a similarly constrained norm when multiplied by an orthogonal matrix. Surprisingly, the entries of factors after decomposition are well-concentrated around several peaks, which allows us to efficiently replace them with corresponding centroids for quantization purposes. We study the theoretical properties of the proposed approach and rigorously evaluate our compression algorithm in the context of next-word prediction tasks and on a set of downstream tasks for text classification. Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance while ensuring data compression, marking a significant advancement in the field of data quantization.
☆ Unveiling Imitation Learning: Exploring the Impact of Data Falsity to Large Language Model ACL
Many recent studies endeavor to improve open-source language models through imitation learning, and re-training on the synthetic instruction data from state-of-the-art proprietary models like ChatGPT and GPT-4. However, the innate nature of synthetic data inherently contains noisy data, giving rise to a substantial presence of low-quality data replete with erroneous responses, and flawed reasoning. Although we intuitively grasp the potential harm of noisy data, we lack a quantitative understanding of its impact. To this end, this paper explores the correlation between the degree of noise and its impact on language models through instruction tuning. We first introduce the Falsity-Controllable (FACO) dataset, which comprises pairs of true answers with corresponding reasoning, as well as false pairs to manually control the falsity ratio of the dataset.Through our extensive experiments, we found multiple intriguing findings of the correlation between the factuality of the dataset and instruction tuning: Specifically, we verified falsity of the instruction is highly relevant to various benchmark scores. Moreover, when LLMs are trained with false instructions, they learn to lie and generate fake unfaithful answers, even though they know the correct answer for the user request. Additionally, we noted that once the language model is trained with a dataset contaminated by noise, restoring its original performance is possible, but it failed to reach full performance.
comment: Under review @ *ACL
☆ Are Large Language Models Reliable Argument Quality Annotators?
Evaluating the quality of arguments is a crucial aspect of any system leveraging argument mining. However, it is a challenge to obtain reliable and consistent annotations regarding argument quality, as this usually requires domain-specific expertise of the annotators. Even among experts, the assessment of argument quality is often inconsistent due to the inherent subjectivity of this task. In this paper, we study the potential of using state-of-the-art large language models (LLMs) as proxies for argument quality annotators. To assess the capability of LLMs in this regard, we analyze the agreement between model, human expert, and human novice annotators based on an established taxonomy of argument quality dimensions. Our findings highlight that LLMs can produce consistent annotations, with a moderately high agreement with human experts across most of the quality dimensions. Moreover, we show that using LLMs as additional annotators can significantly improve the agreement between annotators. These results suggest that LLMs can serve as a valuable tool for automated argument quality assessment, thus streamlining and accelerating the evaluation of large argument datasets.
comment: 18 pages, 5 figures, 5 tables
☆ LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression for Large Language Models
Large language models (LLMs) show excellent performance in difficult tasks, but they often require massive memories and computational resources. How to reduce the parameter scale of LLMs has become research hotspots. In this study, we make an important observation that the multi-head self-attention (MHA) sub-layer of Transformer exhibits noticeable low-rank structure, while the feed-forward network (FFN) sub-layer does not. With this regard, we design a mixed compression model, which organically combines Low-Rank matrix approximation And structured Pruning (LoRAP). For the MHA sub-layer, we propose an input activation weighted singular value decomposition method to strengthen the low-rank characteristic. Furthermore, we discover that the weight matrices in MHA sub-layer have different low-rank degrees. Thus, a novel parameter allocation scheme according to the discrepancy of low-rank degrees is devised. For the FFN sub-layer, we propose a gradient-free structured channel pruning method. During the pruning, we get an interesting finding that the least important 1% of parameter actually play a vital role in model performance. Extensive evaluations on zero-shot perplexity and zero-shot task classification indicate that our proposal is superior to previous structured compression rivals under multiple compression ratios.
comment: 8 pages,4 figures
☆ Harnessing GPT-4V(ision) for Insurance: A Preliminary Exploration
The emergence of Large Multimodal Models (LMMs) marks a significant milestone in the development of artificial intelligence. Insurance, as a vast and complex discipline, involves a wide variety of data forms in its operational processes, including text, images, and videos, thereby giving rise to diverse multimodal tasks. Despite this, there has been limited systematic exploration of multimodal tasks specific to insurance, nor a thorough investigation into how LMMs can address these challenges. In this paper, we explore GPT-4V's capabilities in the insurance domain. We categorize multimodal tasks by focusing primarily on visual aspects based on types of insurance (e.g., auto, household/commercial property, health, and agricultural insurance) and insurance stages (e.g., risk assessment, risk monitoring, and claims processing). Our experiment reveals that GPT-4V exhibits remarkable abilities in insurance-related tasks, demonstrating not only a robust understanding of multimodal content in the insurance domain but also a comprehensive knowledge of insurance scenarios. However, there are notable shortcomings: GPT-4V struggles with detailed risk rating and loss assessment, suffers from hallucination in image understanding, and shows variable support for different languages. Through this work, we aim to bridge the insurance domain with cutting-edge LMM technology, facilitate interdisciplinary exchange and development, and provide a foundation for the continued advancement and evolution of future research endeavors.
☆ Multi-News+: Cost-efficient Dataset Cleansing via LLM-based Data Annotation
The quality of the dataset is crucial for ensuring optimal performance and reliability of downstream task models. However, datasets often contain noisy data inadvertently included during the construction process. Numerous attempts have been made to correct this issue through human annotators. However, hiring and managing human annotators is expensive and time-consuming. As an alternative, recent studies are exploring the use of large language models (LLMs) for data annotation. In this study, we present a case study that extends the application of LLM-based data annotation to enhance the quality of existing datasets through a cleansing strategy. Specifically, we leverage approaches such as chain-of-thought (CoT) and majority voting to imitate human annotation and classify unrelated documents from the Multi-News dataset, which is widely used for the multi-document summarization task. Through our proposed cleansing method, we introduce an enhanced Multi-News+. By employing LLMs for data cleansing, we demonstrate an efficient and effective approach to improving dataset quality without relying on expensive human annotation efforts.
☆ Learn Your Reference Model for Real Good Alignment
The complexity of the alignment problem stems from the fact that existing methods are unstable. Researchers continuously invent various tricks to address this shortcoming. For instance, in the fundamental Reinforcement Learning From Human Feedback (RLHF) technique of Language Model alignment, in addition to reward maximization, the Kullback-Leibler divergence between the trainable policy and the SFT policy is minimized. This addition prevents the model from being overfitted to the Reward Model (RM) and generating texts that are out-of-domain for the RM. The Direct Preference Optimization (DPO) method reformulates the optimization task of RLHF and eliminates the Reward Model while tacitly maintaining the requirement for the policy to be close to the SFT policy. In our paper, we argue that this implicit limitation in the DPO method leads to sub-optimal results. We propose a new method called Trust Region DPO (TR-DPO), which updates the reference policy during training. With such a straightforward update, we demonstrate the effectiveness of TR-DPO against DPO on the Anthropic HH and TLDR datasets. We show that TR-DPO outperforms DPO by up to 19%, measured by automatic evaluation with GPT-4. The new alignment approach that we propose allows us to improve the quality of models across several parameters at once, such as coherence, correctness, level of detail, helpfulness, and harmlessness.
☆ Real-world Instance-specific Image Goal Navigation for Service Robots: Bridging the Domain Gap with Contrastive Learning IROS2024
Improving instance-specific image goal navigation (InstanceImageNav), which locates the identical object in a real-world environment from a query image, is essential for robotic systems to assist users in finding desired objects. The challenge lies in the domain gap between low-quality images observed by the moving robot, characterized by motion blur and low-resolution, and high-quality query images provided by the user. Such domain gaps could significantly reduce the task success rate but have not been the focus of previous work. To address this, we propose a novel method called Few-shot Cross-quality Instance-aware Adaptation (CrossIA), which employs contrastive learning with an instance classifier to align features between massive low- and few high-quality images. This approach effectively reduces the domain gap by bringing the latent representations of cross-quality images closer on an instance basis. Additionally, the system integrates an object image collection with a pre-trained deblurring model to enhance the observed image quality. Our method fine-tunes the SimSiam model, pre-trained on ImageNet, using CrossIA. We evaluated our method's effectiveness through an InstanceImageNav task with 20 different types of instances, where the robot identifies the same instance in a real-world environment as a high-quality query image. Our experiments showed that our method improves the task success rate by up to three times compared to the baseline, a conventional approach based on SuperGlue. These findings highlight the potential of leveraging contrastive learning and image enhancement techniques to bridge the domain gap and improve object localization in robotic applications. The project website is https://emergentsystemlabstudent.github.io/DomainBridgingNav/.
comment: See website at https://emergentsystemlabstudent.github.io/DomainBridgingNav/. Submitted to IROS2024
☆ If there's a Trigger Warning, then where's the Trigger? Investigating Trigger Warnings at the Passage Level
Trigger warnings are labels that preface documents with sensitive content if this content could be perceived as harmful by certain groups of readers. Since warnings about a document intuitively need to be shown before reading it, authors usually assign trigger warnings at the document level. What parts of their writing prompted them to assign a warning, however, remains unclear. We investigate for the first time the feasibility of identifying the triggering passages of a document, both manually and computationally. We create a dataset of 4,135 English passages, each annotated with one of eight common trigger warnings. In a large-scale evaluation, we then systematically evaluate the effectiveness of fine-tuned and few-shot classifiers, and their generalizability. We find that trigger annotation belongs to the group of subjective annotation tasks in NLP, and that automatic trigger classification remains challenging but feasible.
☆ Improving Recall of Large Language Models: A Model Collaboration Approach for Relational Triple Extraction LREC
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with small models for relational triple extraction tasks. The framework includes an evaluation model that can extract related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.
comment: Accepted at LREC-COLING 2024 main conference
☆ Modelling Language
This paper argues that large language models have a valuable scientific role to play in serving as scientific models of a language. Linguistic study should not only be concerned with the cognitive processes behind linguistic competence, but also with language understood as an external, social entity. Once this is recognized, the value of large language models as scientific models becomes clear. This paper defends this position against a number of arguments to the effect that language models provide no linguistic insight. It also draws upon recent work in philosophy of science to show how large language models could serve as scientific models.
Transformers, Contextualism, and Polysemy
The transformer architecture, introduced by Vaswani et al. (2017), is at the heart of the remarkable recent progress in the development of language models, including famous chatbots such as Chat-gpt and Bard. In this paper, I argue that we an extract from the way the transformer architecture works a picture of the relationship between context and meaning. I call this the transformer picture, and I argue that it is a novel with regard to two related philosophical debates: the contextualism debate regarding the extent of context-sensitivity across natural language, and the polysemy debate regarding how polysemy should be captured within an account of word meaning. Although much of the paper merely tries to position the transformer picture with respect to these two debates, I will also begin to make the case for the transformer picture.
☆ Large language models and linguistic intentionality
Do large language models like Chat-GPT or LLaMa meaningfully use the words they produce? Or are they merely clever prediction machines, simulating language use by producing statistically plausible text? There have already been some initial attempts to answer this question by showing that these models meet the criteria for entering meaningful states according to metasemantic theories of mental content. In this paper, I will argue for a different approach - that we should instead consider whether language models meet the criteria given by our best metasemantic theories of linguistic content. In that vein, I will illustrate how this can be done by applying two such theories to the case of language models: Gareth Evans' (1982) account of naming practices and Ruth Millikan's (1984, 2004, 2005) teleosemantics. In doing so, I will argue that it is a mistake to think that the failure of LLMs to meet plausible conditions for mental intentionality thereby renders their outputs meaningless, and that a distinguishing feature of linguistic intentionality - dependency on a pre-existing linguistic system - allows for the plausible result LLM outputs are meaningful.
☆ Reliability Estimation of News Media Sources: Birds of a Feather Flock Together NAACL 2024
Evaluating the reliability of news sources is a routine task for journalists and organizations committed to acquiring and disseminating accurate information. Recent research has shown that predicting sources' reliability represents an important first-prior step in addressing additional challenges such as fake news detection and fact-checking. In this paper, we introduce a novel approach for source reliability estimation that leverages reinforcement learning strategies for estimating the reliability degree of news sources. Contrary to previous research, our proposed approach models the problem as the estimation of a reliability degree, and not a reliability label, based on how all the news media sources interact with each other on the Web. We validated the effectiveness of our method on a news media reliability dataset that is an order of magnitude larger than comparable existing datasets. Results show that the estimated reliability degrees strongly correlates with journalists-provided scores (Spearman=0.80) and can effectively predict reliability labels (macro-avg. F$_1$ score=81.05). We release our implementation and dataset, aiming to provide a valuable resource for the NLP community working on information verification.
comment: Accepted to NAACL 2024 Main Conference
☆ Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models
During inference for transformer-based large language models (LLM), prefilling is the computation of the key-value (KV) cache for input tokens in the prompt prior to autoregressive generation. For longer input prompt lengths, prefilling will incur a significant overhead on decoding time. In this work, we highlight the following pitfall of prefilling: for batches containing high-varying prompt lengths, significant computation is wasted by the standard practice of padding sequences to the maximum length. As LLMs increasingly support longer context lengths, potentially up to 10 million tokens, variations in prompt lengths within a batch become more pronounced. To address this, we propose Prepacking, a simple yet effective method to optimize prefilling computation. To avoid redundant computation on pad tokens, prepacking combines prompts of varying lengths into a sequence and packs multiple sequences into a compact batch using a bin-packing algorithm. It then modifies the attention mask and positional encoding to compute multiple prefilled KV-caches for multiple prompts within a single sequence. On standard curated dataset containing prompts with varying lengths, we obtain a significant speed and memory efficiency improvements as compared to the default padding-based prefilling computation within Huggingface across a range of base model configurations and inference serving scenarios.
comment: 18 pages, code in https://github.com/siyan-zhao/prepacking
☆ State Space Model for New-Generation Network Alternative to Transformers: A Survey
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
comment: The First review of State Space Model (SSM)/Mamba and their applications in artificial intelligence, 33 pages
☆ Bridging the Gap between Different Vocabularies for LLM Ensemble NAACL 2024
Ensembling different large language models (LLMs) to unleash their complementary potential and harness their individual strengths is highly valuable. Nevertheless, vocabulary discrepancies among various LLMs have constrained previous studies to either selecting or blending completely generated outputs. This limitation hinders the dynamic correction and enhancement of outputs during the generation process, resulting in a limited capacity for effective ensemble. To address this issue, we propose a novel method to Ensemble LLMs via Vocabulary Alignment (EVA). EVA bridges the lexical gap among various LLMs, enabling meticulous ensemble at each generation step. Specifically, we first learn mappings between the vocabularies of different LLMs with the assistance of overlapping tokens. Subsequently, these mappings are employed to project output distributions of LLMs into a unified space, facilitating a fine-grained ensemble. Finally, we design a filtering strategy to exclude models that generate unfaithful tokens. Experimental results on commonsense reasoning, arithmetic reasoning, machine translation, and data-to-text generation tasks demonstrate the superiority of our approach compared with individual LLMs and previous ensemble methods conducted on complete outputs. Further analyses confirm that our approach can leverage knowledge from different language models and yield consistent improvement.
comment: Accepted to the main conference of NAACL 2024
☆ MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
comment: 46 pages, 21 figures and 6 tables
☆ Mitigating Hallucination in Abstractive Summarization with Domain-Conditional Mutual Information NAACL 2024
A primary challenge in abstractive summarization is hallucination -- the phenomenon where a model generates plausible text that is absent in the source text. We hypothesize that the domain (or topic) of the source text triggers the model to generate text that is highly probable in the domain, neglecting the details of the source text. To alleviate this model bias, we introduce a decoding strategy based on domain-conditional pointwise mutual information. This strategy adjusts the generation probability of each token by comparing it with the token's marginal probability within the domain of the source text. According to evaluation on the XSUM dataset, our method demonstrates improvement in terms of faithfulness and source relevance. The code is publicly available at \url{https://github.com/qqplot/dcpmi}.
comment: Accepted by Findings of NAACL 2024
☆ Automatic Knowledge Graph Construction for Judicial Cases
In this paper, we explore the application of cognitive intelligence in legal knowledge, focusing on the development of judicial artificial intelligence. Utilizing natural language processing (NLP) as the core technology, we propose a method for the automatic construction of case knowledge graphs for judicial cases. Our approach centers on two fundamental NLP tasks: entity recognition and relationship extraction. We compare two pre-trained models for entity recognition to establish their efficacy. Additionally, we introduce a multi-task semantic relationship extraction model that incorporates translational embedding, leading to a nuanced contextualized case knowledge representation. Specifically, in a case study involving a "Motor Vehicle Traffic Accident Liability Dispute," our approach significantly outperforms the baseline model. The entity recognition F1 score improved by 0.36, while the relationship extraction F1 score increased by 2.37. Building on these results, we detail the automatic construction process of case knowledge graphs for judicial cases, enabling the assembly of knowledge graphs for hundreds of thousands of judgments. This framework provides robust semantic support for applications of judicial AI, including the precise categorization and recommendation of related cases.
☆ Few-shot Name Entity Recognition on StackOverflow
StackOverflow, with its vast question repository and limited labeled examples, raise an annotation challenge for us. We address this gap by proposing RoBERTa+MAML, a few-shot named entity recognition (NER) method leveraging meta-learning. Our approach, evaluated on the StackOverflow NER corpus (27 entity types), achieves a 5% F1 score improvement over the baseline. We improved the results further domain-specific phrase processing enhance results.
comment: 5 pages
☆ A Large-Scale Evaluation of Speech Foundation Models
The foundation model paradigm leverages a shared foundation model to achieve state-of-the-art (SOTA) performance for various tasks, requiring minimal downstream-specific modeling and data annotation. This approach has proven crucial in the field of Natural Language Processing (NLP). However, the speech processing community lacks a similar setup to explore the paradigm systematically. In this work, we establish the Speech processing Universal PERformance Benchmark (SUPERB) to study the effectiveness of the paradigm for speech. We propose a unified multi-tasking framework to address speech processing tasks in SUPERB using a frozen foundation model followed by task-specialized, lightweight prediction heads. Combining our results with community submissions, we verify that the foundation model paradigm is promising for speech, and our multi-tasking framework is simple yet effective, as the best-performing foundation model shows competitive generalizability across most SUPERB tasks. For reproducibility and extensibility, we have developed a long-term maintained platform that enables deterministic benchmarking, allows for result sharing via an online leaderboard, and promotes collaboration through a community-driven benchmark database to support new development cycles. Finally, we conduct a series of analyses to offer an in-depth understanding of SUPERB and speech foundation models, including information flows across tasks inside the models, the correctness of the weighted-sum benchmarking protocol and the statistical significance and robustness of the benchmark.
comment: The extended journal version for SUPERB and SUPERB-SG. Accepted to TASLP. The arxiv version is further refined
☆ Deferred NAM: Low-latency Top-K Context Injection via DeferredContext Encoding for Non-Streaming ASR NAACL 2024
Contextual biasing enables speech recognizers to transcribe important phrases in the speaker's context, such as contact names, even if they are rare in, or absent from, the training data. Attention-based biasing is a leading approach which allows for full end-to-end cotraining of the recognizer and biasing system and requires no separate inference-time components. Such biasers typically consist of a context encoder; followed by a context filter which narrows down the context to apply, improving per-step inference time; and, finally, context application via cross attention. Though much work has gone into optimizing per-frame performance, the context encoder is at least as important: recognition cannot begin before context encoding ends. Here, we show the lightweight phrase selection pass can be moved before context encoding, resulting in a speedup of up to 16.1 times and enabling biasing to scale to 20K phrases with a maximum pre-decoding delay under 33ms. With the addition of phrase- and wordpiece-level cross-entropy losses, our technique also achieves up to a 37.5% relative WER reduction over the baseline without the losses and lightweight phrase selection pass.
comment: 9 pages, 3 figures, accepted by NAACL 2024 - Industry Track
☆ On the Effects of Fine-tuning Language Models for Text-Based Reinforcement Learning
Text-based reinforcement learning involves an agent interacting with a fictional environment using observed text and admissible actions in natural language to complete a task. Previous works have shown that agents can succeed in text-based interactive environments even in the complete absence of semantic understanding or other linguistic capabilities. The success of these agents in playing such games suggests that semantic understanding may not be important for the task. This raises an important question about the benefits of LMs in guiding the agents through the game states. In this work, we show that rich semantic understanding leads to efficient training of text-based RL agents. Moreover, we describe the occurrence of semantic degeneration as a consequence of inappropriate fine-tuning of language models in text-based reinforcement learning (TBRL). Specifically, we describe the shift in the semantic representation of words in the LM, as well as how it affects the performance of the agent in tasks that are semantically similar to the training games. We believe these results may help develop better strategies to fine-tune agents in text-based RL scenarios.
☆ TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition NAACL 2024
Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.
comment: Accepted to NAACL 2024 (long, main)
☆ ANCHOR: LLM-driven News Subject Conditioning for Text-to-Image Synthesis
Text-to-Image (T2I) Synthesis has made tremendous strides in enhancing synthesized image quality, but current datasets evaluate model performance only on descriptive, instruction-based prompts. Real-world news image captions take a more pragmatic approach, providing high-level situational and Named-Entity (NE) information and limited physical object descriptions, making them abstractive. To evaluate the ability of T2I models to capture intended subjects from news captions, we introduce the Abstractive News Captions with High-level cOntext Representation (ANCHOR) dataset, containing 70K+ samples sourced from 5 different news media organizations. With Large Language Models (LLM) achieving success in language and commonsense reasoning tasks, we explore the ability of different LLMs to identify and understand key subjects from abstractive captions. Our proposed method Subject-Aware Finetuning (SAFE), selects and enhances the representation of key subjects in synthesized images by leveraging LLM-generated subject weights. It also adapts to the domain distribution of news images and captions through custom Domain Fine-tuning, outperforming current T2I baselines on ANCHOR. By launching the ANCHOR dataset, we hope to motivate research in furthering the Natural Language Understanding (NLU) capabilities of T2I models.
comment: 23 pages, 9 figures
☆ Language Model Cascades: Token-level uncertainty and beyond
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks, but at the expense of increased inference costs. Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs: here, a small model is invoked for most "easy" instances, while a few "hard" instances are deferred to the large model. While the principles underpinning cascading are well-studied for classification tasks - with deferral based on predicted class uncertainty favored theoretically and practically - a similar understanding is lacking for generative LM tasks. In this work, we initiate a systematic study of deferral rules for LM cascades. We begin by examining the natural extension of predicted class uncertainty to generative LM tasks, namely, the predicted sequence uncertainty. We show that this measure suffers from the length bias problem, either over- or under-emphasizing outputs based on their lengths. This is because LMs produce a sequence of uncertainty values, one for each output token; and moreover, the number of output tokens is variable across examples. To mitigate this issue, we propose to exploit the richer token-level uncertainty information implicit in generative LMs. We argue that naive predicted sequence uncertainty corresponds to a simple aggregation of these uncertainties. By contrast, we show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform such simple aggregation strategies, via experiments on a range of natural language benchmarks with FLAN-T5 models. We further show that incorporating embeddings from the smaller model and intermediate layers of the larger model can give an additional boost in the overall cost-quality tradeoff.
☆ PRODIS - a speech database and a phoneme-based language model for the study of predictability effects in Polish LREC2024
We present a speech database and a phoneme-level language model of Polish. The database and model are designed for the analysis of prosodic and discourse factors and their impact on acoustic parameters in interaction with predictability effects. The database is also the first large, publicly available Polish speech corpus of excellent acoustic quality that can be used for phonetic analysis and training of multi-speaker speech technology systems. The speech in the database is processed in a pipeline that achieves a 90% degree of automation. It incorporates state-of-the-art, freely available tools enabling database expansion or adaptation to additional languages.
comment: To appear in the proceedings of LREC2024: Language Resources and Evaluation Conference 2024, Turin, Italy
☆ Chinchilla Scaling: A replication attempt
Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al.
☆ AIGeN: An Adversarial Approach for Instruction Generation in VLN
In the last few years, the research interest in Vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previously unknown environment to reach a specified goal. Recent work in literature focuses on different ways to augment the available datasets of instructions for improving navigation performance by exploiting synthetic training data. In this work, we propose AIGeN, a novel architecture inspired by Generative Adversarial Networks (GANs) that produces meaningful and well-formed synthetic instructions to improve navigation agents' performance. The model is composed of a Transformer decoder (GPT-2) and a Transformer encoder (BERT). During the training phase, the decoder generates sentences for a sequence of images describing the agent's path to a particular point while the encoder discriminates between real and fake instructions. Experimentally, we evaluate the quality of the generated instructions and perform extensive ablation studies. Additionally, we generate synthetic instructions for 217K trajectories using AIGeN on Habitat-Matterport 3D Dataset (HM3D) and show an improvement in the performance of an off-the-shelf VLN method. The validation analysis of our proposal is conducted on REVERIE and R2R and highlights the promising aspects of our proposal, achieving state-of-the-art performance.
comment: Accepted to 7th Multimodal Learning and Applications Workshop (MULA 2024) at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024
☆ MMInA: Benchmarking Multihop Multimodal Internet Agents
Autonomous embodied agents live on an Internet of multimedia websites. Can they hop around multimodal websites to complete complex user tasks? Existing benchmarks fail to assess them in a realistic, evolving environment for their embodiment across websites. To answer this question, we present MMInA, a multihop and multimodal benchmark to evaluate the embodied agents for compositional Internet tasks, with several appealing properties: 1) Evolving real-world multimodal websites. Our benchmark uniquely operates on evolving real-world websites, ensuring a high degree of realism and applicability to natural user tasks. Our data includes 1,050 human-written tasks covering various domains such as shopping and travel, with each task requiring the agent to autonomously extract multimodal information from web pages as observations; 2) Multihop web browsing. Our dataset features naturally compositional tasks that require information from or actions on multiple websites to solve, to assess long-range reasoning capabilities on web tasks; 3) Holistic evaluation. We propose a novel protocol for evaluating an agent's progress in completing multihop tasks. We experiment with both standalone (multimodal) language models and heuristic-based web agents. Extensive experiments demonstrate that while long-chain multihop web tasks are easy for humans, they remain challenging for state-of-the-art web agents. We identify that agents are more likely to fail on the early hops when solving tasks of more hops, which results in lower task success rates. To address this issue, we propose a simple memory augmentation approach replaying past action trajectories to reflect. Our method significantly improved both the single-hop and multihop web browsing abilities of agents. See our code and data at https://mmina.cliangyu.com
☆ Memory Sharing for Large Language Model based Agents
In the realm of artificial intelligence, the adaptation of Large Language Model (LLM)-based agents to execute tasks via natural language prompts represents a significant advancement, notably eliminating the need for explicit retraining or fine tuning for fixed-answer tasks such as common sense questions and yes/no queries. However, the application of In-context Learning to open-ended challenges, such as poetry creation, reveals substantial limitations due to the comprehensiveness of the provided examples and agent's ability to understand the content expressed in the problem, leading to outputs that often diverge significantly from expected results. Addressing this gap, our study introduces the Memory-Sharing (MS) framework for LLM multi-agents, which utilizes a real-time memory storage and retrieval system to enhance the In-context Learning process. Each "memory" within this system captures both the posed query and the corresponding real-time response from an LLM-based agent, aggregating these memories from a broad spectrum of similar agents to enrich the memory pool shared by all agents. This framework not only aids agents in identifying the most relevant examples for specific tasks but also evaluates the potential utility of their memories for future applications by other agents. Empirical validation across three distinct domains involving specialized functions of agents demonstrates that the MS framework significantly improve the agent's performance regrading the open-ended questions. Furthermore, we also discuss what type of memory pool and what retrieval strategy in MS can better help agents, offering a future develop direction of MS. The code and data are available at: https://github.com/GHupppp/MemorySharingLLM
☆ Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems NAACL 2024
Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems (TDSs). Obtaining high-quality and consistent ground-truth labels from annotators presents challenges. When evaluating a TDS, annotators must fully comprehend the dialogue before providing judgments. Previous studies suggest using only a portion of the dialogue context in the annotation process. However, the impact of this limitation on label quality remains unexplored. This study investigates the influence of dialogue context on annotation quality, considering the truncated context for relevance and usefulness labeling. We further propose to use large language models (LLMs) to summarize the dialogue context to provide a rich and short description of the dialogue context and study the impact of doing so on the annotator's performance. Reducing context leads to more positive ratings. Conversely, providing the entire dialogue context yields higher-quality relevance ratings but introduces ambiguity in usefulness ratings. Using the first user utterance as context leads to consistent ratings, akin to those obtained using the entire dialogue, with significantly reduced annotation effort. Our findings show how task design, particularly the availability of dialogue context, affects the quality and consistency of crowdsourced evaluation labels.
comment: Accepted at NAACL 2024 Findings
☆ Constructing Benchmarks and Interventions for Combating Hallucinations in LLMs
Large language models (LLMs) are susceptible to hallucination, which sparked a widespread effort to detect and prevent them. Recent work attempts to mitigate hallucinations by intervening in the model's computation during generation, using different setups and heuristics. Those works lack separation between different hallucination causes. In this work, we first introduce an approach for constructing datasets based on the model knowledge for detection and intervention methods in closed-book and open-book question-answering settings. We then characterize the effect of different choices for intervention, such as the intervened components (MLPs, attention block, residual stream, and specific heads), and how often and how strongly to intervene. We find that intervention success varies depending on the component, with some components being detrimental to language modeling capabilities. Finally, we find that interventions can benefit from pre-hallucination steering direction instead of post-hallucination. The code is available at https://github.com/technion-cs-nlp/hallucination-mitigation
☆ Compression Represents Intelligence Linearly
There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. Despite such appealing discussions, little empirical evidence is present for the interplay between compression and intelligence. In this work, we examine their relationship in the context of LLMs, treating LLMs as data compressors. Given the abstract concept of "intelligence", we adopt the average downstream benchmark scores as a surrogate, specifically targeting intelligence related to knowledge and commonsense, coding, and mathematical reasoning. Across 12 benchmarks, our study brings together 30 public LLMs that originate from diverse organizations. Remarkably, we find that LLMs' intelligence -- reflected by average benchmark scores -- almost linearly correlates with their ability to compress external text corpora. These results provide concrete evidence supporting the belief that superior compression indicates greater intelligence. Furthermore, our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
comment: Preprint. Data and code are available at https://github.com/hkust-nlp/llm-compression-intelligence
Foundational Challenges in Assuring Alignment and Safety of Large Language Models
This work identifies 18 foundational challenges in assuring the alignment and safety of large language models (LLMs). These challenges are organized into three different categories: scientific understanding of LLMs, development and deployment methods, and sociotechnical challenges. Based on the identified challenges, we pose $200+$ concrete research questions.
☆ Detecting AI Generated Text Based on NLP and Machine Learning Approaches
Recent advances in natural language processing (NLP) may enable artificial intelligence (AI) models to generate writing that is identical to human written form in the future. This might have profound ethical, legal, and social repercussions. This study aims to address this problem by offering an accurate AI detector model that can differentiate between electronically produced text and human-written text. Our approach includes machine learning methods such as XGB Classifier, SVM, BERT architecture deep learning models. Furthermore, our results show that the BERT performs better than previous models in identifying information generated by AI from information provided by humans. Provide a comprehensive analysis of the current state of AI-generated text identification in our assessment of pertinent studies. Our testing yielded positive findings, showing that our strategy is successful, with the BERT emerging as the most probable answer. We analyze the research's societal implications, highlighting the possible advantages for various industries while addressing sustainability issues pertaining to morality and the environment. The XGB classifier and SVM give 0.84 and 0.81 accuracy in this article, respectively. The greatest accuracy in this research is provided by the BERT model, which provides 0.93% accuracy.
☆ ChatShop: Interactive Information Seeking with Language Agents
The desire and ability to seek new information strategically are fundamental to human learning but often overlooked in current language agent development. Using a web shopping task as an example, we show that it can be reformulated and solved as a retrieval task without a requirement of interactive information seeking. We then redesign the task to introduce a new role of shopper, serving as a realistically constrained communication channel. The agents in our proposed ChatShop task explore user preferences in open-ended conversation to make informed decisions. Our experiments demonstrate that the proposed task can effectively evaluate the agent's ability to explore and gradually accumulate information through multi-turn interaction. We also show that LLM-simulated shoppers serve as a good proxy to real human shoppers and discover similar error patterns of agents.
☆ Progressive Knowledge Graph Completion
Knowledge Graph Completion (KGC) has emerged as a promising solution to address the issue of incompleteness within Knowledge Graphs (KGs). Traditional KGC research primarily centers on triple classification and link prediction. Nevertheless, we contend that these tasks do not align well with real-world scenarios and merely serve as surrogate benchmarks. In this paper, we investigate three crucial processes relevant to real-world construction scenarios: (a) the verification process, which arises from the necessity and limitations of human verifiers; (b) the mining process, which identifies the most promising candidates for verification; and (c) the training process, which harnesses verified data for subsequent utilization; in order to achieve a transition toward more realistic challenges. By integrating these three processes, we introduce the Progressive Knowledge Graph Completion (PKGC) task, which simulates the gradual completion of KGs in real-world scenarios. Furthermore, to expedite PKGC processing, we propose two acceleration modules: Optimized Top-$k$ algorithm and Semantic Validity Filter. These modules significantly enhance the efficiency of the mining procedure. Our experiments demonstrate that performance in link prediction does not accurately reflect performance in PKGC. A more in-depth analysis reveals the key factors influencing the results and provides potential directions for future research.
comment: 14 pages, 10 figures
☆ Is Table Retrieval a Solved Problem? Join-Aware Multi-Table Retrieval
Retrieving relevant tables containing the necessary information to accurately answer a given question over tables is critical to open-domain question-answering (QA) systems. Previous methods assume the answer to such a question can be found either in a single table or multiple tables identified through question decomposition or rewriting. However, neither of these approaches is sufficient, as many questions require retrieving multiple tables and joining them through a join plan that cannot be discerned from the user query itself. If the join plan is not considered in the retrieval stage, the subsequent steps of reasoning and answering based on those retrieved tables are likely to be incorrect. To address this problem, we introduce a method that uncovers useful join relations for any query and database during table retrieval. We use a novel re-ranking method formulated as a mixed-integer program that considers not only table-query relevance but also table-table relevance that requires inferring join relationships. Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
☆ AI-Driven Statutory Reasoning via Software Engineering Methods
The recent proliferation of generative artificial intelligence (GenAI) technologies such as pre-trained large language models (LLMs) has opened up new frontiers in computational law. An exciting area of development is the use of AI to automate the rule-based reasoning inherent in statutory and contract law. While this form of reasoning has long been studied using classical techniques of natural language processing (NLP) and formal logic, recent solutions increasingly make use of LLMs; though they are far from perfect. The advent of GenAI has made it possible to treat many of these natural language documents essentially as programs that compute a result given some set of facts. As such, it should be possible to understand, debug, maintain, evolve, and fix these documents using well-studied techniques from the field of software engineering. This article introduces several concepts of automated software testing and program analysis that could potentially be useful in computational law when applied to AI-driven analysis of statutes and contracts.
☆ Negation Triplet Extraction with Syntactic Dependency and Semantic Consistency COLING 2024
Previous works of negation understanding mainly focus on negation cue detection and scope resolution, without identifying negation subject which is also significant to the downstream tasks. In this paper, we propose a new negation triplet extraction (NTE) task which aims to extract negation subject along with negation cue and scope. To achieve NTE, we devise a novel Syntax&Semantic-Enhanced Negation Extraction model, namely SSENE, which is built based on a generative pretrained language model (PLM) {of Encoder-Decoder architecture} with a multi-task learning framework. Specifically, the given sentence's syntactic dependency tree is incorporated into the PLM's encoder to discover the correlations between the negation subject, cue and scope. Moreover, the semantic consistency between the sentence and the extracted triplet is ensured by an auxiliary task learning. Furthermore, we have constructed a high-quality Chinese dataset NegComment based on the users' reviews from the real-world platform of Meituan, upon which our evaluations show that SSENE achieves the best NTE performance compared to the baselines. Our ablation and case studies also demonstrate that incorporating the syntactic information helps the PLM's recognize the distant dependency between the subject and cue, and the auxiliary task learning is helpful to extract the negation triplets with more semantic consistency.
comment: Accepted by COLING 2024
♻ ☆ PerkwE_COQA: Enhanced Persian Conversational Question Answering by combining contextual keyword extraction with Large Language Models
Smart cities need the involvement of their residents to enhance quality of life. Conversational query-answering is an emerging approach for user engagement. There is an increasing demand of an advanced conversational question-answering that goes beyond classic systems. Existing approaches have shown that LLMs offer promising capabilities for CQA, but may struggle to capture the nuances of conversational contexts. The new approach involves understanding the content and engaging in a multi-step conversation with the user to fulfill their needs. This paper presents a novel method to elevate the performance of Persian Conversational question-answering (CQA) systems. It combines the strengths of Large Language Models (LLMs) with contextual keyword extraction. Our method extracts keywords specific to the conversational flow, providing the LLM with additional context to understand the user's intent and generate more relevant and coherent responses. We evaluated the effectiveness of this combined approach through various metrics, demonstrating significant improvements in CQA performance compared to an LLM-only baseline. The proposed method effectively handles implicit questions, delivers contextually relevant answers, and tackles complex questions that rely heavily on conversational context. The findings indicate that our method outperformed the evaluation benchmarks up to 8% higher than existing methods and the LLM-only baseline.
♻ ☆ CBQ: Cross-Block Quantization for Large Language Models
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs. However, existing PTQ methods only focus on handling the outliers within one layer or one block, which ignores the dependency of blocks and leads to severe performance degradation in low-bit settings. In this paper, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ employs a cross-block dependency using a homologous reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation. Furthermore, CBQ incorporates a coarse-to-fine preprocessing (CFP) strategy for suppressing weight and activation outliers, coupled with an adaptive LoRA-Rounding technique for precise weight quantization. These innovations enable CBQ to not only handle extreme outliers effectively but also improve overall quantization accuracy. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ quantizes the 4-bit LLAMA1-65B model within only 4.3 hours on a single GPU, achieving a commendable tradeoff between performance and quantization efficiency.
♻ ☆ Wisdom of Instruction-Tuned Language Model Crowds. Exploring Model Label Variation LREC
Large Language Models (LLMs) exhibit remarkable text classification capabilities, excelling in zero- and few-shot learning (ZSL and FSL) scenarios. However, since they are trained on different datasets, performance varies widely across tasks between those models. Recent studies emphasize the importance of considering human label variation in data annotation. However, how this human label variation also applies to LLMs remains unexplored. Given this likely model specialization, we ask: Do aggregate LLM labels improve over individual models (as for human annotators)? We evaluate four recent instruction-tuned LLMs as annotators on five subjective tasks across four languages. We use ZSL and FSL setups and label aggregation from human annotation. Aggregations are indeed substantially better than any individual model, benefiting from specialization in diverse tasks or languages. Surprisingly, FSL does not surpass ZSL, as it depends on the quality of the selected examples. However, there seems to be no good information-theoretical strategy to select those. We find that no LLM method rivals even simple supervised models. We also discuss the tradeoffs in accuracy, cost, and moral/ethical considerations between LLM and human annotation.
comment: Accepted to the 3rd Workshop on Perspectivist Approaches to NLP at LREC-COLING 2024
♻ ☆ Less is More: Understanding Word-level Textual Adversarial Attack via n-gram Frequency Descend
Word-level textual adversarial attacks have demonstrated notable efficacy in misleading Natural Language Processing (NLP) models. Despite their success, the underlying reasons for their effectiveness and the fundamental characteristics of adversarial examples (AEs) remain obscure. This work aims to interpret word-level attacks by examining their $n$-gram frequency patterns. Our comprehensive experiments reveal that in approximately 90\% of cases, word-level attacks lead to the generation of examples where the frequency of $n$-grams decreases, a tendency we term as the $n$-gram Frequency Descend ($n$-FD). This finding suggests a straightforward strategy to enhance model robustness: training models using examples with $n$-FD. To examine the feasibility of this strategy, we employed the $n$-gram frequency information, as an alternative to conventional loss gradients, to generate perturbed examples in adversarial training. The experiment results indicate that the frequency-based approach performs comparably with the gradient-based approach in improving model robustness. Our research offers a novel and more intuitive perspective for understanding word-level textual adversarial attacks and proposes a new direction to improve model robustness.
comment: To be published in: 2024 IEEE Conference on Artificial Intelligence (CAI 2024)
♻ ☆ Large Language Models as Optimizers ICLR 2024
Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to our main application in prompt optimization, where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Code at https://github.com/google-deepmind/opro.
comment: ICLR 2024; 42 pages, 26 figures, 15 tables. Code at https://github.com/google-deepmind/opro
♻ ☆ Neuron-level LLM Patching for Code Generation
Large Language Models (LLMs) have found widespread adoption in software engineering, particularly in code generation tasks. However, updating these models with new knowledge can be prohibitively expensive, yet it is essential for maximizing their utility. In this paper, we propose a novel and effective model editing approach, \textsc{MENT}, to patch LLMs in coding tasks. \textsc{MENT} is effective, efficient, and reliable. It can correct a neural model by patching 1 or 2 neurons. As the pioneer work on neuron-level model editing of generative models, we formalize the editing process and introduce the involved concepts. Besides, we also introduce new measures to evaluate its generalization ability, and build a benchmark for further study. Our approach is evaluated on three coding tasks, including API-seq recommendation, line-level code generation, and pseudocode-to-code transaction. The experimental results show that the proposed approach outperforms the state of the arts by a significant margin in both effectiveness and efficiency measures. In addition, we demonstrate the usages of \textsc{MENT} for LLM reasoning in software engineering. By editing LLM knowledge, the directly or indirectly dependent behaviors of API invocation in the chain-of-thought will change accordingly. It explained the significance of repairing LLMs.
comment: 12 pages, 6 figures, 6 tables, under peer-review
♻ ☆ Triad: A Framework Leveraging a Multi-Role LLM-based Agent to Solve Knowledge Base Question Answering
Recent progress with LLM-based agents has shown promising results across various tasks. However, their use in answering questions from knowledge bases remains largely unexplored. Implementing a KBQA system using traditional methods is challenging due to the shortage of task-specific training data and the complexity of creating task-focused model structures. In this paper, we present Triad, a unified framework that utilizes an LLM-based agent with three roles for KBQA tasks. The agent is assigned three roles to tackle different KBQA subtasks: agent as a generalist for mastering various subtasks, as a decision maker for the selection of candidates, and as an advisor for answering questions with knowledge. Our KBQA framework is executed in four phases, involving the collaboration of the agent's multiple roles. We evaluated the performance of our framework using three benchmark datasets, and the results show that our framework outperforms state-of-the-art systems on the LC-QuAD and YAGO-QA benchmarks, yielding F1 scores of 11.8% and 20.7%, respectively.
comment: 8 pages
♻ ☆ DiagGPT: An LLM-based and Multi-agent Dialogue System with Automatic Topic Management for Flexible Task-Oriented Dialogue
A significant application of Large Language Models (LLMs), like ChatGPT, is their deployment as chat agents, which respond to human inquiries across a variety of domains. While current LLMs proficiently answer general questions, they often fall short in complex diagnostic scenarios such as legal, medical, or other specialized consultations. These scenarios typically require Task-Oriented Dialogue (TOD), where an AI chat agent must proactively pose questions and guide users toward specific goals or task completion. Previous fine-tuning models have underperformed in TOD and the full potential of conversational capability in current LLMs has not yet been fully explored. In this paper, we introduce DiagGPT (Dialogue in Diagnosis GPT), an innovative approach that extends LLMs to more TOD scenarios. In addition to guiding users to complete tasks, DiagGPT can effectively manage the status of all topics throughout the dialogue development. This feature enhances user experience and offers a more flexible interaction in TOD. Our experiments demonstrate that DiagGPT exhibits outstanding performance in conducting TOD with users, showing its potential for practical applications in various fields.
♻ ☆ Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing
Large Language Models (LLMs) have demonstrated significant potential in handling complex reasoning tasks through step-by-step rationale generation. However, recent studies have raised concerns regarding the hallucination and flaws in their reasoning process. Substantial efforts are being made to improve the reliability and faithfulness of the generated rationales. Some approaches model reasoning as planning, while others focus on annotating for process supervision. Nevertheless, the planning-based search process often results in high latency due to the frequent assessment of intermediate reasoning states and the extensive exploration space. Additionally, supervising the reasoning process with human annotation is costly and challenging to scale for LLM training. To address these issues, in this paper, we propose a framework to learn planning-based reasoning through Direct Preference Optimization (DPO) on collected trajectories, which are ranked according to synthesized process rewards. Our results on challenging logical reasoning benchmarks demonstrate the effectiveness of our learning framework, showing that our 7B model can surpass the strong counterparts like GPT-3.5-Turbo.
comment: 17 pages, 9 figures
♻ ☆ A Novel Paradigm Boosting Translation Capabilities of Large Language Models NAACL 2024
This paper presents a study on strategies to enhance the translation capabilities of large language models (LLMs) in the context of machine translation (MT) tasks. The paper proposes a novel paradigm consisting of three stages: Secondary Pre-training using Extensive Monolingual Data, Continual Pre-training with Interlinear Text Format Documents, and Leveraging Source-Language Consistent Instruction for Supervised Fine-Tuning. Previous research on LLMs focused on various strategies for supervised fine-tuning (SFT), but their effectiveness has been limited. While traditional machine translation approaches rely on vast amounts of parallel bilingual data, our paradigm highlights the importance of using smaller sets of high-quality bilingual data. We argue that the focus should be on augmenting LLMs' cross-lingual alignment abilities during pre-training rather than solely relying on extensive bilingual data during SFT. Experimental results conducted using the Llama2 model, particularly on Chinese-Llama2 after monolingual augmentation, demonstrate the improved translation capabilities of LLMs. A significant contribution of our approach lies in Stage2: Continual Pre-training with Interlinear Text Format Documents, which requires less than 1B training data, making our method highly efficient. Additionally, in Stage3, we observed that setting instructions consistent with the source language benefits the supervised fine-tuning process. Experimental results demonstrate that our approach surpasses previous work and achieves superior performance compared to models such as NLLB-54B and GPT3.5-text-davinci-003, despite having a significantly smaller parameter count of only 7B or 13B. This achievement establishes our method as a pioneering strategy in the field of machine translation.
comment: Accepted in NAACL 2024
♻ ☆ Octopus v2: On-device language model for super agent
Language models have shown effectiveness in a variety of software applications, particularly in tasks related to automatic workflow. These models possess the crucial ability to call functions, which is essential in creating AI agents. Despite the high performance of large-scale language models in cloud environments, they are often associated with concerns over privacy and cost. Current on-device models for function calling face issues with latency and accuracy. Our research presents a new method that empowers an on-device model with 2 billion parameters to surpass the performance of GPT-4 in both accuracy and latency, and decrease the context length by 95\%. When compared to Llama-7B with a RAG-based function calling mechanism, our method enhances latency by 35-fold. This method reduces the latency to levels deemed suitable for deployment across a variety of edge devices in production environments, aligning with the performance requisites for real-world applications.
♻ ☆ CHOPS: CHat with custOmer Profile Systems for Customer Service with LLMs
Businesses and software platforms are increasingly turning to Large Language Models (LLMs) such as GPT-3.5, GPT-4, GLM-3, and LLaMa-2 for chat assistance with file access or as reasoning agents for customer service. However, current LLM-based customer service models have limited integration with customer profiles and lack the operational capabilities necessary for effective service. Moreover, existing API integrations emphasize diversity over the precision and error avoidance essential in real-world customer service scenarios. To address these issues, we propose an LLM agent named CHOPS (CHat with custOmer Profile in existing System), designed to: (1) efficiently utilize existing databases or systems for accessing user information or interacting with these systems following existing guidelines; (2) provide accurate and reasonable responses or carry out required operations in the system while avoiding harmful operations; and (3) leverage a combination of small and large LLMs to achieve satisfying performance at a reasonable inference cost. We introduce a practical dataset, the CPHOS-dataset, which includes a database, guiding files, and QA pairs collected from CPHOS, an online platform that facilitates the organization of simulated Physics Olympiads for high school teachers and students. We have conducted extensive experiments to validate the performance of our proposed CHOPS architecture using the CPHOS-dataset, with the aim of demonstrating how LLMs can enhance or serve as alternatives to human customer service. Code for our proposed architecture and dataset can be found at {https://github.com/JingzheShi/CHOPS}.
comment: 14 pages
♻ ☆ Eliciting the Translation Ability of Large Language Models via Multilingual Finetuning with Translation Instructions ACL
Large-scale Pretrained Language Models (LLMs), such as ChatGPT and GPT4, have shown strong abilities in multilingual translations, without being explicitly trained on parallel corpora. It is interesting how the LLMs obtain their ability to carry out translation instructions for different languages. In this paper, we present a detailed analysis by finetuning a multilingual pretrained language model, XGLM-7B, to perform multilingual translation following given instructions. Firstly, we show that multilingual LLMs have stronger translation abilities than previously demonstrated. For a certain language, the performance depends on its similarity to English and the amount of data used in the pretraining phase. Secondly, we find that LLMs' ability to carry out translation instructions relies on the understanding of translation instructions and the alignment among different languages. With multilingual finetuning, LLMs could learn to perform the translation task well even for those language pairs unseen during the instruction tuning phase.
comment: accepted by Transaction of ACL, pre-MIT version
♻ ☆ Rectifying Demonstration Shortcut in In-Context Learning NAACL 2024
Large language models (LLMs) are able to solve various tasks with only a few demonstrations utilizing their in-context learning (ICL) abilities. However, LLMs often rely on their pre-trained semantic priors of demonstrations rather than on the input-label relationships to proceed with ICL prediction. In this work, we term this phenomenon as the 'Demonstration Shortcut'. While previous works have primarily focused on improving ICL prediction results for predefined tasks, we aim to rectify the Demonstration Shortcut, thereby enabling the LLM to effectively learn new input-label relationships from demonstrations. To achieve this, we introduce In-Context Calibration, a demonstration-aware calibration method. We evaluate the effectiveness of the proposed method in two settings: (1) the Original ICL Task using the standard label space and (2) the Task Learning setting, where the label space is replaced with semantically unrelated tokens. In both settings, In-Context Calibration demonstrates substantial improvements, with results generalized across three LLM families (OPT, GPT, and Llama2) under various configurations.
comment: NAACL 2024
♻ ☆ Flames: Benchmarking Value Alignment of LLMs in Chinese NAACL 2024
The widespread adoption of large language models (LLMs) across various regions underscores the urgent need to evaluate their alignment with human values. Current benchmarks, however, fall short of effectively uncovering safety vulnerabilities in LLMs. Despite numerous models achieving high scores and 'topping the chart' in these evaluations, there is still a significant gap in LLMs' deeper alignment with human values and achieving genuine harmlessness. To this end, this paper proposes a value alignment benchmark named Flames, which encompasses both common harmlessness principles and a unique morality dimension that integrates specific Chinese values such as harmony. Accordingly, we carefully design adversarial prompts that incorporate complex scenarios and jailbreaking methods, mostly with implicit malice. By prompting 17 mainstream LLMs, we obtain model responses and rigorously annotate them for detailed evaluation. Our findings indicate that all the evaluated LLMs demonstrate relatively poor performance on Flames, particularly in the safety and fairness dimensions. We also develop a lightweight specified scorer capable of scoring LLMs across multiple dimensions to efficiently evaluate new models on the benchmark. The complexity of Flames has far exceeded existing benchmarks, setting a new challenge for contemporary LLMs and highlighting the need for further alignment of LLMs. Our benchmark is publicly available at https://github.com/AIFlames/Flames.
comment: Accepted to the NAACL 2024
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ Not all Layers of LLMs are Necessary during Inference
The inference phase of Large Language Models (LLMs) is very expensive. An ideal inference stage of LLMs could utilize fewer computational resources while still maintaining its capabilities (e.g., generalization and in-context learning ability). In this paper, we try to answer the question, "During LLM inference, can we use shallow layers for easy instances; and deep layers for hard ones?" To answer this question, we first indicate that Not all Layers are Necessary during Inference by statistically analyzing the activated layers across tasks. Then, we propose a simple algorithm named AdaInfer to determine the inference termination moment based on the input instance adaptively. More importantly, AdaInfer does not alter LLM parameters and maintains generalizability across tasks. Experiments on well-known LLMs (i.e., Llama2 series and OPT) show that AdaInfer saves an average of 14.8% of computational resources, even up to 50% on sentiment tasks, while maintaining comparable performance. Additionally, this method is orthogonal to other model acceleration techniques, potentially boosting inference efficiency further.
♻ ☆ Can LLM-Generated Misinformation Be Detected? ICLR 2024
The advent of Large Language Models (LLMs) has made a transformative impact. However, the potential that LLMs such as ChatGPT can be exploited to generate misinformation has posed a serious concern to online safety and public trust. A fundamental research question is: will LLM-generated misinformation cause more harm than human-written misinformation? We propose to tackle this question from the perspective of detection difficulty. We first build a taxonomy of LLM-generated misinformation. Then we categorize and validate the potential real-world methods for generating misinformation with LLMs. Then, through extensive empirical investigation, we discover that LLM-generated misinformation can be harder to detect for humans and detectors compared to human-written misinformation with the same semantics, which suggests it can have more deceptive styles and potentially cause more harm. We also discuss the implications of our discovery on combating misinformation in the age of LLMs and the countermeasures.
comment: Accepted to Proceedings of ICLR 2024. 9 pages for main paper, 38 pages including appendix. The code, results, dataset for this paper and more resources on "LLMs Meet Misinformation" have been released on the project website: https://llm-misinformation.github.io/
♻ ☆ AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models
We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel freezing score, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85\%$ as evaluated on GLUE benchmark while yeilding up to $9.5\times$ fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to $1.86\times$ improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices. Code will be released.
comment: 5 pages, 5 figures
♻ ☆ Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM
The remarkable performance of large language models (LLMs) in zero-shot language understanding has garnered significant attention. However, employing LLMs for large-scale inference or domain-specific fine-tuning requires immense computational resources due to their substantial model size. To overcome these limitations, we introduce a novel method, namely GenCo, which leverages the strong generative power of LLMs to assist in training a smaller and more adaptable language model. In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways. Firstly, the LLM is used to augment each input instance with a variety of possible continuations, enriching its semantic context for better understanding. Secondly, it helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels. This ensures the generated texts are highly relevant to the predicted labels, alleviating the prediction error during pseudo-labeling, while reducing the dependency on large volumes of unlabeled text. In our experiments, GenCo outperforms previous state-of-the-art methods when only limited ($<5\%$ of original) in-domain text data is available. Notably, our approach surpasses the performance of Alpaca-7B with human prompts, highlighting the potential of leveraging LLM for self-training.
♻ ☆ SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation
In recent years, there has been growing interest in text-to-SQL translation, which is the task of converting natural language questions into executable SQL queries. This technology is important for its potential to democratize data extraction from databases. However, some of its key hurdles include domain generalisation, which is the ability to adapt to previously unseen databases, and alignment of natural language questions with the corresponding SQL queries. To overcome these challenges, we introduce SQLformer, a novel Transformer architecture specifically crafted to perform text-to-SQL translation tasks. Our model predicts SQL queries as abstract syntax trees (ASTs) in an autoregressive way, incorporating structural inductive bias in the encoder and decoder layers. This bias, guided by database table and column selection, aids the decoder in generating SQL query ASTs represented as graphs in a Breadth-First Search canonical order. Comprehensive experiments show the state-of-the-art performance of SQLformer across five widely used text-to-SQL benchmarks. Our implementation is available at https://github.com/AdrianBZG/SQLformer.
comment: 13 pages, 4 figures, 8 tables
♻ ☆ Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
♻ ☆ Relation Extraction Using Large Language Models: A Case Study on Acupuncture Point Locations
In acupuncture therapy, the accurate location of acupoints is essential for its effectiveness. The advanced language understanding capabilities of large language models (LLMs) like Generative Pre-trained Transformers (GPT) present a significant opportunity for extracting relations related to acupoint locations from textual knowledge sources. This study aims to compare the performance of GPT with traditional deep learning models (Long Short-Term Memory (LSTM) and Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT)) in extracting acupoint-related location relations and assess the impact of pretraining and fine-tuning on GPT's performance. We utilized the World Health Organization Standard Acupuncture Point Locations in the Western Pacific Region (WHO Standard) as our corpus, which consists of descriptions of 361 acupoints. Five types of relations ('direction_of,' 'distance_of,' 'part_of,' 'near_acupoint,' and 'located_near') (n= 3,174) between acupoints were annotated. Five models were compared: BioBERT, LSTM, pre-trained GPT-3.5, fine-tuned GPT-3.5, as well as pre-trained GPT-4. Performance metrics included micro-average exact match precision, recall, and F1 scores. Our results demonstrate that fine-tuned GPT-3.5 consistently outperformed other models in F1 scores across all relation types. Overall, it achieved the highest micro-average F1 score of 0.92. This study underscores the effectiveness of LLMs like GPT in extracting relations related to acupoint locations, with implications for accurately modeling acupuncture knowledge and promoting standard implementation in acupuncture training and practice. The findings also contribute to advancing informatics applications in traditional and complementary medicine, showcasing the potential of LLMs in natural language processing.
♻ ☆ Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
♻ ☆ Does fine-tuning GPT-3 with the OpenAI API leak personally-identifiable information?
Machine learning practitioners often fine-tune generative pre-trained models like GPT-3 to improve model performance at specific tasks. Previous works, however, suggest that fine-tuned machine learning models memorize and emit sensitive information from the original fine-tuning dataset. Companies such as OpenAI offer fine-tuning services for their models, but no prior work has conducted a memorization attack on any closed-source models. In this work, we simulate a privacy attack on GPT-3 using OpenAI's fine-tuning API. Our objective is to determine if personally identifiable information (PII) can be extracted from this model. We (1) explore the use of naive prompting methods on a GPT-3 fine-tuned classification model, and (2) we design a practical word generation task called Autocomplete to investigate the extent of PII memorization in fine-tuned GPT-3 within a real-world context. Our findings reveal that fine-tuning GPT3 for both tasks led to the model memorizing and disclosing critical personally identifiable information (PII) obtained from the underlying fine-tuning dataset. To encourage further research, we have made our codes and datasets publicly available on GitHub at: https://github.com/albertsun1/gpt3-pii-attacks
♻ ☆ Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval NAACL 2024
There has been limited success for dense retrieval models in multilingual retrieval, due to uneven and scarce training data available across multiple languages. Synthetic training data generation is promising (e.g., InPars or Promptagator), but has been investigated only for English. Therefore, to study model capabilities across both cross-lingual and monolingual retrieval tasks, we develop SWIM-IR, a synthetic retrieval training dataset containing 33 (high to very-low resource) languages for fine-tuning multilingual dense retrievers without requiring any human supervision. To construct SWIM-IR, we propose SAP (summarize-then-ask prompting), where the large language model (LLM) generates a textual summary prior to the query generation step. SAP assists the LLM in generating informative queries in the target language. Using SWIM-IR, we explore synthetic fine-tuning of multilingual dense retrieval models and evaluate them robustly on three retrieval benchmarks: XOR-Retrieve (cross-lingual), MIRACL (monolingual) and XTREME-UP (cross-lingual). Our models, called SWIM-X, are competitive with human-supervised dense retrieval models, e.g., mContriever-X, finding that SWIM-IR can cheaply substitute for expensive human-labeled retrieval training data. SWIM-IR dataset and SWIM-X models are available at https://github.com/google-research-datasets/SWIM-IR.
comment: Accepted at NAACL 2024. Data released at https://github.com/google-research-datasets/swim-ir
♻ ☆ NL2KQL: From Natural Language to Kusto Query
Data is growing rapidly in volume and complexity. Proficiency in database query languages is pivotal for crafting effective queries. As coding assistants become more prevalent, there is significant opportunity to enhance database query languages. The Kusto Query Language (KQL) is a widely used query language for large semi-structured data such as logs, telemetries, and time-series for big data analytics platforms. This paper introduces NL2KQL an innovative framework that uses large language models (LLMs) to convert natural language queries (NLQs) to KQL queries. The proposed NL2KQL framework includes several key components: Schema Refiner which narrows down the schema to its most pertinent elements; the Few-shot Selector which dynamically selects relevant examples from a few-shot dataset; and the Query Refiner which repairs syntactic and semantic errors in KQL queries. Additionally, this study outlines a method for generating large datasets of synthetic NLQ-KQL pairs which are valid within a specific database contexts. To validate NL2KQL's performance, we utilize an array of online (based on query execution) and offline (based on query parsing) metrics. Through ablation studies, the significance of each framework component is examined, and the datasets used for benchmarking are made publicly available. This work is the first of its kind and is compared with available baselines to demonstrate its effectiveness.
♻ ☆ Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step ACL 2023
Chain-of-thought prompting (e.g., "Let's think step-by-step") primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M -- 1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.
comment: ACL 2023
♻ ☆ Can MLLMs Perform Text-to-Image In-Context Learning?
The evolution from Large Language Models (LLMs) to Multimodal Large Language Models (MLLMs) has spurred research into extending In-Context Learning (ICL) to its multimodal counterpart. Existing such studies have primarily concentrated on image-to-text ICL. However, the Text-to-Image ICL (T2I-ICL), with its unique characteristics and potential applications, remains underexplored. To address this gap, we formally define the task of T2I-ICL and present CoBSAT, the first T2I-ICL benchmark dataset, encompassing ten tasks. Utilizing our dataset to benchmark six state-of-the-art MLLMs, we uncover considerable difficulties MLLMs encounter in solving T2I-ICL. We identify the primary challenges as the inherent complexity of multimodality and image generation, and show that strategies such as fine-tuning and Chain-of-Thought prompting help to mitigate these difficulties, leading to notable improvements in performance. Our code and dataset are available at https://github.com/UW-Madison-Lee-Lab/CoBSAT.
♻ ☆ Computational Sentence-level Metrics Predicting Human Sentence Comprehension
The majority of research in computational psycholinguistics has concentrated on the processing of words. This study introduces innovative methods for computing sentence-level metrics using multilingual large language models. The metrics developed sentence surprisal and sentence relevance and then are tested and compared to validate whether they can predict how humans comprehend sentences as a whole across languages. These metrics offer significant interpretability and achieve high accuracy in predicting human sentence reading speeds. Our results indicate that these computational sentence-level metrics are exceptionally effective at predicting and elucidating the processing difficulties encountered by readers in comprehending sentences as a whole across a variety of languages. Their impressive performance and generalization capabilities provide a promising avenue for future research in integrating LLMs and cognitive science.
♻ ☆ Visual Grounding Methods for VQA are Working for the Wrong Reasons! ACL 2020
Existing Visual Question Answering (VQA) methods tend to exploit dataset biases and spurious statistical correlations, instead of producing right answers for the right reasons. To address this issue, recent bias mitigation methods for VQA propose to incorporate visual cues (e.g., human attention maps) to better ground the VQA models, showcasing impressive gains. However, we show that the performance improvements are not a result of improved visual grounding, but a regularization effect which prevents over-fitting to linguistic priors. For instance, we find that it is not actually necessary to provide proper, human-based cues; random, insensible cues also result in similar improvements. Based on this observation, we propose a simpler regularization scheme that does not require any external annotations and yet achieves near state-of-the-art performance on VQA-CPv2.
comment: ACL 2020
♻ ☆ Near-Term Advances in Quantum Natural Language Processing
This paper describes experiments showing that some tasks in natural language processing (NLP) can already be performed using quantum computers, though so far only with small datasets. We demonstrate various approaches to topic classification. The first uses an explicit word-based approach, in which word-topic scoring weights are implemented as fractional rotations of individual qubit, and a new phrase is classified based on the accumulation of these weights in a scoring qubit using entangling controlled-NOT gates. This is compared with more scalable quantum encodings of word embedding vectors, which are used in the computation of kernel values in a quantum support vector machine: this approach achieved an average of 62% accuracy on classification tasks involving over 10000 words, which is the largest such quantum computing experiment to date. We describe a quantum probability approach to bigram modeling that can be applied to sequences of words and formal concepts, investigating a generative approximation to these distributions using a quantum circuit Born machine, and an approach to ambiguity resolution in verb-noun composition using single-qubit rotations for simple nouns and 2-qubit controlled-NOT gates for simple verbs. The smaller systems described have been run successfully on physical quantum computers, and the larger ones have been simulated. We show that statistically meaningful results can be obtained using real datasets, but this is much more difficult to predict than with easier artificial language examples used previously in developing quantum NLP systems. Other approaches to quantum NLP are compared, partly with respect to contemporary issues including informal language, fluency, and truthfulness.
♻ ☆ README: Bridging Medical Jargon and Lay Understanding for Patient Education through Data-Centric NLP
The advancement in healthcare has shifted focus toward patient-centric approaches, particularly in self-care and patient education, facilitated by access to Electronic Health Records (EHR). However, medical jargon in EHRs poses significant challenges in patient comprehension. To address this, we introduce a new task of automatically generating lay definitions, aiming to simplify complex medical terms into patient-friendly lay language. We first created the README dataset, an extensive collection of over 50,000 unique (medical term, lay definition) pairs and 300,000 mentions, each offering context-aware lay definitions manually annotated by domain experts. We have also engineered a data-centric Human-AI pipeline that synergizes data filtering, augmentation, and selection to improve data quality. We then used README as the training data for models and leveraged a Retrieval-Augmented Generation method to reduce hallucinations and improve the quality of model outputs. Our extensive automatic and human evaluations demonstrate that open-source mobile-friendly models, when fine-tuned with high-quality data, are capable of matching or even surpassing the performance of state-of-the-art closed-source large language models like ChatGPT. This research represents a significant stride in closing the knowledge gap in patient education and advancing patient-centric healthcare solutions.
♻ ☆ A novel approach to measuring the scope of patent claims based on probabilities obtained from (large) language models
This work proposes to measure the scope of a patent claim as the reciprocal of self-information contained in this claim. Self-information is calculated based on a probability of occurrence of the claim, where this probability is obtained from a language model. Grounded in information theory, this approach is based on the assumption that an unlikely concept is more informative than a usual concept, insofar as it is more surprising. In turn, the more surprising the information required to define the claim, the narrower its scope. Seven language models are considered, ranging from simplest models (each word or character has an identical probability) to intermediate models (based on average word or character frequencies), to large language models (LLMs) such as GPT2 and davinci-002. Remarkably, when using the simplest language models to compute the probabilities, the scope becomes proportional to the reciprocal of the number of words or characters involved in the claim, a metric already used in previous works. Application is made to multiple series of patent claims directed to distinct inventions, where each series consists of claims devised to have a gradually decreasing scope. The performance of the language models is then assessed through several ad hoc tests. The LLMs outperform models based on word and character frequencies, which themselves outdo the simplest models based on word or character counts. Interestingly, however, the character count appears to be a more reliable indicator than the word count.
comment: 58 pages, 6 tables, 6 figures. Substantial changes made to version 2: New section 4.1 added (including a new table); Minor normalization issue corrected in values listed in Appendix B; Content of former appendix C now moved to Section 3; and new Appendix C added. Minor changes made to version 3 (style, typos, language). New calculations entered in version 4 (based on davinci-002 and babgage-002)
♻ ☆ Towards Uncovering How Large Language Model Works: An Explainability Perspective
Large language models (LLMs) have led to breakthroughs in language tasks, yet the internal mechanisms that enable their remarkable generalization and reasoning abilities remain opaque. This lack of transparency presents challenges such as hallucinations, toxicity, and misalignment with human values, hindering the safe and beneficial deployment of LLMs. This paper aims to uncover the mechanisms underlying LLM functionality through the lens of explainability. First, we review how knowledge is architecturally composed within LLMs and encoded in their internal parameters via mechanistic interpretability techniques. Then, we summarize how knowledge is embedded in LLM representations by leveraging probing techniques and representation engineering. Additionally, we investigate the training dynamics through a mechanistic perspective to explain phenomena such as grokking and memorization. Lastly, we explore how the insights gained from these explanations can enhance LLM performance through model editing, improve efficiency through pruning, and better align with human values.
comment: 8 pages, 2 figures
♻ ☆ X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs NAACL 2024
Understanding when two pieces of text convey the same information is a goal touching many subproblems in NLP, including textual entailment and fact-checking. This problem becomes more complex when those two pieces of text are in different languages. Here, we introduce X-PARADE (Cross-lingual Paragraph-level Analysis of Divergences and Entailments), the first cross-lingual dataset of paragraph-level information divergences. Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language, indicating whether a given piece of information is the same, new, or new but can be inferred. This last notion establishes a link with cross-language NLI. Aligned paragraphs are sourced from Wikipedia pages in different languages, reflecting real information divergences observed in the wild. Armed with our dataset, we investigate a diverse set of approaches for this problem, including token alignment from machine translation, textual entailment methods that localize their decisions, and prompting LLMs. Our results show that these methods vary in their capability to handle inferable information, but they all fall short of human performance.
comment: To be published in NAACL 2024
♻ ☆ What If the TV Was Off? Examining Counterfactual Reasoning Abilities of Multi-modal Language Models
Counterfactual reasoning, a fundamental aspect of human cognition, involves contemplating alternatives to established facts or past events, significantly enhancing our abilities in planning and decision-making. In light of the advancements in current multi-modal large language models, we explore their effectiveness in counterfactual reasoning. To facilitate this investigation, we introduce a novel dataset, C-VQA, specifically designed to test the counterfactual reasoning capabilities of modern multi-modal large language models. This dataset is constructed by infusing original questions with counterfactual presuppositions, spanning various types such as numerical and boolean queries. It encompasses a mix of real and synthetic data, representing a wide range of difficulty levels. Our thorough evaluations of contemporary vision-language models using this dataset have revealed substantial performance drops, with some models showing up to a 40% decrease, highlighting a significant gap between current models and human-like vision reasoning capabilities. We hope our dataset will serve as a vital benchmark for evaluating the counterfactual reasoning capabilities of models. Code and dataset are publicly available at https://bzhao.me/C-VQA/.
♻ ☆ H2O-Danube-1.8B Technical Report
We present H2O-Danube, a series of small 1.8B language models consisting of H2O-Danube-1.8B, trained on 1T tokens, and the incremental improved H2O-Danube2-1.8B trained on an additional 2T tokens. Our models exhibit highly competitive metrics across a multitude of benchmarks and, as of the time of this writing, H2O-Danube2-1.8B achieves the top ranking on Open LLM Leaderboard for all models below the 2B parameter range. The models follow core principles of LLama 2 and Mistral, and we leverage and refine various techniques for pre-training large language models. We additionally release chat models trained with supervised fine-tuning followed by direct preference optimization. We make all models openly available under Apache 2.0 license further democratizing LLMs to a wider audience economically.
♻ ☆ Tiny Titans: Can Smaller Large Language Models Punch Above Their Weight in the Real World for Meeting Summarization? NAACL 2024
Large Language Models (LLMs) have demonstrated impressive capabilities to solve a wide range of tasks without being explicitly fine-tuned on task-specific datasets. However, deploying LLMs in the real world is not trivial, as it requires substantial computing resources. In this paper, we investigate whether smaller, compact LLMs are a good alternative to the comparatively Larger LLMs2 to address significant costs associated with utilizing LLMs in the real world. In this regard, we study the meeting summarization task in a real-world industrial environment and conduct extensive experiments by comparing the performance of fine-tuned compact LLMs (e.g., FLAN-T5, TinyLLaMA, LiteLLaMA) with zero-shot larger LLMs (e.g., LLaMA-2, GPT-3.5, PaLM-2). We observe that most smaller LLMs, even after fine-tuning, fail to outperform larger zero-shot LLMs in meeting summarization datasets. However, a notable exception is FLAN-T5 (780M parameters), which performs on par or even better than many zero-shot Larger LLMs (from 7B to above 70B parameters), while being significantly smaller. This makes compact LLMs like FLAN-T5 a suitable cost-efficient solution for real-world industrial deployment.
comment: Accepted by NAACL 2024 (Industry Track). The first two authors contributed equally to this work
♻ ☆ Tuning Language Models by Proxy
Despite the general capabilities of large pretrained language models, they consistently benefit from further adaptation to better achieve desired behaviors. However, tuning these models has become increasingly resource-intensive, or impossible when model weights are private. We introduce proxy-tuning, a lightweight decoding-time algorithm that operates on top of black-box LMs to achieve the same end as direct tuning, but by accessing only its predictions over the output vocabulary, not its parameters. Our method tunes a smaller LM, then applies the difference between the predictions of the small tuned and untuned LMs to shift the original predictions of the larger untuned model in the direction of tuning, while retaining the benefits of larger-scale pretraining. In experiments, when we apply proxy-tuning to Llama2-70B using proxies of only 7B size, we can close 88% of the gap between Llama2-70B and its truly-tuned chat version, when evaluated across knowledge, reasoning, and safety benchmarks. Interestingly, on TruthfulQA, proxy-tuned models are actually more truthful than directly tuned models, possibly because decoding-time guidance better retains the model's factual knowledge. We then demonstrate the generality of proxy-tuning by applying it to domain adaptation on code, and task-specific finetuning on question-answering and math problems. Finally, we show how to proxy-tune a truly black-box LM, GPT-3.5, for temporal adaptation, increasing its knowledge about recent events. Our work demonstrates the promise of using small tuned LMs to efficiently customize large, potentially proprietary LMs through decoding-time guidance.
comment: fix typo in Table 13, add acknowledgments section. code available at https://github.com/alisawuffles/proxy-tuning
♻ ☆ On the Fragility of Active Learners
Active learning (AL) techniques aim to maximally utilize a labeling budget by iteratively selecting instances that are most likely to improve prediction accuracy. However, their benefit compared to random sampling has not been consistent across various setups, e.g., different datasets, classifiers. In this empirical study, we examine how a combination of different factors might obscure any gains from an AL technique. Focusing on text classification, we rigorously evaluate AL techniques over around 1000 experiments that vary wrt the dataset, batch size, text representation and the classifier. We show that AL is only effective in a narrow set of circumstances. We also address the problem of using metrics that are better aligned with real world expectations. The impact of this study is in its insights for a practitioner: (a) the choice of text representation and classifier is as important as that of an AL technique, (b) choice of the right metric is critical in assessment of the latter, and, finally, (c) reported AL results must be holistically interpreted, accounting for variables other than just the query strategy.
♻ ☆ IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators
Code understanding and generation have fast become some of the most popular applications of language models (LMs). Nonetheless, research on multilingual aspects of Code-LMs (i.e., LMs for code generation) such as cross-lingual transfer between different programming languages, language-specific data augmentation, and post-hoc LM adaptation, alongside exploitation of data sources other than the original textual content, has been much sparser than for their natural language counterparts. In particular, most mainstream Code-LMs have been pre-trained on source code files alone. In this work, we investigate the prospect of leveraging readily available compiler intermediate representations (IR) - shared across programming languages - to improve the multilingual capabilities of Code-LMs and facilitate cross-lingual transfer. To this end, we first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files coupled with respective intermediate representations. Next, starting from various base Code-LMs (ranging in size from 1.1B to 7.3B parameters), we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to (1) learn the IR language and (2) align the IR constructs with respective constructs of various programming languages. Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics, including prompt robustness, multilingual code completion, code understanding, and instruction following.
♻ ☆ Do Large Language Model Understand Multi-Intent Spoken Language ?
This research signifies a considerable breakthrough in leveraging Large Language Models (LLMs) for multi-intent spoken language understanding (SLU). Our approach re-imagines the use of entity slots in multi-intent SLU applications, making the most of the generative potential of LLMs within the SLU landscape, leading to the development of the EN-LLM series. Furthermore, we introduce the concept of Sub-Intent Instruction (SII) to amplify the analysis and interpretation of complex, multi-intent communications, which further supports the creation of the ENSI-LLM models series. Our novel datasets, identified as LM-MixATIS and LM-MixSNIPS, are synthesized from existing benchmarks. The study evidences that LLMs may match or even surpass the performance of the current best multi-intent SLU models. We also scrutinize the performance of LLMs across a spectrum of intent configurations and dataset distributions. On top of this, we present two revolutionary metrics - Entity Slot Accuracy (ESA) and Combined Semantic Accuracy (CSA) - to facilitate a detailed assessment of LLM competence in this multifaceted field." Our code and datasets are available at \url{https://github.com/SJY8460/SLM}.
♻ ☆ Doing Experiments and Revising Rules with Natural Language and Probabilistic Reasoning
We build a computational model of how humans actively infer hidden rules by doing experiments. The basic principles behind the model is that, even if the rule is deterministic, the learner considers a broader space of fuzzy probabilistic rules, which it represents in natural language, and updates its hypotheses online after each experiment according to approximately Bayesian principles. In the same framework we also model experiment design according to information-theoretic criteria. We find that the combination of these three principles -- explicit hypotheses, probabilistic rules, and online updates -- can explain human performance on a Zendo-style task, and that removing any of these components leaves the model unable to account for the data.
♻ ☆ Towards Verifiable Text Generation with Symbolic References
LLMs are vulnerable to hallucinations, and thus their outputs generally require laborious human verification for high-stakes applications. To this end, we propose symbolically grounded generation (SymGen) as a simple approach for enabling easier manual validation of an LLM's output. SymGen prompts an LLM to interleave its regular output text with explicit symbolic references to fields present in some conditioning data (e.g., a table in JSON format). The references can be used to display the provenance of different spans of text in the generation, reducing the effort required for manual verification. Across a range of data-to-text and question-answering experiments, we find that LLMs are able to directly output text that makes use of accurate symbolic references while maintaining fluency and factuality. In a human study we further find that such annotations can streamline human verification of machine-generated text. Our code will be available at http://symgen.github.io.
comment: 57 pages, 8 figures, 8 tables
♻ ☆ Towards Understanding In-Context Learning with Contrastive Demonstrations and Saliency Maps
We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at https://github.com/paihengxu/XICL.
comment: 10 pages, 5 figures
♻ ☆ MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning NAACL 2024
With the rapid development of large language models (LLMs) and their integration into large multimodal models (LMMs), there has been impressive progress in zero-shot completion of user-oriented vision-language tasks. However, a gap remains in the domain of chart image understanding due to the distinct abstract components in charts. To address this, we introduce a large-scale MultiModal Chart Instruction (\textbf{MMC-Instruction}) dataset comprising 600k instances supporting diverse tasks and chart types. Leveraging this data, we develop MultiModal Chart Assistant (\textbf{MMCA}), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks. Recognizing the need for a comprehensive evaluation of LMM chart understanding, we also propose a MultiModal Chart Benchmark (\textbf{MMC-Benchmark}), a comprehensive human-annotated benchmark with nine distinct tasks evaluating reasoning capabilities over charts. Extensive experiments on MMC-Benchmark reveal the limitations of existing LMMs on correctly interpreting charts, even for the most recent GPT-4V model. Our work provides an instruction-tuning methodology and benchmark to advance multimodal understanding of charts. Code and data are available at https://github.com/FuxiaoLiu/MMC.
comment: Accepted to NAACL 2024
♻ ☆ Beyond Imitation: Leveraging Fine-grained Quality Signals for Alignment
Alignment with human preference is a desired property of large language models (LLMs). Currently, the main alignment approach is based on reinforcement learning from human feedback (RLHF). Despite the effectiveness of RLHF, it is intricate to implement and train, thus recent studies explore how to develop alternative alignment approaches based on supervised fine-tuning (SFT). A major limitation of SFT is that it essentially does imitation learning, which cannot fully understand what are the expected behaviors. To address this issue, we propose an improved alignment approach named FIGA. Different from prior methods, we incorporate fine-grained (i.e., token or phrase level) quality signals that are derived by contrasting good and bad responses. Our approach has made two major contributions. Firstly, we curate a refined alignment dataset that pairs initial responses and the corresponding revised ones. Secondly, we devise a new loss function can leverage fine-grained quality signals to instruct the learning of LLMs for alignment. Extensive experiments have demonstrated the effectiveness of our approaches by comparing a number of competitive baselines.
♻ ☆ Machine Translation for Ge'ez Language
Machine translation (MT) for low-resource languages such as Ge'ez, an ancient language that is no longer the native language of any community, faces challenges such as out-of-vocabulary words, domain mismatches, and lack of sufficient labeled training data. In this work, we explore various methods to improve Ge'ez MT, including transfer-learning from related languages, optimizing shared vocabulary and token segmentation approaches, finetuning large pre-trained models, and using large language models (LLMs) for few-shot translation with fuzzy matches. We develop a multilingual neural machine translation (MNMT) model based on languages relatedness, which brings an average performance improvement of about 4 BLEU compared to standard bilingual models. We also attempt to finetune the NLLB-200 model, one of the most advanced translation models available today, but find that it performs poorly with only 4k training samples for Ge'ez. Furthermore, we experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches, which leverages embedding similarity-based retrieval to find context examples from a parallel corpus. We observe that GPT-3.5 achieves a remarkable BLEU score of 9.2 with no initial knowledge of Ge'ez, but still lower than the MNMT baseline of 15.2. Our work provides insights into the potential and limitations of different approaches for low-resource and ancient language MT.
comment: 8 pages, 1 figure
♻ ☆ Gradient Flow of Energy: A General and Efficient Approach for Entity Alignment Decoding
Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to maximize graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively generalizes adjacency matrices to multi-views matrices:entity-to-entity, entity-to-relation, relation-to-entity, and relation-to-triple. The gradient flow through generalized matrices enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse public datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.
♻ ☆ On the Calibration of Multilingual Question Answering LLMs
Multilingual pre-trained Large Language Models (LLMs) are incredibly effective at Question Answering (QA), a core task in Natural Language Understanding, achieving high accuracies on several multilingual benchmarks. However, little is known about how well their confidences are calibrated. In this paper, we comprehensively benchmark the calibration of several multilingual LLMs (MLLMs) on a variety of QA tasks. We perform extensive experiments, spanning encoder-only, encoder-decoder, and decoder-only QA models (size varying from 110M to 7B parameters) and diverse languages, including both high- and low-resource ones. We study different dimensions of calibration in in-distribution, out-of-distribution, and cross-lingual transfer settings, and investigate strategies to improve it, including post-hoc methods and regularized fine-tuning. For decoder-only LLMs such as LlaMa2, we additionally find that in-context learning improves confidence calibration on multilingual data. We also conduct several ablation experiments to study the effect of language distances, language corpus size, and model size on calibration, and how multilingual models compare with their monolingual counterparts for diverse tasks and languages. Our experiments suggest that the multilingual QA models are poorly calibrated for languages other than English and incorporating a small set of cheaply translated multilingual samples during fine-tuning/calibration effectively enhances the calibration performance.
comment: Preprint. Under Submission
♻ ☆ Self-AMPLIFY: Improving Small Language Models with Self Post Hoc Explanations
Incorporating natural language rationales in the prompt and In-Context Learning (ICL) has led to a significant improvement of Large Language Models (LLMs) performance. However, rationales currently require human-annotation or the use of auxiliary proxy models to target promising samples or generate high-quality rationales. In this work, we propose Self-AMPLIFY to generate automatically rationales from post hoc explanation methods applied to Small Language Models (SLMs) to improve their own performance. Self-AMPLIFY is a 3-step method that targets samples, generates rationales and builds a final prompt to leverage ICL. Self-AMPLIFY performance is evaluated on two SLMs and two datasets requiring reasoning abilities: these experiments show that Self-AMPLIFY achieves good results against competitors. Self-AMPLIFY is the first method to apply post hoc explanation methods to SLM to generate rationales to improve their own performance in a fully automated manner.
Computer Vision and Pattern Recognition 109
☆ Can We Break Free from Strong Data Augmentations in Self-Supervised Learning?
Self-supervised learning (SSL) has emerged as a promising solution for addressing the challenge of limited labeled data in deep neural networks (DNNs), offering scalability potential. However, the impact of design dependencies within the SSL framework remains insufficiently investigated. In this study, we comprehensively explore SSL behavior across a spectrum of augmentations, revealing their crucial role in shaping SSL model performance and learning mechanisms. Leveraging these insights, we propose a novel learning approach that integrates prior knowledge, with the aim of curtailing the need for extensive data augmentations and thereby amplifying the efficacy of learned representations. Notably, our findings underscore that SSL models imbued with prior knowledge exhibit reduced texture bias, diminished reliance on shortcuts and augmentations, and improved robustness against both natural and adversarial corruptions. These findings not only illuminate a new direction in SSL research, but also pave the way for enhancing DNN performance while concurrently alleviating the imperative for intensive data augmentation, thereby enhancing scalability and real-world problem-solving capabilities.
☆ LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives
Large garages are ubiquitous yet intricate scenes in our daily lives, posing challenges characterized by monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction fail in these environments due to poor correspondence construction. To address these challenges, this paper introduces LetsGo, a LiDAR-assisted Gaussian splatting approach for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate LiDAR and image data scanning. With this Polar device, we present a GarageWorld dataset consisting of five expansive garage scenes with diverse geometric structures and will release the dataset to the community for further research. We demonstrate that the collected LiDAR point cloud by the Polar device enhances a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We also propose a novel depth regularizer for 3D Gaussian splatting algorithm training, effectively eliminating floating artifacts in rendered images, and a lightweight Level of Detail (LOD) Gaussian renderer for real-time viewing on web-based devices. Additionally, we explore a hybrid representation that combines the advantages of traditional mesh in depicting simple geometry and colors (e.g., walls and the ground) with modern 3D Gaussian representations capturing complex details and high-frequency textures. This strategy achieves an optimal balance between memory performance and rendering quality. Experimental results on our dataset, along with ScanNet++ and KITTI-360, demonstrate the superiority of our method in rendering quality and resource efficiency.
comment: Project Page: https://jdtsui.github.io/letsgo/
☆ FSRT: Facial Scene Representation Transformer for Face Reenactment from Factorized Appearance, Head-pose, and Facial Expression Features CVPR 2024
The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a different person (cross-reenactment). Most existing methods are CNN-based and estimate optical flow from the source image to the current driving frame, which is then inpainted and refined to produce the output animation. We propose a transformer-based encoder for computing a set-latent representation of the source image(s). We then predict the output color of a query pixel using a transformer-based decoder, which is conditioned with keypoints and a facial expression vector extracted from the driving frame. Latent representations of the source person are learned in a self-supervised manner that factorize their appearance, head pose, and facial expressions. Thus, they are perfectly suited for cross-reenactment. In contrast to most related work, our method naturally extends to multiple source images and can thus adapt to person-specific facial dynamics. We also propose data augmentation and regularization schemes that are necessary to prevent overfitting and support generalizability of the learned representations. We evaluated our approach in a randomized user study. The results indicate superior performance compared to the state-of-the-art in terms of motion transfer quality and temporal consistency.
comment: Accepted to CVPR 2024
☆ Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement CVPR
Image restoration, which aims to recover high-quality images from their corrupted counterparts, often faces the challenge of being an ill-posed problem that allows multiple solutions for a single input. However, most deep learning based works simply employ l1 loss to train their network in a deterministic way, resulting in over-smoothed predictions with inferior perceptual quality. In this work, we propose a novel method that shifts the focus from a deterministic pixel-by-pixel comparison to a statistical perspective, emphasizing the learning of distributions rather than individual pixel values. The core idea is to introduce spatial entropy into the loss function to measure the distribution difference between predictions and targets. To make this spatial entropy differentiable, we employ kernel density estimation (KDE) to approximate the probabilities for specific intensity values of each pixel with their neighbor areas. Specifically, we equip the entropy with diffusion models and aim for superior accuracy and enhanced perceptual quality over l1 based noise matching loss. In the experiments, we evaluate the proposed method for low light enhancement on two datasets and the NTIRE challenge 2024. All these results illustrate the effectiveness of our statistic-based entropy loss. Code is available at https://github.com/shermanlian/spatial-entropy-loss.
comment: CVPRW 2024, best LPIPS in the NTIRE low light enhancement challenge 2024
☆ Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models CVPR
Though diffusion models have been successfully applied to various image restoration (IR) tasks, their performance is sensitive to the choice of training datasets. Typically, diffusion models trained in specific datasets fail to recover images that have out-of-distribution degradations. To address this problem, this work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR). More specifically, all low-quality images are simulated with a synthetic degradation pipeline that contains multiple common degradations such as blur, resize, noise, and JPEG compression. Then we introduce robust training for a degradation-aware CLIP model to extract enriched image content features to assist high-quality image restoration. Our base diffusion model is the image restoration SDE (IR-SDE). Built upon it, we further present a posterior sampling strategy for fast noise-free image generation. We evaluate our model on both synthetic and real-world degradation datasets. Moreover, experiments on the unified image restoration task illustrate that the proposed posterior sampling improves image generation quality for various degradations.
comment: CVPRW 2024; Code: https://github.com/Algolzw/daclip-uir
☆ Adaptive Patching for High-resolution Image Segmentation with Transformers
Attention-based models are proliferating in the space of image analytics, including segmentation. The standard method of feeding images to transformer encoders is to divide the images into patches and then feed the patches to the model as a linear sequence of tokens. For high-resolution images, e.g. microscopic pathology images, the quadratic compute and memory cost prohibits the use of an attention-based model, if we are to use smaller patch sizes that are favorable in segmentation. The solution is to either use custom complex multi-resolution models or approximate attention schemes. We take inspiration from Adapative Mesh Refinement (AMR) methods in HPC by adaptively patching the images, as a pre-processing step, based on the image details to reduce the number of patches being fed to the model, by orders of magnitude. This method has a negligible overhead, and works seamlessly with any attention-based model, i.e. it is a pre-processing step that can be adopted by any attention-based model without friction. We demonstrate superior segmentation quality over SoTA segmentation models for real-world pathology datasets while gaining a geomean speedup of $6.9\times$ for resolutions up to $64K^2$, on up to $2,048$ GPUs.
☆ HSIDMamba: Exploring Bidirectional State-Space Models for Hyperspectral Denoising
Effectively discerning spatial-spectral dependencies in HSI denoising is crucial, but prevailing methods using convolution or transformers still face computational efficiency limitations. Recently, the emerging Selective State Space Model(Mamba) has risen with its nearly linear computational complexity in processing natural language sequences, which inspired us to explore its potential in handling long spectral sequences. In this paper, we propose HSIDMamba(HSDM), tailored to exploit the linear complexity for effectively capturing spatial-spectral dependencies in HSI denoising. In particular, HSDM comprises multiple Hyperspectral Continuous Scan Blocks, incorporating BCSM(Bidirectional Continuous Scanning Mechanism), scale residual, and spectral attention mechanisms to enhance the capture of long-range and local spatial-spectral information. BCSM strengthens spatial-spectral interactions by linking forward and backward scans and enhancing information from eight directions through SSM, significantly enhancing the perceptual capability of HSDM and improving denoising performance more effectively. Extensive evaluations against HSI denoising benchmarks validate the superior performance of HSDM, achieving state-of-the-art results in performance and surpassing the efficiency of the latest transformer architectures by $30\%$.
☆ XoFTR: Cross-modal Feature Matching Transformer CVPR
We introduce, XoFTR, a cross-modal cross-view method for local feature matching between thermal infrared (TIR) and visible images. Unlike visible images, TIR images are less susceptible to adverse lighting and weather conditions but present difficulties in matching due to significant texture and intensity differences. Current hand-crafted and learning-based methods for visible-TIR matching fall short in handling viewpoint, scale, and texture diversities. To address this, XoFTR incorporates masked image modeling pre-training and fine-tuning with pseudo-thermal image augmentation to handle the modality differences. Additionally, we introduce a refined matching pipeline that adjusts for scale discrepancies and enhances match reliability through sub-pixel level refinement. To validate our approach, we collect a comprehensive visible-thermal dataset, and show that our method outperforms existing methods on many benchmarks.
comment: CVPR Image Matching Workshop, 2024. 12 pages, 7 figures, 5 tables. Codes and dataset are available at https://github.com/OnderT/XoFTR
☆ Harnessing GPT-4V(ision) for Insurance: A Preliminary Exploration
The emergence of Large Multimodal Models (LMMs) marks a significant milestone in the development of artificial intelligence. Insurance, as a vast and complex discipline, involves a wide variety of data forms in its operational processes, including text, images, and videos, thereby giving rise to diverse multimodal tasks. Despite this, there has been limited systematic exploration of multimodal tasks specific to insurance, nor a thorough investigation into how LMMs can address these challenges. In this paper, we explore GPT-4V's capabilities in the insurance domain. We categorize multimodal tasks by focusing primarily on visual aspects based on types of insurance (e.g., auto, household/commercial property, health, and agricultural insurance) and insurance stages (e.g., risk assessment, risk monitoring, and claims processing). Our experiment reveals that GPT-4V exhibits remarkable abilities in insurance-related tasks, demonstrating not only a robust understanding of multimodal content in the insurance domain but also a comprehensive knowledge of insurance scenarios. However, there are notable shortcomings: GPT-4V struggles with detailed risk rating and loss assessment, suffers from hallucination in image understanding, and shows variable support for different languages. Through this work, we aim to bridge the insurance domain with cutting-edge LMM technology, facilitate interdisciplinary exchange and development, and provide a foundation for the continued advancement and evolution of future research endeavors.
☆ Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition
We address the computational barrier of deploying advanced deep learning segmentation models in clinical settings by studying the efficacy of network compression through tensor decomposition. We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy. We applied Tucker decomposition to the convolutional kernels of the TotalSegmentator (TS) model, an nnU-Net model trained on a comprehensive dataset for automatic segmentation of 117 anatomical structures. Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TS dataset, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation performance. The application of Tucker decomposition to the TS model substantially reduced the model parameters and FLOPs across various compression rates, with limited loss in segmentation accuracy. We removed up to 88% of the model's parameters with no significant performance changes in the majority of classes after fine-tuning. Practical benefits varied across different graphics processing unit (GPU) architectures, with more distinct speed-ups on less powerful hardware. Post-hoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially sacrificing accuracy. This approach enables the broader adoption of advanced deep learning technologies in clinical practice, offering a way to navigate the constraints of hardware capabilities.
☆ Deformable MRI Sequence Registration for AI-based Prostate Cancer Diagnosis
The PI-CAI (Prostate Imaging: Cancer AI) challenge led to expert-level diagnostic algorithms for clinically significant prostate cancer detection. The algorithms receive biparametric MRI scans as input, which consist of T2-weighted and diffusion-weighted scans. These scans can be misaligned due to multiple factors in the scanning process. Image registration can alleviate this issue by predicting the deformation between the sequences. We investigate the effect of image registration on the diagnostic performance of AI-based prostate cancer diagnosis. First, the image registration algorithm, developed in MeVisLab, is analyzed using a dataset with paired lesion annotations. Second, the effect on diagnosis is evaluated by comparing case-level cancer diagnosis performance between using the original dataset, rigidly aligned diffusion-weighted scans, or deformably aligned diffusion-weighted scans. Rigid registration showed no improvement. Deformable registration demonstrated a substantial improvement in lesion overlap (+10% median Dice score) and a positive yet non-significant improvement in diagnostic performance (+0.3% AUROC, p=0.18). Our investigation shows that a substantial improvement in lesion alignment does not directly lead to a significant improvement in diagnostic performance. Qualitative analysis indicated that jointly developing image registration methods and diagnostic AI algorithms could enhance diagnostic accuracy and patient outcomes.
☆ Do LLMs Understand Visual Anomalies? Uncovering LLM Capabilities in Zero-shot Anomaly Detection
Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on the challenging MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec AD and 8.9% on VisA compared to state-of-the-art zero-shot VAD approaches.
☆ Real-world Instance-specific Image Goal Navigation for Service Robots: Bridging the Domain Gap with Contrastive Learning IROS2024
Improving instance-specific image goal navigation (InstanceImageNav), which locates the identical object in a real-world environment from a query image, is essential for robotic systems to assist users in finding desired objects. The challenge lies in the domain gap between low-quality images observed by the moving robot, characterized by motion blur and low-resolution, and high-quality query images provided by the user. Such domain gaps could significantly reduce the task success rate but have not been the focus of previous work. To address this, we propose a novel method called Few-shot Cross-quality Instance-aware Adaptation (CrossIA), which employs contrastive learning with an instance classifier to align features between massive low- and few high-quality images. This approach effectively reduces the domain gap by bringing the latent representations of cross-quality images closer on an instance basis. Additionally, the system integrates an object image collection with a pre-trained deblurring model to enhance the observed image quality. Our method fine-tunes the SimSiam model, pre-trained on ImageNet, using CrossIA. We evaluated our method's effectiveness through an InstanceImageNav task with 20 different types of instances, where the robot identifies the same instance in a real-world environment as a high-quality query image. Our experiments showed that our method improves the task success rate by up to three times compared to the baseline, a conventional approach based on SuperGlue. These findings highlight the potential of leveraging contrastive learning and image enhancement techniques to bridge the domain gap and improve object localization in robotic applications. The project website is https://emergentsystemlabstudent.github.io/DomainBridgingNav/.
comment: See website at https://emergentsystemlabstudent.github.io/DomainBridgingNav/. Submitted to IROS2024
☆ CREST: Cross-modal Resonance through Evidential Deep Learning for Enhanced Zero-Shot Learning
Zero-shot learning (ZSL) enables the recognition of novel classes by leveraging semantic knowledge transfer from known to unknown categories. This knowledge, typically encapsulated in attribute descriptions, aids in identifying class-specific visual features, thus facilitating visual-semantic alignment and improving ZSL performance. However, real-world challenges such as distribution imbalances and attribute co-occurrence among instances often hinder the discernment of local variances in images, a problem exacerbated by the scarcity of fine-grained, region-specific attribute annotations. Moreover, the variability in visual presentation within categories can also skew attribute-category associations. In response, we propose a bidirectional cross-modal ZSL approach CREST. It begins by extracting representations for attribute and visual localization and employs Evidential Deep Learning (EDL) to measure underlying epistemic uncertainty, thereby enhancing the model's resilience against hard negatives. CREST incorporates dual learning pathways, focusing on both visual-category and attribute-category alignments, to ensure robust correlation between latent and observable spaces. Moreover, we introduce an uncertainty-informed cross-modal fusion technique to refine visual-attribute inference. Extensive experiments demonstrate our model's effectiveness and unique explainability across multiple datasets. Our code and data are available at: Comments: Ongoing work; 10 pages, 2 Tables, 9 Figures; Repo is available at https://github.com/JethroJames/CREST.
comment: Ongoing work; 10 pages, 2 Tables, 9 Figures; Repo is available at https://github.com/JethroJames/CREST
☆ In-Context Translation: Towards Unifying Image Recognition, Processing, and Generation
We propose In-Context Translation (ICT), a general learning framework to unify visual recognition (e.g., semantic segmentation), low-level image processing (e.g., denoising), and conditional image generation (e.g., edge-to-image synthesis). Thanks to unification, ICT significantly reduces the inherent inductive bias that comes with designing models for specific tasks, and it maximizes mutual enhancement across similar tasks. However, the unification across a large number of tasks is non-trivial due to various data formats and training pipelines. To this end, ICT introduces two designs. Firstly, it standardizes input-output data of different tasks into RGB image pairs, e.g., semantic segmentation data pairs an RGB image with its segmentation mask in the same RGB format. This turns different tasks into a general translation task between two RGB images. Secondly, it standardizes the training of different tasks into a general in-context learning, where "in-context" means the input comprises an example input-output pair of the target task and a query image. The learning objective is to generate the "missing" data paired with the query. The implicit translation process is thus between the query and the generated image. In experiments, ICT unifies ten vision tasks and showcases impressive performance on their respective benchmarks. Notably, compared to its competitors, e.g., Painter and PromptDiffusion, ICT trained on only 4 RTX 3090 GPUs is shown to be more efficient and less costly in training.
☆ Bridging Vision and Language Spaces with Assignment Prediction ICLR 2024
This paper introduces VLAP, a novel approach that bridges pretrained vision models and large language models (LLMs) to make frozen LLMs understand the visual world. VLAP transforms the embedding space of pretrained vision models into the LLMs' word embedding space using a single linear layer for efficient and general-purpose visual and language understanding. Specifically, we harness well-established word embeddings to bridge two modality embedding spaces. The visual and text representations are simultaneously assigned to a set of word embeddings within pretrained LLMs by formulating the assigning procedure as an optimal transport problem. We predict the assignment of one modality from the representation of another modality data, enforcing consistent assignments for paired multimodal data. This allows vision and language representations to contain the same information, grounding the frozen LLMs' word embedding space in visual data. Moreover, a robust semantic taxonomy of LLMs can be preserved with visual data since the LLMs interpret and reason linguistic information from correlations between word embeddings. Experimental results show that VLAP achieves substantial improvements over the previous linear transformation-based approaches across a range of vision-language tasks, including image captioning, visual question answering, and cross-modal retrieval. We also demonstrate the learned visual representations hold a semantic taxonomy of LLMs, making visual semantic arithmetic possible.
comment: ICLR 2024 Camera-ready
☆ AesExpert: Towards Multi-modality Foundation Model for Image Aesthetics Perception
The highly abstract nature of image aesthetics perception (IAP) poses significant challenge for current multimodal large language models (MLLMs). The lack of human-annotated multi-modality aesthetic data further exacerbates this dilemma, resulting in MLLMs falling short of aesthetics perception capabilities. To address the above challenge, we first introduce a comprehensively annotated Aesthetic Multi-Modality Instruction Tuning (AesMMIT) dataset, which serves as the footstone for building multi-modality aesthetics foundation models. Specifically, to align MLLMs with human aesthetics perception, we construct a corpus-rich aesthetic critique database with 21,904 diverse-sourced images and 88K human natural language feedbacks, which are collected via progressive questions, ranging from coarse-grained aesthetic grades to fine-grained aesthetic descriptions. To ensure that MLLMs can handle diverse queries, we further prompt GPT to refine the aesthetic critiques and assemble the large-scale aesthetic instruction tuning dataset, i.e. AesMMIT, which consists of 409K multi-typed instructions to activate stronger aesthetic capabilities. Based on the AesMMIT database, we fine-tune the open-sourced general foundation models, achieving multi-modality Aesthetic Expert models, dubbed AesExpert. Extensive experiments demonstrate that the proposed AesExpert models deliver significantly better aesthetic perception performances than the state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision. Source data will be available at https://github.com/yipoh/AesExpert.
☆ UNIAA: A Unified Multi-modal Image Aesthetic Assessment Baseline and Benchmark
As an alternative to expensive expert evaluation, Image Aesthetic Assessment (IAA) stands out as a crucial task in computer vision. However, traditional IAA methods are typically constrained to a single data source or task, restricting the universality and broader application. In this work, to better align with human aesthetics, we propose a Unified Multi-modal Image Aesthetic Assessment (UNIAA) framework, including a Multi-modal Large Language Model (MLLM) named UNIAA-LLaVA and a comprehensive benchmark named UNIAA-Bench. We choose MLLMs with both visual perception and language ability for IAA and establish a low-cost paradigm for transforming the existing datasets into unified and high-quality visual instruction tuning data, from which the UNIAA-LLaVA is trained. To further evaluate the IAA capability of MLLMs, we construct the UNIAA-Bench, which consists of three aesthetic levels: Perception, Description, and Assessment. Extensive experiments validate the effectiveness and rationality of UNIAA. UNIAA-LLaVA achieves competitive performance on all levels of UNIAA-Bench, compared with existing MLLMs. Specifically, our model performs better than GPT-4V in aesthetic perception and even approaches the junior-level human. We find MLLMs have great potential in IAA, yet there remains plenty of room for further improvement. The UNIAA-LLaVA and UNIAA-Bench will be released.
☆ A Review and Efficient Implementation of Scene Graph Generation Metrics
Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at https://lorjul.github.io/sgbench/.
☆ Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training. Whereas those methods can be applied with efficiency, they also tend to harm model performance by globally shifting the distribution of latent features. To mitigate unintended overcorrection of model behavior, we propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights. While the reactive approach can be applied to many post-hoc methods, we demonstrate the incorporation of reactivity in particular for P-ClArC (Projective Class Artifact Compensation), introducing a new method called R-ClArC (Reactive Class Artifact Compensation). Through rigorous experiments in controlled settings (FunnyBirds) and with a real-world dataset (ISIC2019), we show that introducing reactivity can minimize the detrimental effect of the applied correction while simultaneously ensuring low reliance on spurious features.
☆ 3D Gaussian Splatting as Markov Chain Monte Carlo
While 3D Gaussian Splatting has recently become popular for neural rendering, current methods rely on carefully engineered cloning and splitting strategies for placing Gaussians, which does not always generalize and may lead to poor-quality renderings. In addition, for real-world scenes, they rely on a good initial point cloud to perform well. In this work, we rethink 3D Gaussians as random samples drawn from an underlying probability distribution describing the physical representation of the scene -- in other words, Markov Chain Monte Carlo (MCMC) samples. Under this view, we show that the 3D Gaussian updates are strikingly similar to a Stochastic Langevin Gradient Descent (SGLD) update. As with MCMC, samples are nothing but past visit locations, adding new Gaussians under our framework can simply be realized without heuristics as placing Gaussians at existing Gaussian locations. To encourage using fewer Gaussians for efficiency, we introduce an L1-regularizer on the Gaussians. On various standard evaluation scenes, we show that our method provides improved rendering quality, easy control over the number of Gaussians, and robustness to initialization.
☆ Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing
Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.
☆ Pseudo-label Learning with Calibrated Confidence Using an Energy-based Model IJCNN 2024
In pseudo-labeling (PL), which is a type of semi-supervised learning, pseudo-labels are assigned based on the confidence scores provided by the classifier; therefore, accurate confidence is important for successful PL. In this study, we propose a PL algorithm based on an energy-based model (EBM), which is referred to as the energy-based PL (EBPL). In EBPL, a neural network-based classifier and an EBM are jointly trained by sharing their feature extraction parts. This approach enables the model to learn both the class decision boundary and input data distribution, enhancing confidence calibration during network training. The experimental results demonstrate that EBPL outperforms the existing PL method in semi-supervised image classification tasks, with superior confidence calibration error and recognition accuracy.
comment: 8 pages, 8 figures, Accepted at IJCNN 2024
☆ MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
Knowledge distillation (KD) has emerged as a promising technique in deep learning, typically employed to enhance a compact student network through learning from their high-performance but more complex teacher variant. When applied in the context of image super-resolution, most KD approaches are modified versions of methods developed for other computer vision tasks, which are based on training strategies with a single teacher and simple loss functions. In this paper, we propose a novel Multi-Teacher Knowledge Distillation (MTKD) framework specifically for image super-resolution. It exploits the advantages of multiple teachers by combining and enhancing the outputs of these teacher models, which then guides the learning process of the compact student network. To achieve more effective learning performance, we have also developed a new wavelet-based loss function for MTKD, which can better optimize the training process by observing differences in both the spatial and frequency domains. We fully evaluate the effectiveness of the proposed method by comparing it to five commonly used KD methods for image super-resolution based on three popular network architectures. The results show that the proposed MTKD method achieves evident improvements in super-resolution performance, up to 0.46dB (based on PSNR), over state-of-the-art KD approaches across different network structures. The source code of MTKD will be made available here for public evaluation.
☆ The revenge of BiSeNet: Efficient Multi-Task Image Segmentation CVPR2024
Recent advancements in image segmentation have focused on enhancing the efficiency of the models to meet the demands of real-time applications, especially on edge devices. However, existing research has primarily concentrated on single-task settings, especially on semantic segmentation, leading to redundant efforts and specialized architectures for different tasks. To address this limitation, we propose a novel architecture for efficient multi-task image segmentation, capable of handling various segmentation tasks without sacrificing efficiency or accuracy. We introduce BiSeNetFormer, that leverages the efficiency of two-stream semantic segmentation architectures and it extends them into a mask classification framework. Our approach maintains the efficient spatial and context paths to capture detailed and semantic information, respectively, while leveraging an efficient transformed-based segmentation head that computes the binary masks and class probabilities. By seamlessly supporting multiple tasks, namely semantic and panoptic segmentation, BiSeNetFormer offers a versatile solution for multi-task segmentation. We evaluate our approach on popular datasets, Cityscapes and ADE20K, demonstrating impressive inference speeds while maintaining competitive accuracy compared to state-of-the-art architectures. Our results indicate that BiSeNetFormer represents a significant advancement towards fast, efficient, and multi-task segmentation networks, bridging the gap between model efficiency and task adaptability.
comment: Accepted to ECV workshop at CVPR2024
☆ nnU-Net Revisited: A Call for Rigorous Validation in 3D Medical Image Segmentation
The release of nnU-Net marked a paradigm shift in 3D medical image segmentation, demonstrating that a properly configured U-Net architecture could still achieve state-of-the-art results. Despite this, the pursuit of novel architectures, and the respective claims of superior performance over the U-Net baseline, continued. In this study, we demonstrate that many of these recent claims fail to hold up when scrutinized for common validation shortcomings, such as the use of inadequate baselines, insufficient datasets, and neglected computational resources. By meticulously avoiding these pitfalls, we conduct a thorough and comprehensive benchmarking of current segmentation methods including CNN-based, Transformer-based, and Mamba-based approaches. In contrast to current beliefs, we find that the recipe for state-of-the-art performance is 1) employing CNN-based U-Net models, including ResNet and ConvNeXt variants, 2) using the nnU-Net framework, and 3) scaling models to modern hardware resources. These results indicate an ongoing innovation bias towards novel architectures in the field and underscore the need for more stringent validation standards in the quest for scientific progress.
☆ AI-KD: Towards Alignment Invariant Face Image Quality Assessment Using Knowledge Distillation
Face Image Quality Assessment (FIQA) techniques have seen steady improvements over recent years, but their performance still deteriorates if the input face samples are not properly aligned. This alignment sensitivity comes from the fact that most FIQA techniques are trained or designed using a specific face alignment procedure. If the alignment technique changes, the performance of most existing FIQA techniques quickly becomes suboptimal. To address this problem, we present in this paper a novel knowledge distillation approach, termed AI-KD that can extend on any existing FIQA technique, improving its robustness to alignment variations and, in turn, performance with different alignment procedures. To validate the proposed distillation approach, we conduct comprehensive experiments on 6 face datasets with 4 recent face recognition models and in comparison to 7 state-of-the-art FIQA techniques. Our results show that AI-KD consistently improves performance of the initial FIQA techniques not only with misaligned samples, but also with properly aligned facial images. Furthermore, it leads to a new state-of-the-art, when used with a competitive initial FIQA approach. The code for AI-KD is made publicly available from: https://github.com/LSIbabnikz/AI-KD.
comment: IEEE International Workshop on Biometrics and Forensics (IWBF) 2024, pp. 6
☆ Text-Driven Diverse Facial Texture Generation via Progressive Latent-Space Refinement
Automatic 3D facial texture generation has gained significant interest recently. Existing approaches may not support the traditional physically based rendering pipeline or rely on 3D data captured by Light Stage. Our key contribution is a progressive latent space refinement approach that can bootstrap from 3D Morphable Models (3DMMs)-based texture maps generated from facial images to generate high-quality and diverse PBR textures, including albedo, normal, and roughness. It starts with enhancing Generative Adversarial Networks (GANs) for text-guided and diverse texture generation. To this end, we design a self-supervised paradigm to overcome the reliance on ground truth 3D textures and train the generative model with only entangled texture maps. Besides, we foster mutual enhancement between GANs and Score Distillation Sampling (SDS). SDS boosts GANs with more generative modes, while GANs promote more efficient optimization of SDS. Furthermore, we introduce an edge-aware SDS for multi-view consistent facial structure. Experiments demonstrate that our method outperforms existing 3D texture generation methods regarding photo-realistic quality, diversity, and efficiency.
☆ WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT, despite increasing image noise and potentially affecting diagnostic accuracy. To address this, advanced deep learning-based LDCT denoising algorithms have been developed, primarily using Convolutional Neural Networks (CNNs) or Transformer Networks with the Unet architecture. This architecture enhances image detail by integrating feature maps from the encoder and decoder via skip connections. However, current methods often overlook enhancements to the Unet architecture itself, focusing instead on optimizing encoder and decoder structures. This approach can be problematic due to the significant differences in feature map characteristics between the encoder and decoder, where simple fusion strategies may not effectively reconstruct images.In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections to improve feature integration. WiTUnet also incorporates a windowed Transformer structure to process images in smaller, non-overlapping segments, reducing computational load. Additionally, the integration of a Local Image Perception Enhancement (LiPe) module in both the encoder and decoder replaces the standard multi-layer perceptron (MLP) in Transformers, enhancing local feature capture and representation. Through extensive experimental comparisons, WiTUnet has demonstrated superior performance over existing methods in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE), significantly improving noise removal and image quality.
☆ TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models
Diffusion models have emerged as preeminent contenders in the realm of generative models. Distinguished by their distinctive sequential generative processes, characterized by hundreds or even thousands of timesteps, diffusion models progressively reconstruct images from pure Gaussian noise, with each timestep necessitating full inference of the entire model. However, the substantial computational demands inherent to these models present challenges for deployment, quantization is thus widely used to lower the bit-width for reducing the storage and computing overheads. Current quantization methodologies primarily focus on model-side optimization, disregarding the temporal dimension, such as the length of the timestep sequence, thereby allowing redundant timesteps to continue consuming computational resources, leaving substantial scope for accelerating the generative process. In this paper, we introduce TMPQ-DM, which jointly optimizes timestep reduction and quantization to achieve a superior performance-efficiency trade-off, addressing both temporal and model optimization aspects. For timestep reduction, we devise a non-uniform grouping scheme tailored to the non-uniform nature of the denoising process, thereby mitigating the explosive combinations of timesteps. In terms of quantization, we adopt a fine-grained layer-wise approach to allocate varying bit-widths to different layers based on their respective contributions to the final generative performance, thus rectifying performance degradation observed in prior studies. To expedite the evaluation of fine-grained quantization, we further devise a super-network to serve as a precision solver by leveraging shared quantization results. These two design components are seamlessly integrated within our framework, enabling rapid joint exploration of the exponentially large decision space via a gradient-free evolutionary search algorithm.
☆ Oblique-MERF: Revisiting and Improving MERF for Oblique Photography
Neural implicit fields have established a new paradigm for scene representation, with subsequent work achieving high-quality real-time rendering. However, reconstructing 3D scenes from oblique aerial photography presents unique challenges, such as varying spatial scale distributions and a constrained range of tilt angles, often resulting in high memory consumption and reduced rendering quality at extrapolated viewpoints. In this paper, we enhance MERF to accommodate these data characteristics by introducing an innovative adaptive occupancy plane optimized during the volume rendering process and a smoothness regularization term for view-dependent color to address these issues. Our approach, termed Oblique-MERF, surpasses state-of-the-art real-time methods by approximately 0.7 dB, reduces VRAM usage by about 40%, and achieves higher rendering frame rates with more realistic rendering outcomes across most viewpoints.
☆ RanLayNet: A Dataset for Document Layout Detection used for Domain Adaptation and Generalization
Large ground-truth datasets and recent advances in deep learning techniques have been useful for layout detection. However, because of the restricted layout diversity of these datasets, training on them requires a sizable number of annotated instances, which is both expensive and time-consuming. As a result, differences between the source and target domains may significantly impact how well these models function. To solve this problem, domain adaptation approaches have been developed that use a small quantity of labeled data to adjust the model to the target domain. In this research, we introduced a synthetic document dataset called RanLayNet, enriched with automatically assigned labels denoting spatial positions, ranges, and types of layout elements. The primary aim of this endeavor is to develop a versatile dataset capable of training models with robustness and adaptability to diverse document formats. Through empirical experimentation, we demonstrate that a deep layout identification model trained on our dataset exhibits enhanced performance compared to a model trained solely on actual documents. Moreover, we conduct a comparative analysis by fine-tuning inference models using both PubLayNet and IIIT-AR-13K datasets on the Doclaynet dataset. Our findings emphasize that models enriched with our dataset are optimal for tasks such as achieving 0.398 and 0.588 mAP95 score in the scientific document domain for the TABLE class.
☆ State Space Model for New-Generation Network Alternative to Transformers: A Survey
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
comment: The First review of State Space Model (SSM)/Mamba and their applications in artificial intelligence, 33 pages
☆ Deep image learning of quantitative structure-property relationships of cooper alloys via feature augmentation on Geodesic curve in shape space
Understanding how the structure of materials affects their properties is a cornerstone of materials science and engineering. However, traditional methods have struggled to accurately describe the quantitative structure-property relationships for complex structures. In our study, we bridge this gap by leveraging machine learning to analyze images of materials' microstructures, thus offering a novel way to understand and predict the properties of materials based on their microstructures. We introduce a method known as FAGC (Feature Augmentation on Geodesic Curves), specifically demonstrated for Cu-Cr-Zr alloys. This approach utilizes machine learning to examine the shapes within images of the alloys' microstructures and predict their mechanical and electronic properties. This generative FAGC approach can effectively expand the relatively small training datasets due to the limited availability of materials images labeled with quantitative properties. The process begins with extracting features from the images using neural networks. These features are then mapped onto the Pre-shape space to construct the Geodesic curves. Along these curves, new features are generated, effectively increasing the dataset. Moreover, we design a pseudo-labeling mechanism for these newly generated features to further enhance the training dataset. Our FAGC method has shown remarkable results, significantly improving the accuracy of predicting the electronic conductivity and hardness of Cu-Cr-Zr alloys, with R-squared values of 0.978 and 0.998, respectively. These outcomes underscore the potential of FAGC to address the challenge of limited image data in materials science, providing a powerful tool for establishing detailed and quantitative relationships between complex microstructures and material properties.
☆ Magic Clothing: Controllable Garment-Driven Image Synthesis
We propose Magic Clothing, a latent diffusion model (LDM)-based network architecture for an unexplored garment-driven image synthesis task. Aiming at generating customized characters wearing the target garments with diverse text prompts, the image controllability is the most critical issue, i.e., to preserve the garment details and maintain faithfulness to the text prompts. To this end, we introduce a garment extractor to capture the detailed garment features, and employ self-attention fusion to incorporate them into the pretrained LDMs, ensuring that the garment details remain unchanged on the target character. Then, we leverage the joint classifier-free guidance to balance the control of garment features and text prompts over the generated results. Meanwhile, the proposed garment extractor is a plug-in module applicable to various finetuned LDMs, and it can be combined with other extensions like ControlNet and IP-Adapter to enhance the diversity and controllability of the generated characters. Furthermore, we design Matched-Points-LPIPS (MP-LPIPS), a robust metric for evaluating the consistency of the target image to the source garment. Extensive experiments demonstrate that our Magic Clothing achieves state-of-the-art results under various conditional controls for garment-driven image synthesis. Our source code is available at https://github.com/ShineChen1024/MagicClothing.
☆ Fuse after Align: Improving Face-Voice Association Learning via Multimodal Encoder
Today, there have been many achievements in learning the association between voice and face. However, most previous work models rely on cosine similarity or L2 distance to evaluate the likeness of voices and faces following contrastive learning, subsequently applied to retrieval and matching tasks. This method only considers the embeddings as high-dimensional vectors, utilizing a minimal scope of available information. This paper introduces a novel framework within an unsupervised setting for learning voice-face associations. By employing a multimodal encoder after contrastive learning and addressing the problem through binary classification, we can learn the implicit information within the embeddings in a more effective and varied manner. Furthermore, by introducing an effective pair selection method, we enhance the learning outcomes of both contrastive learning and the matching task. Empirical evidence demonstrates that our framework achieves state-of-the-art results in voice-face matching, verification, and retrieval tasks, improving verification by approximately 3%, matching by about 2.5%, and retrieval by around 1.3%.
☆ Clothes-Changing Person Re-Identification with Feasibility-Aware Intermediary Matching
Current clothes-changing person re-identification (re-id) approaches usually perform retrieval based on clothes-irrelevant features, while neglecting the potential of clothes-relevant features. However, we observe that relying solely on clothes-irrelevant features for clothes-changing re-id is limited, since they often lack adequate identity information and suffer from large intra-class variations. On the contrary, clothes-relevant features can be used to discover same-clothes intermediaries that possess informative identity clues. Based on this observation, we propose a Feasibility-Aware Intermediary Matching (FAIM) framework to additionally utilize clothes-relevant features for retrieval. Firstly, an Intermediary Matching (IM) module is designed to perform an intermediary-assisted matching process. This process involves using clothes-relevant features to find informative intermediates, and then using clothes-irrelevant features of these intermediates to complete the matching. Secondly, in order to reduce the negative effect of low-quality intermediaries, an Intermediary-Based Feasibility Weighting (IBFW) module is designed to evaluate the feasibility of intermediary matching process by assessing the quality of intermediaries. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on several widely-used clothes-changing re-id benchmarks.
☆ Learning Tracking Representations from Single Point Annotations CVPR2024
Existing deep trackers are typically trained with largescale video frames with annotated bounding boxes. However, these bounding boxes are expensive and time-consuming to annotate, in particular for large scale datasets. In this paper, we propose to learn tracking representations from single point annotations (i.e., 4.5x faster to annotate than the traditional bounding box) in a weakly supervised manner. Specifically, we propose a soft contrastive learning (SoCL) framework that incorporates target objectness prior into end-to-end contrastive learning. Our SoCL consists of adaptive positive and negative sample generation, which is memory-efficient and effective for learning tracking representations. We apply the learned representation of SoCL to visual tracking and show that our method can 1) achieve better performance than the fully supervised baseline trained with box annotations under the same annotation time cost; 2) achieve comparable performance of the fully supervised baseline by using the same number of training frames and meanwhile reducing annotation time cost by 78% and total fees by 85%; 3) be robust to annotation noise.
comment: Accept to CVPR2024-L3DIVU
☆ SparseOcc: Rethinking Sparse Latent Representation for Vision-Based Semantic Occupancy Prediction CVPR 2024
Vision-based perception for autonomous driving requires an explicit modeling of a 3D space, where 2D latent representations are mapped and subsequent 3D operators are applied. However, operating on dense latent spaces introduces a cubic time and space complexity, which limits scalability in terms of perception range or spatial resolution. Existing approaches compress the dense representation using projections like Bird's Eye View (BEV) or Tri-Perspective View (TPV). Although efficient, these projections result in information loss, especially for tasks like semantic occupancy prediction. To address this, we propose SparseOcc, an efficient occupancy network inspired by sparse point cloud processing. It utilizes a lossless sparse latent representation with three key innovations. Firstly, a 3D sparse diffuser performs latent completion using spatially decomposed 3D sparse convolutional kernels. Secondly, a feature pyramid and sparse interpolation enhance scales with information from others. Finally, the transformer head is redesigned as a sparse variant. SparseOcc achieves a remarkable 74.9% reduction on FLOPs over the dense baseline. Interestingly, it also improves accuracy, from 12.8% to 14.1% mIOU, which in part can be attributed to the sparse representation's ability to avoid hallucinations on empty voxels.
comment: 10 pages, 4 figures, accepted by CVPR 2024
☆ Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment
Learning 3D human motion from 2D inputs is a fundamental task in the realms of computer vision and computer graphics. Many previous methods grapple with this inherently ambiguous task by introducing motion priors into the learning process. However, these approaches face difficulties in defining the complete configurations of such priors or training a robust model. In this paper, we present the Video-to-Motion Generator (VTM), which leverages motion priors through cross-modal latent feature space alignment between 3D human motion and 2D inputs, namely videos and 2D keypoints. To reduce the complexity of modeling motion priors, we model the motion data separately for the upper and lower body parts. Additionally, we align the motion data with a scale-invariant virtual skeleton to mitigate the interference of human skeleton variations to the motion priors. Evaluated on AIST++, the VTM showcases state-of-the-art performance in reconstructing 3D human motion from monocular videos. Notably, our VTM exhibits the capabilities for generalization to unseen view angles and in-the-wild videos.
☆ FusionMamba: Dynamic Feature Enhancement for Multimodal Image Fusion with Mamba
Multi-modal image fusion aims to combine information from different modes to create a single image with comprehensive information and detailed textures. However, fusion models based on convolutional neural networks encounter limitations in capturing global image features due to their focus on local convolution operations. Transformer-based models, while excelling in global feature modeling, confront computational challenges stemming from their quadratic complexity. Recently, the Selective Structured State Space Model has exhibited significant potential for long-range dependency modeling with linear complexity, offering a promising avenue to address the aforementioned dilemma. In this paper, we propose FusionMamba, a novel dynamic feature enhancement method for multimodal image fusion with Mamba. Specifically, we devise an improved efficient Mamba model for image fusion, integrating efficient visual state space model with dynamic convolution and channel attention. This refined model not only upholds the performance of Mamba and global modeling capability but also diminishes channel redundancy while enhancing local enhancement capability. Additionally, we devise a dynamic feature fusion module (DFFM) comprising two dynamic feature enhancement modules (DFEM) and a cross modality fusion mamba module (CMFM). The former serves for dynamic texture enhancement and dynamic difference perception, whereas the latter enhances correlation features between modes and suppresses redundant intermodal information. FusionMamba has yielded state-of-the-art (SOTA) performance across various multimodal medical image fusion tasks (CT-MRI, PET-MRI, SPECT-MRI), infrared and visible image fusion task (IR-VIS) and multimodal biomedical image fusion dataset (GFP-PC), which is proved that our model has generalization ability. The code for FusionMamba is available at https://github.com/millieXie/FusionMamba.
☆ Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution. Despite extensive researches in transportation and communication to support V2X-AD, the actual utilization of these infrastructures and communication resources in enhancing driving performances remains largely unexplored. This highlights the necessity of collaborative autonomous driving: a machine learning approach that optimizes the information sharing strategy to improve the driving performance of each vehicle. This effort necessitates two key foundations: a platform capable of generating data to facilitate the training and testing of V2X-AD, and a comprehensive system that integrates full driving-related functionalities with mechanisms for information sharing. From the platform perspective, we present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving. This platform provides a complete pipeline for collaborative driving. From the system perspective, we introduce CoDriving, a novel end-to-end collaborative driving system that properly integrates V2X communication over the entire autonomous pipeline, promoting driving with shared perceptual information. The core idea is a novel driving-oriented communication strategy. Leveraging this strategy, CoDriving improves driving performance while optimizing communication efficiency. We make comprehensive benchmarks with V2Xverse, analyzing both modular performance and closed-loop driving performance. Experimental results show that CoDriving: i) significantly improves the driving score by 62.49% and drastically reduces the pedestrian collision rate by 53.50% compared to the SOTA end-to-end driving method, and ii) achieves sustaining driving performance superiority over dynamic constraint communication conditions.
☆ Leveraging Temporal Contextualization for Video Action Recognition
Pretrained vision-language models have shown effectiveness in video understanding. However, recent studies have not sufficiently leveraged essential temporal information from videos, simply averaging frame-wise representations or referencing consecutive frames. We introduce Temporally Contextualized CLIP (TC-CLIP), a pioneering framework for video understanding that effectively and efficiently leverages comprehensive video information. We propose Temporal Contextualization (TC), a novel layer-wise temporal information infusion mechanism for video that extracts core information from each frame, interconnects relevant information across the video to summarize into context tokens, and ultimately leverages the context tokens during the feature encoding process. Furthermore, our Video-conditional Prompting (VP) module manufactures context tokens to generate informative prompts in text modality. We conduct extensive experiments in zero-shot, few-shot, base-to-novel, and fully-supervised action recognition to validate the superiority of our TC-CLIP. Ablation studies for TC and VP guarantee our design choices. Code is available at https://github.com/naver-ai/tc-clip
comment: 24 pages, 10 figures, 12 tables
☆ MMCode: Evaluating Multi-Modal Code Large Language Models with Visually Rich Programming Problems
Programming often involves converting detailed and complex specifications into code, a process during which developers typically utilize visual aids to more effectively convey concepts. While recent developments in Large Multimodal Models have demonstrated remarkable abilities in visual reasoning and mathematical tasks, there is little work on investigating whether these models can effectively interpret visual elements for code generation. To this end, we present MMCode, the first multi-modal coding dataset for evaluating algorithmic problem-solving skills in visually rich contexts. MMCode contains 3,548 questions and 6,620 images collected from real-world programming challenges harvested from 10 code competition websites, presenting significant challenges due to the extreme demand for reasoning abilities. Our experiment results show that current state-of-the-art models struggle to solve these problems. The results highlight the lack of powerful vision-code models, and we hope MMCode can serve as an inspiration for future works in this domain. The data and code are publicly available at https://github.com/happylkx/MMCode.
comment: 46 pages, 21 figures and 6 tables
☆ FreqMamba: Viewing Mamba from a Frequency Perspective for Image Deraining
Images corrupted by rain streaks often lose vital frequency information for perception, and image deraining aims to solve this issue which relies on global and local degradation modeling. Recent studies have witnessed the effectiveness and efficiency of Mamba for perceiving global and local information based on its exploiting local correlation among patches, however, rarely attempts have been explored to extend it with frequency analysis for image deraining, limiting its ability to perceive global degradation that is relevant to frequency modeling (e.g. Fourier transform). In this paper, we propose FreqMamba, an effective and efficient paradigm that leverages the complementary between Mamba and frequency analysis for image deraining. The core of our method lies in extending Mamba with frequency analysis from two perspectives: extending it with frequency-band for exploiting frequency correlation, and connecting it with Fourier transform for global degradation modeling. Specifically, FreqMamba introduces complementary triple interaction structures including spatial Mamba, frequency band Mamba, and Fourier global modeling. Frequency band Mamba decomposes the image into sub-bands of different frequencies to allow 2D scanning from the frequency dimension. Furthermore, leveraging Mamba's unique data-dependent properties, we use rainy images at different scales to provide degradation priors to the network, thereby facilitating efficient training. Extensive experiments show that our method outperforms state-of-the-art methods both visually and quantitatively.
☆ Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label
Weakly-supervised learning approaches have gained significant attention due to their ability to reduce the effort required for human annotations in training neural networks. This paper investigates a framework for weakly-supervised object localization, which aims to train a neural network capable of predicting both the object class and its location using only images and their image-level class labels. The proposed framework consists of a shared feature extractor, a classifier, and a localizer. The localizer predicts pixel-level class probabilities, while the classifier predicts the object class at the image level. Since image-level class labels are insufficient for training the localizer, weakly-supervised object localization methods often encounter challenges in accurately localizing the entire object region. To address this issue, the proposed method incorporates adversarial erasing and pseudo labels to improve localization accuracy. Specifically, novel losses are designed to utilize adversarially erased foreground features and adversarially erased feature maps, reducing dependence on the most discriminative region. Additionally, the proposed method employs pseudo labels to suppress activation values in the background while increasing them in the foreground. The proposed method is applied to two backbone networks (MobileNetV1 and InceptionV3) and is evaluated on three publicly available datasets (ILSVRC-2012, CUB-200-2011, and PASCAL VOC 2012). The experimental results demonstrate that the proposed method outperforms previous state-of-the-art methods across all evaluated metrics.
comment: 15 pages
☆ TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals CVPR 2024
Engagement analysis finds various applications in healthcare, education, advertisement, services. Deep Neural Networks, used for analysis, possess complex architecture and need large amounts of input data, computational power, inference time. These constraints challenge embedding systems into devices for real-time use. To address these limitations, we present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture. To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer. In parallel, to efficiently extract rich patterns from the temporal-frequency domain and boost processing speed, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form. Evaluated on the EngageNet dataset, the proposed method outperforms existing baselines, utilizing only two behavioral features (head pose rotations) compared to the 98 used in baseline models. Furthermore, comparative analysis shows TCCT-Net's architecture offers an order-of-magnitude improvement in inference speed compared to state-of-the-art image-based Recurrent Neural Network (RNN) methods. The code will be released at https://github.com/vedernikovphoto/TCCT_Net.
comment: Accepted for the CVPR 2024 workshop (ABAW)
☆ Q2A: Querying Implicit Fully Continuous Feature Pyramid to Align Features for Medical Image Segmentation
Recent medical image segmentation methods apply implicit neural representation (INR) to the decoder for achieving a continuous coordinate decoding to tackle the drawback of conventional discrete grid-based data representations. However, the INR-based decoder cannot well handle the feature misalignment problem brought about by the naive latent code acquisition strategy in INR. Although there exist many feature alignment works, they all adopt a progressive multi-step aligning paradigm on a discrete feature pyramid, which is incompatible with the continuous one-step characteristics of INR-based decoder, and thus fails to be the solution. Therefore, we propose Q2A, a novel one-step query-based aligning paradigm, to solve the feature misalignment problem in the INR-based decoder. Specifically, for each target coordinate, Q2A first generates several queries depicting the spatial offsets and the cell resolutions of the contextual features aligned to the coordinate, then calculates the corresponding aligned features by feeding the queries into a novel implicit fully continuous feature pyramid (FCFP), finally fuses the aligned features to predict the class distribution. In FCFP, we further propose a novel universal partition-and-aggregate strategy (P&A) to replace the naive interpolation strategy for latent code acquisition in INR, which mitigates the information loss problem that occurs when the query cell resolution is relatively large and achieves an effective feature decoding at arbitrary continuous resolution. We conduct extensive experiments on two medical datasets, i.e. Glas and Synapse, and a universal dataset, i.e. Cityscapes, and they show the superiority of the proposed Q2A.
comment: 10 pages, 6 figures
☆ Virtually Enriched NYU Depth V2 Dataset for Monocular Depth Estimation: Do We Need Artificial Augmentation?
We present ANYU, a new virtually augmented version of the NYU depth v2 dataset, designed for monocular depth estimation. In contrast to the well-known approach where full 3D scenes of a virtual world are utilized to generate artificial datasets, ANYU was created by incorporating RGB-D representations of virtual reality objects into the original NYU depth v2 images. We specifically did not match each generated virtual object with an appropriate texture and a suitable location within the real-world image. Instead, an assignment of texture, location, lighting, and other rendering parameters was randomized to maximize a diversity of the training data, and to show that it is randomness that can improve the generalizing ability of a dataset. By conducting extensive experiments with our virtually modified dataset and validating on the original NYU depth v2 and iBims-1 benchmarks, we show that ANYU improves the monocular depth estimation performance and generalization of deep neural networks with considerably different architectures, especially for the current state-of-the-art VPD model. To the best of our knowledge, this is the first work that augments a real-world dataset with randomly generated virtual 3D objects for monocular depth estimation. We make our ANYU dataset publicly available in two training configurations with 10% and 100% additional synthetically enriched RGB-D pairs of training images, respectively, for efficient training and empirical exploration of virtual augmentation at https://github.com/ABrain-One/ANYU
☆ PhyScene: Physically Interactable 3D Scene Synthesis for Embodied AI CVPR 2024
With recent developments in Embodied Artificial Intelligence (EAI) research, there has been a growing demand for high-quality, large-scale interactive scene generation. While prior methods in scene synthesis have prioritized the naturalness and realism of the generated scenes, the physical plausibility and interactivity of scenes have been largely left unexplored. To address this disparity, we introduce PhyScene, a novel method dedicated to generating interactive 3D scenes characterized by realistic layouts, articulated objects, and rich physical interactivity tailored for embodied agents. Based on a conditional diffusion model for capturing scene layouts, we devise novel physics- and interactivity-based guidance mechanisms that integrate constraints from object collision, room layout, and object reachability. Through extensive experiments, we demonstrate that PhyScene effectively leverages these guidance functions for physically interactable scene synthesis, outperforming existing state-of-the-art scene synthesis methods by a large margin. Our findings suggest that the scenes generated by PhyScene hold considerable potential for facilitating diverse skill acquisition among agents within interactive environments, thereby catalyzing further advancements in embodied AI research. Project website: http://physcene.github.io.
comment: Accepted by CVPR 2024, 18 pages
☆ Improved Object-Based Style Transfer with Single Deep Network
This research paper proposes a novel methodology for image-to-image style transfer on objects utilizing a single deep convolutional neural network. The proposed approach leverages the You Only Look Once version 8 (YOLOv8) segmentation model and the backbone neural network of YOLOv8 for style transfer. The primary objective is to enhance the visual appeal of objects in images by seamlessly transferring artistic styles while preserving the original object characteristics. The proposed approach's novelty lies in combining segmentation and style transfer in a single deep convolutional neural network. This approach omits the need for multiple stages or models, thus resulting in simpler training and deployment of the model for practical applications. The results of this approach are shown on two content images by applying different style images. The paper also demonstrates the ability to apply style transfer on multiple objects in the same image.
comment: In Proceedings of the Fourth International Conference on Innovations in Computational Intelligence and Computer Vision
☆ CompGS: Efficient 3D Scene Representation via Compressed Gaussian Splatting
Gaussian splatting, renowned for its exceptional rendering quality and efficiency, has emerged as a prominent technique in 3D scene representation. However, the substantial data volume of Gaussian splatting impedes its practical utility in real-world applications. Herein, we propose an efficient 3D scene representation, named Compressed Gaussian Splatting (CompGS), which harnesses compact Gaussian primitives for faithful 3D scene modeling with a remarkably reduced data size. To ensure the compactness of Gaussian primitives, we devise a hybrid primitive structure that captures predictive relationships between each other. Then, we exploit a small set of anchor primitives for prediction, allowing the majority of primitives to be encapsulated into highly compact residual forms. Moreover, we develop a rate-constrained optimization scheme to eliminate redundancies within such hybrid primitives, steering our CompGS towards an optimal trade-off between bitrate consumption and representation efficacy. Experimental results show that the proposed CompGS significantly outperforms existing methods, achieving superior compactness in 3D scene representation without compromising model accuracy and rendering quality. Our code will be released on GitHub for further research.
comment: Submitted to a conference
☆ Utility-Fairness Trade-Offs and How to Find Them
When building classification systems with demographic fairness considerations, there are two objectives to satisfy: 1) maximizing utility for the specific task and 2) ensuring fairness w.r.t. a known demographic attribute. These objectives often compete, so optimizing both can lead to a trade-off between utility and fairness. While existing works acknowledge the trade-offs and study their limits, two questions remain unanswered: 1) What are the optimal trade-offs between utility and fairness? and 2) How can we numerically quantify these trade-offs from data for a desired prediction task and demographic attribute of interest? This paper addresses these questions. We introduce two utility-fairness trade-offs: the Data-Space and Label-Space Trade-off. The trade-offs reveal three regions within the utility-fairness plane, delineating what is fully and partially possible and impossible. We propose U-FaTE, a method to numerically quantify the trade-offs for a given prediction task and group fairness definition from data samples. Based on the trade-offs, we introduce a new scheme for evaluating representations. An extensive evaluation of fair representation learning methods and representations from over 1000 pre-trained models revealed that most current approaches are far from the estimated and achievable fairness-utility trade-offs across multiple datasets and prediction tasks.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024
☆ Contrastive Mean-Shift Learning for Generalized Category Discovery CVPR 2024
We address the problem of generalized category discovery (GCD) that aims to partition a partially labeled collection of images; only a small part of the collection is labeled and the total number of target classes is unknown. To address this generalized image clustering problem, we revisit the mean-shift algorithm, i.e., a classic, powerful technique for mode seeking, and incorporate it into a contrastive learning framework. The proposed method, dubbed Contrastive Mean-Shift (CMS) learning, trains an image encoder to produce representations with better clustering properties by an iterative process of mean shift and contrastive update. Experiments demonstrate that our method, both in settings with and without the total number of clusters being known, achieves state-of-the-art performance on six public GCD benchmarks without bells and whistles.
comment: Accepted at CVPR 2024
☆ kNN-CLIP: Retrieval Enables Training-Free Segmentation on Continually Expanding Large Vocabularies
Rapid advancements in continual segmentation have yet to bridge the gap of scaling to large continually expanding vocabularies under compute-constrained scenarios. We discover that traditional continual training leads to catastrophic forgetting under compute constraints, unable to outperform zero-shot segmentation methods. We introduce a novel strategy for semantic and panoptic segmentation with zero forgetting, capable of adapting to continually growing vocabularies without the need for retraining or large memory costs. Our training-free approach, kNN-CLIP, leverages a database of instance embeddings to enable open-vocabulary segmentation approaches to continually expand their vocabulary on any given domain with a single-pass through data, while only storing embeddings minimizing both compute and memory costs. This method achieves state-of-the-art mIoU performance across large-vocabulary semantic and panoptic segmentation datasets. We hope kNN-CLIP represents a step forward in enabling more efficient and adaptable continual segmentation, paving the way for advances in real-world large-vocabulary continual segmentation methods.
comment: 10 pages, 3 figures
☆ Exploring Text-to-Motion Generation with Human Preference CVPR 2024
This paper presents an exploration of preference learning in text-to-motion generation. We find that current improvements in text-to-motion generation still rely on datasets requiring expert labelers with motion capture systems. Instead, learning from human preference data does not require motion capture systems; a labeler with no expertise simply compares two generated motions. This is particularly efficient because evaluating the model's output is easier than gathering the motion that performs a desired task (e.g. backflip). To pioneer the exploration of this paradigm, we annotate 3,528 preference pairs generated by MotionGPT, marking the first effort to investigate various algorithms for learning from preference data. In particular, our exploration highlights important design choices when using preference data. Additionally, our experimental results show that preference learning has the potential to greatly improve current text-to-motion generative models. Our code and dataset are publicly available at https://github.com/THU-LYJ-Lab/InstructMotion}{https://github.com/THU-LYJ-Lab/InstructMotion to further facilitate research in this area.
comment: Accepted to CVPR 2024 HuMoGen Workshop
☆ The 8th AI City Challenge CVPR 2024
The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
comment: Summary of the 8th AI City Challenge Workshop in conjunction with CVPR 2024
☆ VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection
Due to its cost-effectiveness and widespread availability, monocular 3D object detection, which relies solely on a single camera during inference, holds significant importance across various applications, including autonomous driving and robotics. Nevertheless, directly predicting the coordinates of objects in 3D space from monocular images poses challenges. Therefore, an effective solution involves transforming monocular images into LiDAR-like representations and employing a LiDAR-based 3D object detector to predict the 3D coordinates of objects. The key step in this method is accurately converting the monocular image into a reliable point cloud form. In this paper, we present VFMM3D, an innovative approach that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations. VFMM3D utilizes the Segment Anything Model (SAM) and Depth Anything Model (DAM) to generate high-quality pseudo-LiDAR data enriched with rich foreground information. Specifically, the Depth Anything Model (DAM) is employed to generate dense depth maps. Subsequently, the Segment Anything Model (SAM) is utilized to differentiate foreground and background regions by predicting instance masks. These predicted instance masks and depth maps are then combined and projected into 3D space to generate pseudo-LiDAR points. Finally, any object detectors based on point clouds can be utilized to predict the 3D coordinates of objects. Comprehensive experiments are conducted on the challenging 3D object detection dataset KITTI. Our VFMM3D establishes a new state-of-the-art performance. Additionally, experimental results demonstrate the generality of VFMM3D, showcasing its seamless integration into various LiDAR-based 3D object detectors.
comment: 10 pages, 5 figures
☆ ViFu: Multiple 360$^\circ$ Objects Reconstruction with Clean Background via Visible Part Fusion
In this paper, we propose a method to segment and recover a static, clean background and multiple 360$^\circ$ objects from observations of scenes at different timestamps. Recent works have used neural radiance fields to model 3D scenes and improved the quality of novel view synthesis, while few studies have focused on modeling the invisible or occluded parts of the training images. These under-reconstruction parts constrain both scene editing and rendering view selection, thereby limiting their utility for synthetic data generation for downstream tasks. Our basic idea is that, by observing the same set of objects in various arrangement, so that parts that are invisible in one scene may become visible in others. By fusing the visible parts from each scene, occlusion-free rendering of both background and foreground objects can be achieved. We decompose the multi-scene fusion task into two main components: (1) objects/background segmentation and alignment, where we leverage point cloud-based methods tailored to our novel problem formulation; (2) radiance fields fusion, where we introduce visibility field to quantify the visible information of radiance fields, and propose visibility-aware rendering for the fusion of series of scenes, ultimately obtaining clean background and 360$^\circ$ object rendering. Comprehensive experiments were conducted on synthetic and real datasets, and the results demonstrate the effectiveness of our method.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
☆ Super-resolution of biomedical volumes with 2D supervision CVPR
Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth / z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.
comment: CVPR Workshop on Computer Vision for Microscopy Image Analysis 2024
☆ A Review on Machine Learning Algorithms for Dust Aerosol Detection using Satellite Data
Dust storms are associated with certain respiratory illnesses across different areas in the world. Researchers have devoted time and resources to study the elements surrounding dust storm phenomena. This paper reviews the efforts of those who have investigated dust aerosols using sensors onboard of satellites using machine learning-based approaches. We have reviewed the most common issues revolving dust aerosol modeling using different datasets and different sensors from a historical perspective. Our findings suggest that multi-spectral approaches based on linear and non-linear combinations of spectral bands are some of the most successful for visualization and quantitative analysis; however, when researchers have leveraged machine learning, performance has been improved and new opportunities to solve unique problems arise.
comment: The 23rd International Conference on Artificial Intelligence (ICAI 2021)
☆ DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading
Reconstructing and editing 3D objects and scenes both play crucial roles in computer graphics and computer vision. Neural radiance fields (NeRFs) can achieve realistic reconstruction and editing results but suffer from inefficiency in rendering. Gaussian splatting significantly accelerates rendering by rasterizing Gaussian ellipsoids. However, Gaussian splatting utilizes a single Spherical Harmonic (SH) function to model both texture and lighting, limiting independent editing capabilities of these components. Recently, attempts have been made to decouple texture and lighting with the Gaussian splatting representation but may fail to produce plausible geometry and decomposition results on reflective scenes. Additionally, the forward shading technique they employ introduces noticeable blending artifacts during relighting, as the geometry attributes of Gaussians are optimized under the original illumination and may not be suitable for novel lighting conditions. To address these issues, we introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading. To achieve successful decoupling, we model the illumination with a learnable environment map and define additional attributes such as texture parameters and normal direction on Gaussians, where the normal is distilled from a jointly trained signed distance function. More importantly, we apply deferred shading, resulting in more realistic relighting effects compared to previous methods. Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view synthesis and editing tasks.
☆ Human-in-the-Loop Segmentation of Multi-species Coral Imagery
Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery, however it is costly and time-consuming for domain experts to label images. Point label propagation is an approach used to leverage existing image data labeled with sparse point labels. The resulting augmented ground truth generated is then used to train a semantic segmentation model. Here, we first demonstrate that recent advances in foundation models enable generation of multi-species coral augmented ground truth masks using denoised DINOv2 features and K-Nearest Neighbors (KNN), without the need for any pre-training or custom-designed algorithms. For extremely sparsely labeled images, we propose a labeling regime based on human-in-the-loop principles, resulting in significant improvement in annotation efficiency: If only 5 point labels per image are available, our proposed human-in-the-loop approach improves on the state-of-the-art by 17.3% for pixel accuracy and 22.6% for mIoU; and by 10.6% and 19.1% when 10 point labels per image are available. Even if the human-in-the-loop labeling regime is not used, the denoised DINOv2 features with a KNN outperforms the prior state-of-the-art by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points). We also provide a detailed analysis of how point labeling style and the quantity of points per image affects the point label propagation quality and provide general recommendations on maximizing point label efficiency.
comment: 10 pages, 6 figures, an additional 4 pages of supplementary material
☆ Watermark-embedded Adversarial Examples for Copyright Protection against Diffusion Models
Diffusion Models (DMs) have shown remarkable capabilities in various image-generation tasks. However, there are growing concerns that DMs could be used to imitate unauthorized creations and thus raise copyright issues. To address this issue, we propose a novel framework that embeds personal watermarks in the generation of adversarial examples. Such examples can force DMs to generate images with visible watermarks and prevent DMs from imitating unauthorized images. We construct a generator based on conditional adversarial networks and design three losses (adversarial loss, GAN loss, and perturbation loss) to generate adversarial examples that have subtle perturbation but can effectively attack DMs to prevent copyright violations. Training a generator for a personal watermark by our method only requires 5-10 samples within 2-3 minutes, and once the generator is trained, it can generate adversarial examples with that watermark significantly fast (0.2s per image). We conduct extensive experiments in various conditional image-generation scenarios. Compared to existing methods that generate images with chaotic textures, our method adds visible watermarks on the generated images, which is a more straightforward way to indicate copyright violations. We also observe that our adversarial examples exhibit good transferability across unknown generative models. Therefore, this work provides a simple yet powerful way to protect copyright from DM-based imitation.
☆ Masked and Shuffled Blind Spot Denoising for Real-World Images
We introduce a novel approach to single image denoising based on the Blind Spot Denoising principle, which we call MAsked and SHuffled Blind Spot Denoising (MASH). We focus on the case of correlated noise, which often plagues real images. MASH is the result of a careful analysis to determine the relationships between the level of blindness (masking) of the input and the (unknown) noise correlation. Moreover, we introduce a shuffling technique to weaken the local correlation of noise, which in turn yields an additional denoising performance improvement. We evaluate MASH via extensive experiments on real-world noisy image datasets. We demonstrate on par or better results compared to existing self-supervised denoising methods.
☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Among the ever-evolving development of vision-language models, contrastive language-image pretraining (CLIP) has set new benchmarks in many downstream tasks such as zero-shot classifications by leveraging self-supervised contrastive learning on large amounts of text-image pairs. However, its dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pretraining method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the enhanced capability of RankCLIP to effectively improve performance across various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the potential of RankCLIP in further advancing vision-language pretraining.
comment: 10 pages, 3 figures, 6 tables. Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ Sparse Global Matching for Video Frame Interpolation with Large Motion CVPR 2024
Large motion poses a critical challenge in Video Frame Interpolation (VFI) task. Existing methods are often constrained by limited receptive fields, resulting in sub-optimal performance when handling scenarios with large motion. In this paper, we introduce a new pipeline for VFI, which can effectively integrate global-level information to alleviate issues associated with large motion. Specifically, we first estimate a pair of initial intermediate flows using a high-resolution feature map for extracting local details. Then, we incorporate a sparse global matching branch to compensate for flow estimation, which consists of identifying flaws in initial flows and generating sparse flow compensation with a global receptive field. Finally, we adaptively merge the initial flow estimation with global flow compensation, yielding a more accurate intermediate flow. To evaluate the effectiveness of our method in handling large motion, we carefully curate a more challenging subset from commonly used benchmarks. Our method demonstrates the state-of-the-art performance on these VFI subsets with large motion.
comment: Accepted by CVPR 2024. Project page: https://sgm-vfi.github.io/. Fixed some typos in the supplementary material
♻ ☆ Image-based Deep Learning for the time-dependent prediction of fresh concrete properties
Increasing the degree of digitisation and automation in the concrete production process can play a crucial role in reducing the CO$_2$ emissions that are associated with the production of concrete. In this paper, a method is presented that makes it possible to predict the properties of fresh concrete during the mixing process based on stereoscopic image sequences of the concretes flow behaviour. A Convolutional Neural Network (CNN) is used for the prediction, which receives the images supported by information on the mix design as input. In addition, the network receives temporal information in the form of the time difference between the time at which the images are taken and the time at which the reference values of the concretes are carried out. With this temporal information, the network implicitly learns the time-dependent behaviour of the concretes properties. The network predicts the slump flow diameter, the yield stress and the plastic viscosity. The time-dependent prediction potentially opens up the pathway to determine the temporal development of the fresh concrete properties already during mixing. This provides a huge advantage for the concrete industry. As a result, countermeasures can be taken in a timely manner. It is shown that an approach based on depth and optical flow images, supported by information of the mix design, achieves the best results.
♻ ☆ Human vs. LMMs: Exploring the Discrepancy in Emoji Interpretation and Usage in Digital Communication
Leveraging Large Multimodal Models (LMMs) to simulate human behaviors when processing multimodal information, especially in the context of social media, has garnered immense interest due to its broad potential and far-reaching implications. Emojis, as one of the most unique aspects of digital communication, are pivotal in enriching and often clarifying the emotional and tonal dimensions. Yet, there is a notable gap in understanding how these advanced models, such as GPT-4V, interpret and employ emojis in the nuanced context of online interaction. This study intends to bridge this gap by examining the behavior of GPT-4V in replicating human-like use of emojis. The findings reveal a discernible discrepancy between human and GPT-4V behaviors, likely due to the subjective nature of human interpretation and the limitations of GPT-4V's English-centric training, suggesting cultural biases and inadequate representation of non-English cultures.
comment: Accepted for publication in ICWSM 2024
♻ ☆ Physics-guided Shape-from-Template: Monocular Video Perception through Neural Surrogate Models
3D reconstruction of dynamic scenes is a long-standing problem in computer graphics and increasingly difficult the less information is available. Shape-from-Template (SfT) methods aim to reconstruct a template-based geometry from RGB images or video sequences, often leveraging just a single monocular camera without depth information, such as regular smartphone recordings. Unfortunately, existing reconstruction methods are either unphysical and noisy or slow in optimization. To solve this problem, we propose a novel SfT reconstruction algorithm for cloth using a pre-trained neural surrogate model that is fast to evaluate, stable, and produces smooth reconstructions due to a regularizing physics simulation. Differentiable rendering of the simulated mesh enables pixel-wise comparisons between the reconstruction and a target video sequence that can be used for a gradient-based optimization procedure to extract not only shape information but also physical parameters such as stretching, shearing, or bending stiffness of the cloth. This allows to retain a precise, stable, and smooth reconstructed geometry while reducing the runtime by a factor of 400-500 compared to $\phi$-SfT, a state-of-the-art physics-based SfT approach.
♻ ☆ Towards Variable and Coordinated Holistic Co-Speech Motion Generation CVPR 2024
This paper addresses the problem of generating lifelike holistic co-speech motions for 3D avatars, focusing on two key aspects: variability and coordination. Variability allows the avatar to exhibit a wide range of motions even with similar speech content, while coordination ensures a harmonious alignment among facial expressions, hand gestures, and body poses. We aim to achieve both with ProbTalk, a unified probabilistic framework designed to jointly model facial, hand, and body movements in speech. ProbTalk builds on the variational autoencoder (VAE) architecture and incorporates three core designs. First, we introduce product quantization (PQ) to the VAE, which enriches the representation of complex holistic motion. Second, we devise a novel non-autoregressive model that embeds 2D positional encoding into the product-quantized representation, thereby preserving essential structure information of the PQ codes. Last, we employ a secondary stage to refine the preliminary prediction, further sharpening the high-frequency details. Coupling these three designs enables ProbTalk to generate natural and diverse holistic co-speech motions, outperforming several state-of-the-art methods in qualitative and quantitative evaluations, particularly in terms of realism. Our code and model will be released for research purposes at https://feifeifeiliu.github.io/probtalk/.
comment: CVPR 2024
♻ ☆ Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement CVPR 2024
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize temporal compression. Our investigation reveals that the temporal information is usually not well learned during distillation, and the temporal dimension of synthetic data contributes little. The observations motivate our unified framework of disentangling the dynamic and static information in the videos. It first distills the videos into still images as static memory and then compensates the dynamic and motion information with a learnable dynamic memory block. Our method achieves state-of-the-art on video datasets at different scales, with a notably smaller memory storage budget. Our code is available at https://github.com/yuz1wan/video_distillation.
comment: CVPR 2024, project page: https://mvig-rhos.com/video-distill
♻ ☆ A Survey of Neural Network Robustness Assessment in Image Recognition
In recent years, there has been significant attention given to the robustness assessment of neural networks. Robustness plays a critical role in ensuring reliable operation of artificial intelligence (AI) systems in complex and uncertain environments. Deep learning's robustness problem is particularly significant, highlighted by the discovery of adversarial attacks on image classification models. Researchers have dedicated efforts to evaluate robustness in diverse perturbation conditions for image recognition tasks. Robustness assessment encompasses two main techniques: robustness verification/ certification for deliberate adversarial attacks and robustness testing for random data corruptions. In this survey, we present a detailed examination of both adversarial robustness (AR) and corruption robustness (CR) in neural network assessment. Analyzing current research papers and standards, we provide an extensive overview of robustness assessment in image recognition. Three essential aspects are analyzed: concepts, metrics, and assessment methods. We investigate the perturbation metrics and range representations used to measure the degree of perturbations on images, as well as the robustness metrics specifically for the robustness conditions of classification models. The strengths and limitations of the existing methods are also discussed, and some potential directions for future research are provided.
comment: Corrected typos and grammatical errors in Section 5
♻ ☆ SyncDreamer: Generating Multiview-consistent Images from a Single-view Image ICLR 2024
In this paper, we present a novel diffusion model called that generates multiview-consistent images from a single-view image. Using pretrained large-scale 2D diffusion models, recent work Zero123 demonstrates the ability to generate plausible novel views from a single-view image of an object. However, maintaining consistency in geometry and colors for the generated images remains a challenge. To address this issue, we propose a synchronized multiview diffusion model that models the joint probability distribution of multiview images, enabling the generation of multiview-consistent images in a single reverse process. SyncDreamer synchronizes the intermediate states of all the generated images at every step of the reverse process through a 3D-aware feature attention mechanism that correlates the corresponding features across different views. Experiments show that SyncDreamer generates images with high consistency across different views, thus making it well-suited for various 3D generation tasks such as novel-view-synthesis, text-to-3D, and image-to-3D.
comment: ICLR 2024 Spotlight. Project page: https://liuyuan-pal.github.io/SyncDreamer/ Code: https://github.com/liuyuan-pal/SyncDreamer
♻ ☆ Mind-to-Image: Projecting Visual Mental Imagination of the Brain from fMRI
The reconstruction of images observed by subjects from fMRI data collected during visual stimuli has made significant strides in the past decade, thanks to the availability of extensive fMRI datasets and advancements in generative models for image generation. However, the application of visual reconstruction has remained limited. Reconstructing visual imagination presents a greater challenge, with potentially revolutionary applications ranging from aiding individuals with disabilities to verifying witness accounts in court. The primary hurdles in this field are the absence of data collection protocols for visual imagery and the lack of datasets on the subject. Traditionally, fMRI-to-image relies on data collected from subjects exposed to visual stimuli, which poses issues for generating visual imagery based on the difference of brain activity between visual stimulation and visual imagery. For the first time, we have compiled a substantial dataset (around 6h of scans) on visual imagery along with a proposed data collection protocol. We then train a modified version of an fMRI-to-image model and demonstrate the feasibility of reconstructing images from two modes of imagination: from memory and from pure imagination. This marks an important step towards creating a technology that allow direct reconstruction of visual imagery.
comment: Pre-print to be updated
♻ ☆ Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap CVPR 2024
Neural Radiance Fields (NeRFs) have emerged as promising tools for advancing autonomous driving (AD) research, offering scalable closed-loop simulation and data augmentation capabilities. However, to trust the results achieved in simulation, one needs to ensure that AD systems perceive real and rendered data in the same way. Although the performance of rendering methods is increasing, many scenarios will remain inherently challenging to reconstruct faithfully. To this end, we propose a novel perspective for addressing the real-to-simulated data gap. Rather than solely focusing on improving rendering fidelity, we explore simple yet effective methods to enhance perception model robustness to NeRF artifacts without compromising performance on real data. Moreover, we conduct the first large-scale investigation into the real-to-simulated data gap in an AD setting using a state-of-the-art neural rendering technique. Specifically, we evaluate object detectors and an online mapping model on real and simulated data, and study the effects of different fine-tuning strategies.Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases. Last, we delve into the correlation between the real-to-simulated gap and image reconstruction metrics, identifying FID and LPIPS as strong indicators. See https://research.zenseact.com/publications/closing-real2sim-gap for our project page.
comment: Accepted at Workshop on Autonomous Driving, CVPR 2024
♻ ☆ Geometrically-driven Aggregation for Zero-shot 3D Point Cloud Understanding CVPR 2024
Zero-shot 3D point cloud understanding can be achieved via 2D Vision-Language Models (VLMs). Existing strategies directly map Vision-Language Models from 2D pixels of rendered or captured views to 3D points, overlooking the inherent and expressible point cloud geometric structure. Geometrically similar or close regions can be exploited for bolstering point cloud understanding as they are likely to share semantic information. To this end, we introduce the first training-free aggregation technique that leverages the point cloud's 3D geometric structure to improve the quality of the transferred Vision-Language Models. Our approach operates iteratively, performing local-to-global aggregation based on geometric and semantic point-level reasoning. We benchmark our approach on three downstream tasks, including classification, part segmentation, and semantic segmentation, with a variety of datasets representing both synthetic/real-world, and indoor/outdoor scenarios. Our approach achieves new state-of-the-art results in all benchmarks. Our approach operates iteratively, performing local-to-global aggregation based on geometric and semantic point-level reasoning. Code and dataset are available at https://luigiriz.github.io/geoze-website/
comment: CVPR 2024
♻ ☆ Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincaré Ball
Hierarchy is a natural representation of semantic taxonomies, including the ones routinely used in image segmentation. Indeed, recent work on semantic segmentation reports improved accuracy from supervised training leveraging hierarchical label structures. Encouraged by these results, we revisit the fundamental assumptions behind that work. We postulate and then empirically verify that the reasons for the observed improvement in segmentation accuracy may be entirely unrelated to the use of the semantic hierarchy. To demonstrate this, we design a range of cross-domain experiments with a representative hierarchical approach. We find that on the new testing domains, a flat (non-hierarchical) segmentation network, in which the parents are inferred from the children, has superior segmentation accuracy to the hierarchical approach across the board. Complementing these findings and inspired by the intrinsic properties of hyperbolic spaces, we study a more principled approach to hierarchical segmentation using the Poincar\'e ball model. The hyperbolic representation largely outperforms the previous (Euclidean) hierarchical approach as well and is on par with our flat Euclidean baseline in terms of segmentation accuracy. However, it additionally exhibits surprisingly strong calibration quality of the parent nodes in the semantic hierarchy, especially on the more challenging domains. Our combined analysis suggests that the established practice of hierarchical segmentation may be limited to in-domain settings, whereas flat classifiers generalize substantially better, especially if they are modeled in the hyperbolic space.
♻ ☆ TTK is Getting MPI-Ready
This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.e. a sequence of topological algorithms interacting together. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. We describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
comment: 18 pages, 13 figures
♻ ☆ CrossKD: Cross-Head Knowledge Distillation for Object Detection
Knowledge Distillation (KD) has been validated as an effective model compression technique for learning compact object detectors. Existing state-of-the-art KD methods for object detection are mostly based on feature imitation. In this paper, we present a general and effective prediction mimicking distillation scheme, called CrossKD, which delivers the intermediate features of the student's detection head to the teacher's detection head. The resulting cross-head predictions are then forced to mimic the teacher's predictions. This manner relieves the student's head from receiving contradictory supervision signals from the annotations and the teacher's predictions, greatly improving the student's detection performance. Moreover, as mimicking the teacher's predictions is the target of KD, CrossKD offers more task-oriented information in contrast with feature imitation. On MS COCO, with only prediction mimicking losses applied, our CrossKD boosts the average precision of GFL ResNet-50 with 1x training schedule from 40.2 to 43.7, outperforming all existing KD methods. In addition, our method also works well when distilling detectors with heterogeneous backbones. Code is available at https://github.com/jbwang1997/CrossKD.
♻ ☆ Z-GMOT: Zero-shot Generic Multiple Object Tracking NAACL 2024
Despite recent significant progress, Multi-Object Tracking (MOT) faces limitations such as reliance on prior knowledge and predefined categories and struggles with unseen objects. To address these issues, Generic Multiple Object Tracking (GMOT) has emerged as an alternative approach, requiring less prior information. However, current GMOT methods often rely on initial bounding boxes and struggle to handle variations in factors such as viewpoint, lighting, occlusion, and scale, among others. Our contributions commence with the introduction of the \textit{Referring GMOT dataset} a collection of videos, each accompanied by detailed textual descriptions of their attributes. Subsequently, we propose $\mathtt{Z-GMOT}$, a cutting-edge tracking solution capable of tracking objects from \textit{never-seen categories} without the need of initial bounding boxes or predefined categories. Within our $\mathtt{Z-GMOT}$ framework, we introduce two novel components: (i) $\mathtt{iGLIP}$, an improved Grounded language-image pretraining, for accurately detecting unseen objects with specific characteristics. (ii) $\mathtt{MA-SORT}$, a novel object association approach that adeptly integrates motion and appearance-based matching strategies to tackle the complex task of tracking objects with high similarity. Our contributions are benchmarked through extensive experiments conducted on the Referring GMOT dataset for GMOT task. Additionally, to assess the generalizability of the proposed $\mathtt{Z-GMOT}$, we conduct ablation studies on the DanceTrack and MOT20 datasets for the MOT task. Our dataset, code, and models are released at: https://fsoft-aic.github.io/Z-GMOT.
comment: Accepted to NAACL 2024
♻ ☆ Stimulating the Diffusion Model for Image Denoising via Adaptive Embedding and Ensembling
Image denoising is a fundamental problem in computational photography, where achieving high perception with low distortion is highly demanding. Current methods either struggle with perceptual quality or suffer from significant distortion. Recently, the emerging diffusion model has achieved state-of-the-art performance in various tasks and demonstrates great potential for image denoising. However, stimulating diffusion models for image denoising is not straightforward and requires solving several critical problems. For one thing, the input inconsistency hinders the connection between diffusion models and image denoising. For another, the content inconsistency between the generated image and the desired denoised image introduces distortion. To tackle these problems, we present a novel strategy called the Diffusion Model for Image Denoising (DMID) by understanding and rethinking the diffusion model from a denoising perspective. Our DMID strategy includes an adaptive embedding method that embeds the noisy image into a pre-trained unconditional diffusion model and an adaptive ensembling method that reduces distortion in the denoised image. Our DMID strategy achieves state-of-the-art performance on both distortion-based and perception-based metrics, for both Gaussian and real-world image denoising.The code is available at https://github.com/Li-Tong-621/DMID.
comment: 18 pages,15 figures
♻ ☆ Evaluating Text-to-Image Synthesis: Survey and Taxonomy of Image Quality Metrics
Recent advances in text-to-image synthesis enabled through a combination of language and vision foundation models have led to a proliferation of the tools available and an increased attention to the field. When conducting text-to-image synthesis, a central goal is to ensure that the content between text and image is aligned. As such, there exist numerous evaluation metrics that aim to mimic human judgement. However, it is often unclear which metric to use for evaluating text-to-image synthesis systems as their evaluation is highly nuanced. In this work, we provide a comprehensive overview of existing text-to-image evaluation metrics. Based on our findings, we propose a new taxonomy for categorizing these metrics. Our taxonomy is grounded in the assumption that there are two main quality criteria, namely compositionality and generality, which ideally map to human preferences. Ultimately, we derive guidelines for practitioners conducting text-to-image evaluation, discuss open challenges of evaluation mechanisms, and surface limitations of current metrics.
comment: preprint, 20 pages, 2 figures, 1 table
♻ ☆ PEAN: A Diffusion-Based Prior-Enhanced Attention Network for Scene Text Image Super-Resolution
Scene text image super-resolution (STISR) aims at simultaneously increasing the resolution and readability of low-resolution scene text images, thus boosting the performance of the downstream recognition task. Two factors in scene text images, visual structure and semantic information, affect the recognition performance significantly. To mitigate the effects from these factors, this paper proposes a Prior-Enhanced Attention Network (PEAN). Specifically, an attention-based modulation module is leveraged to understand scene text images by neatly perceiving the local and global dependence of images, despite the shape of the text. Meanwhile, a diffusion-based module is developed to enhance the text prior, hence offering better guidance for the SR network to generate SR images with higher semantic accuracy. Additionally, a multi-task learning paradigm is employed to optimize the network, enabling the model to generate legible SR images. As a result, PEAN establishes new SOTA results on the TextZoom benchmark. Experiments are also conducted to analyze the importance of the enhanced text prior as a means of improving the performance of the SR network. Code will be made available at https://github.com/jdfxzzy/PEAN.
♻ ☆ Do More With What You Have: Transferring Depth-Scale from Labeled to Unlabeled Domains
Transferring the absolute depth prediction capabilities of an estimator to a new domain is a task with significant real-world applications. This task is specifically challenging when images from the new domain are collected without ground-truth depth measurements, and possibly with sensors of different intrinsics. To overcome such limitations, a recent zero-shot solution was trained on an extensive training dataset and encoded the various camera intrinsics. Other solutions generated synthetic data with depth labels that matched the intrinsics of the new target data to enable depth-scale transfer between the domains. In this work we present an alternative solution that can utilize any existing synthetic or real dataset, that has a small number of images annotated with ground truth depth labels. Specifically, we show that self-supervised depth estimators result in up-to-scale predictions that are linearly correlated to their absolute depth values across the domain, a property that we model in this work using a single scalar. In addition, aligning the field-of-view of two datasets prior to training, results in a common linear relationship for both domains. We use this observed property to transfer the depth-scale from source datasets that have absolute depth labels to new target datasets that lack these measurements, enabling absolute depth predictions in the target domain. The suggested method was successfully demonstrated on the KITTI, DDAD and nuScenes datasets, while using other existing real or synthetic source datasets, that have a different field-of-view, other image style or structural content, achieving comparable or better accuracy than other existing methods that do not use target ground-truth depths.
♻ ☆ Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Explainable AI aims to overcome the black-box nature of complex ML models like neural networks by generating explanations for their predictions. Explanations often take the form of a heatmap identifying input features (e.g. pixels) that are relevant to the model's decision. These explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by extracting at some intermediate layer of a neural network, subspaces that capture the multiple and distinct activation patterns (e.g. visual concepts) that are relevant to the prediction. To automatically extract these subspaces, we propose two new analyses, extending principles found in PCA or ICA to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), maximize relevance instead of e.g. variance or kurtosis. This allows for a much stronger focus of the analysis on what the ML model actually uses for predicting, ignoring activations or concepts to which the model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
comment: 17 pages + supplement
♻ ☆ CF-Font: Content Fusion for Few-shot Font Generation CVPR 2023
Content and style disentanglement is an effective way to achieve few-shot font generation. It allows to transfer the style of the font image in a source domain to the style defined with a few reference images in a target domain. However, the content feature extracted using a representative font might not be optimal. In light of this, we propose a content fusion module (CFM) to project the content feature into a linear space defined by the content features of basis fonts, which can take the variation of content features caused by different fonts into consideration. Our method also allows to optimize the style representation vector of reference images through a lightweight iterative style-vector refinement (ISR) strategy. Moreover, we treat the 1D projection of a character image as a probability distribution and leverage the distance between two distributions as the reconstruction loss (namely projected character loss, PCL). Compared to L2 or L1 reconstruction loss, the distribution distance pays more attention to the global shape of characters. We have evaluated our method on a dataset of 300 fonts with 6.5k characters each. Experimental results verify that our method outperforms existing state-of-the-art few-shot font generation methods by a large margin. The source code can be found at https://github.com/wangchi95/CF-Font.
comment: Accepted by CVPR 2023
♻ ☆ ASH: Animatable Gaussian Splats for Efficient and Photoreal Human Rendering
Real-time rendering of photorealistic and controllable human avatars stands as a cornerstone in Computer Vision and Graphics. While recent advances in neural implicit rendering have unlocked unprecedented photorealism for digital avatars, real-time performance has mostly been demonstrated for static scenes only. To address this, we propose ASH, an animatable Gaussian splatting approach for photorealistic rendering of dynamic humans in real-time. We parameterize the clothed human as animatable 3D Gaussians, which can be efficiently splatted into image space to generate the final rendering. However, naively learning the Gaussian parameters in 3D space poses a severe challenge in terms of compute. Instead, we attach the Gaussians onto a deformable character model, and learn their parameters in 2D texture space, which allows leveraging efficient 2D convolutional architectures that easily scale with the required number of Gaussians. We benchmark ASH with competing methods on pose-controllable avatars, demonstrating that our method outperforms existing real-time methods by a large margin and shows comparable or even better results than offline methods.
comment: For project page, see https://vcai.mpi-inf.mpg.de/projects/ash/
♻ ☆ Text-Driven Traffic Anomaly Detection with Temporal High-Frequency Modeling in Driving Videos
Traffic anomaly detection (TAD) in driving videos is critical for ensuring the safety of autonomous driving and advanced driver assistance systems. Previous single-stage TAD methods primarily rely on frame prediction, making them vulnerable to interference from dynamic backgrounds induced by the rapid movement of the dashboard camera. While two-stage TAD methods appear to be a natural solution to mitigate such interference by pre-extracting background-independent features (such as bounding boxes and optical flow) using perceptual algorithms, they are susceptible to the performance of first-stage perceptual algorithms and may result in error propagation. In this paper, we introduce TTHF, a novel single-stage method aligning video clips with text prompts, offering a new perspective on traffic anomaly detection. Unlike previous approaches, the supervised signal of our method is derived from languages rather than orthogonal one-hot vectors, providing a more comprehensive representation. Further, concerning visual representation, we propose to model the high frequency of driving videos in the temporal domain. This modeling captures the dynamic changes of driving scenes, enhances the perception of driving behavior, and significantly improves the detection of traffic anomalies. In addition, to better perceive various types of traffic anomalies, we carefully design an attentive anomaly focusing mechanism that visually and linguistically guides the model to adaptively focus on the visual context of interest, thereby facilitating the detection of traffic anomalies. It is shown that our proposed TTHF achieves promising performance, outperforming state-of-the-art competitors by +5.4% AUC on the DoTA dataset and achieving high generalization on the DADA dataset.
comment: 14 pages, 7 figures
♻ ☆ Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection AAAI2024
Logical anomalies (LA) refer to data violating underlying logical constraints e.g., the quantity, arrangement, or composition of components within an image. Detecting accurately such anomalies requires models to reason about various component types through segmentation. However, curation of pixel-level annotations for semantic segmentation is both time-consuming and expensive. Although there are some prior few-shot or unsupervised co-part segmentation algorithms, they often fail on images with industrial object. These images have components with similar textures and shapes, and a precise differentiation proves challenging. In this study, we introduce a novel component segmentation model for LA detection that leverages a few labeled samples and unlabeled images sharing logical constraints. To ensure consistent segmentation across unlabeled images, we employ a histogram matching loss in conjunction with an entropy loss. As segmentation predictions play a crucial role, we propose to enhance both local and global sample validity detection by capturing key aspects from visual semantics via three memory banks: class histograms, component composition embeddings and patch-level representations. For effective LA detection, we propose an adaptive scaling strategy to standardize anomaly scores from different memory banks in inference. Extensive experiments on the public benchmark MVTec LOCO AD reveal our method achieves 98.1% AUROC in LA detection vs. 89.6% from competing methods.
comment: Accepted in AAAI2024
♻ ☆ Adapting Short-Term Transformers for Action Detection in Untrimmed Videos CVPR2024
Vision Transformer (ViT) has shown high potential in video recognition, owing to its flexible design, adaptable self-attention mechanisms, and the efficacy of masked pre-training. Yet, it remains unclear how to adapt these pre-trained short-term ViTs for temporal action detection (TAD) in untrimmed videos. The existing works treat them as off-the-shelf feature extractors for each short-trimmed snippet without capturing the fine-grained relation among different snippets in a broader temporal context. To mitigate this issue, this paper focuses on designing a new mechanism for adapting these pre-trained ViT models as a unified long-form video transformer to fully unleash its modeling power in capturing inter-snippet relation, while still keeping low computation overhead and memory consumption for efficient TAD. To this end, we design effective cross-snippet propagation modules to gradually exchange short-term video information among different snippets from two levels. For inner-backbone information propagation, we introduce a cross-snippet propagation strategy to enable multi-snippet temporal feature interaction inside the backbone.For post-backbone information propagation, we propose temporal transformer layers for further clip-level modeling. With the plain ViT-B pre-trained with VideoMAE, our end-to-end temporal action detector (ViT-TAD) yields a very competitive performance to previous temporal action detectors, riching up to 69.5 average mAP on THUMOS14, 37.40 average mAP on ActivityNet-1.3 and 17.20 average mAP on FineAction.
comment: Accepted by CVPR2024
♻ ☆ On the Road to Portability: Compressing End-to-End Motion Planner for Autonomous Driving CVPR 2024
End-to-end motion planning models equipped with deep neural networks have shown great potential for enabling full autonomous driving. However, the oversized neural networks render them impractical for deployment on resource-constrained systems, which unavoidably requires more computational time and resources during reference.To handle this, knowledge distillation offers a promising approach that compresses models by enabling a smaller student model to learn from a larger teacher model. Nevertheless, how to apply knowledge distillation to compress motion planners has not been explored so far. In this paper, we propose PlanKD, the first knowledge distillation framework tailored for compressing end-to-end motion planners. First, considering that driving scenes are inherently complex, often containing planning-irrelevant or even noisy information, transferring such information is not beneficial for the student planner. Thus, we design an information bottleneck based strategy to only distill planning-relevant information, rather than transfer all information indiscriminately. Second, different waypoints in an output planned trajectory may hold varying degrees of importance for motion planning, where a slight deviation in certain crucial waypoints might lead to a collision. Therefore, we devise a safety-aware waypoint-attentive distillation module that assigns adaptive weights to different waypoints based on the importance, to encourage the student to accurately mimic more crucial waypoints, thereby improving overall safety. Experiments demonstrate that our PlanKD can boost the performance of smaller planners by a large margin, and significantly reduce their reference time.
comment: Accepted by CVPR 2024
♻ ☆ Maintaining User Trust Through Multistage Uncertainty Aware Inference
This paper describes and evaluates a multistage approach to AI deployment. Each stage involves a more accurate method of inference, yet engaging each comes with an increasing cost. In outlining the architecture, we present a method for quantifying model uncertainty that facilitates confident deferral decisions. The architecture is currently under active deployment to thousands of cotton farmers across India. The broader idea however is applicable to a growing sector of AI deployments in challenging low resources settings.
♻ ☆ Robust image segmentation model based on binary level set SC
In order to improve the robustness of traditional image segmentation models to noise, this paper models the illumination term in intensity inhomogeneity images. Additionally, to enhance the model's robustness to noisy images, we incorporate the binary level set model into the proposed model. Compared to the traditional level set, the binary level set eliminates the need for continuous reinitialization. Moreover, by introducing the variational operator GL, our model demonstrates better capability in segmenting noisy images. Finally, we employ the three-step splitting operator method for solving, and the effectiveness of the proposed model is demonstrated on various images.
comment: SCI
♻ ☆ LiDAR-Guided Cross-Attention Fusion for Hyperspectral Band Selection and Image Classification
The fusion of hyperspectral and LiDAR data has been an active research topic. Existing fusion methods have ignored the high-dimensionality and redundancy challenges in hyperspectral images, despite that band selection methods have been intensively studied for hyperspectral image (HSI) processing. This paper addresses this significant gap by introducing a cross-attention mechanism from the transformer architecture for the selection of HSI bands guided by LiDAR data. LiDAR provides high-resolution vertical structural information, which can be useful in distinguishing different types of land cover that may have similar spectral signatures but different structural profiles. In our approach, the LiDAR data are used as the "query" to search and identify the "key" from the HSI to choose the most pertinent bands for LiDAR. This method ensures that the selected HSI bands drastically reduce redundancy and computational requirements while working optimally with the LiDAR data. Extensive experiments have been undertaken on three paired HSI and LiDAR data sets: Houston 2013, Trento and MUUFL. The results highlight the superiority of the cross-attention mechanism, underlining the enhanced classification accuracy of the identified HSI bands when fused with the LiDAR features. The results also show that the use of fewer bands combined with LiDAR surpasses the performance of state-of-the-art fusion models.
comment: 15 pages, 13 figures
♻ ☆ PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics CVPR 2024
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS$^2$)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
comment: Accepted by CVPR 2024
♻ ☆ Towards Eliminating Hard Label Constraints in Gradient Inversion Attacks ICLR2024
Gradient inversion attacks aim to reconstruct local training data from intermediate gradients exposed in the federated learning framework. Despite successful attacks, all previous methods, starting from reconstructing a single data point and then relaxing the single-image limit to batch level, are only tested under hard label constraints. Even for single-image reconstruction, we still lack an analysis-based algorithm to recover augmented soft labels. In this work, we change the focus from enlarging batchsize to investigating the hard label constraints, considering a more realistic circumstance where label smoothing and mixup techniques are used in the training process. In particular, we are the first to initiate a novel algorithm to simultaneously recover the ground-truth augmented label and the input feature of the last fully-connected layer from single-input gradients, and provide a necessary condition for any analytical-based label recovery methods. Extensive experiments testify to the label recovery accuracy, as well as the benefits to the following image reconstruction. We believe soft labels in classification tasks are worth further attention in gradient inversion attacks.
comment: ICLR2024 poster
♻ ☆ Exploring Sparse Visual Prompt for Domain Adaptive Dense Prediction AAAI 2024
The visual prompts have provided an efficient manner in addressing visual cross-domain problems. In previous works, Visual Domain Prompt (VDP) first introduces domain prompts to tackle the classification Test-Time Adaptation (TTA) problem by warping image-level prompts on the input and fine-tuning prompts for each target domain. However, since the image-level prompts mask out continuous spatial details in the prompt-allocated region, it will suffer from inaccurate contextual information and limited domain knowledge extraction, particularly when dealing with dense prediction TTA problems. To overcome these challenges, we propose a novel Sparse Visual Domain Prompts (SVDP) approach, which holds minimal trainable parameters (e.g., 0.1\%) in the image-level prompt and reserves more spatial information of the input. To better apply SVDP in extracting domain-specific knowledge, we introduce the Domain Prompt Placement (DPP) method to adaptively allocates trainable parameters of SVDP on the pixels with large distribution shifts. Furthermore, recognizing that each target domain sample exhibits a unique domain shift, we design Domain Prompt Updating (DPU) strategy to optimize prompt parameters differently for each sample, facilitating efficient adaptation to the target domain. Extensive experiments were conducted on widely-used TTA and continual TTA benchmarks, and our proposed method achieves state-of-the-art performance in both semantic segmentation and depth estimation tasks.
comment: Accepted by AAAI 2024
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: updated section II-C ("A-Frame"), updated references
♻ ☆ Comment-aided Video-Language Alignment via Contrastive Pre-training for Short-form Video Humor Detection ICMR 2024
The growing importance of multi-modal humor detection within affective computing correlates with the expanding influence of short-form video sharing on social media platforms. In this paper, we propose a novel two-branch hierarchical model for short-form video humor detection (SVHD), named Comment-aided Video-Language Alignment (CVLA) via data-augmented multi-modal contrastive pre-training. Notably, our CVLA not only operates on raw signals across various modal channels but also yields an appropriate multi-modal representation by aligning the video and language components within a consistent semantic space. The experimental results on two humor detection datasets, including DY11k and UR-FUNNY, demonstrate that CVLA dramatically outperforms state-of-the-art and several competitive baseline approaches. Our dataset, code and model release at https://github.com/yliu-cs/CVLA.
comment: Accepted by ICMR 2024
♻ ☆ LadleNet: A Two-Stage UNet for Infrared Image to Visible Image Translation Guided by Semantic Segmentation
The translation of thermal infrared (TIR) images into visible light (VI) images plays a critical role in enhancing model performance and generalization capability, particularly in various fields such as registration and fusion of TIR and VI images. However, current research in this field faces challenges of insufficiently realistic image quality after translation and the difficulty of existing models in adapting to unseen scenarios. In order to develop a more generalizable image translation architecture, we conducted an analysis of existing translation architectures. By exploring the interpretability of intermediate modalities in existing translation architectures, we found that the intermediate modality in the image translation process for street scene images essentially performs semantic segmentation, distinguishing street images based on background and foreground patterns before assigning color information. Based on these principles, we propose an improved algorithm based on U-net called LadleNet. This network utilizes a two-stage U-net concatenation structure, consisting of Handle and Bowl modules. The Handle module is responsible for constructing an abstract semantic space, while the Bowl module decodes the semantic space to obtain the mapped VI image. Due to the characteristic of semantic segmentation, the Handle module has strong extensibility. Therefore, we also propose LadleNet+, which replaces the Handle module in LadleNet with a pre-trained DeepLabv3+ network, enabling the model to have a more powerful capability in constructing semantic space. The proposed methods were trained and tested on the KAIST dataset, followed by quantitative and qualitative analysis. Compared to existing methods, LadleNet and LadleNet+ achieved an average improvement of 12.4% and 15.2% in SSIM metrics, and 37.9% and 50.6% in MS-SSIM metrics, respectively.
♻ ☆ A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, and Future
As the most fundamental scene understanding tasks, object detection and segmentation have made tremendous progress in deep learning era. Due to the expensive manual labeling cost, the annotated categories in existing datasets are often small-scale and pre-defined, i.e., state-of-the-art fully-supervised detectors and segmentors fail to generalize beyond the closed vocabulary. To resolve this limitation, in the last few years, the community has witnessed an increasing attention toward Open-Vocabulary Detection (OVD) and Segmentation (OVS). By ``open-vocabulary'', we mean that the models can classify objects beyond pre-defined categories. In this survey, we provide a comprehensive review on recent developments of OVD and OVS. A taxonomy is first developed to organize different tasks and methodologies. We find that the permission and usage of weak supervision signals can well discriminate different methodologies, including: visual-semantic space mapping, novel visual feature synthesis, region-aware training, pseudo-labeling, knowledge distillation, and transfer learning. The proposed taxonomy is universal across different tasks, covering object detection, semantic/instance/panoptic segmentation, 3D and video understanding. The main design principles, key challenges, development routes, methodology strengths, and weaknesses are thoroughly analyzed. In addition, we benchmark each task along with the vital components of each method in appendix and updated online at https://github.com/seanzhuh/awesome-open-vocabulary-detection-and-segmentation. Finally, several promising directions are provided and discussed to stimulate future research.
♻ ☆ Fine-Grained Side Information Guided Dual-Prompts for Zero-Shot Skeleton Action Recognition
Skeleton-based zero-shot action recognition aims to recognize unknown human actions based on the learned priors of the known skeleton-based actions and a semantic descriptor space shared by both known and unknown categories. However, previous works focus on establishing the bridges between the known skeleton representation space and semantic descriptions space at the coarse-grained level for recognizing unknown action categories, ignoring the fine-grained alignment of these two spaces, resulting in suboptimal performance in distinguishing high-similarity action categories. To address these challenges, we propose a novel method via Side information and dual-prompts learning for skeleton-based zero-shot action recognition (STAR) at the fine-grained level. Specifically, 1) we decompose the skeleton into several parts based on its topology structure and introduce the side information concerning multi-part descriptions of human body movements for alignment between the skeleton and the semantic space at the fine-grained level; 2) we design the visual-attribute and semantic-part prompts to improve the intra-class compactness within the skeleton space and inter-class separability within the semantic space, respectively, to distinguish the high-similarity actions. Extensive experiments show that our method achieves state-of-the-art performance in ZSL and GZSL settings on NTU RGB+D, NTU RGB+D 120, and PKU-MMD datasets.
comment: 11 pages, 5 figures
♻ ☆ OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering
Rendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
♻ ☆ ParamISP: Learned Forward and Inverse ISPs using Camera Parameters
RAW images are rarely shared mainly due to its excessive data size compared to their sRGB counterparts obtained by camera ISPs. Learning the forward and inverse processes of camera ISPs has been recently demonstrated, enabling physically-meaningful RAW-level image processing on input sRGB images. However, existing learning-based ISP methods fail to handle the large variations in the ISP processes with respect to camera parameters such as ISO and exposure time, and have limitations when used for various applications. In this paper, we propose ParamISP, a learning-based method for forward and inverse conversion between sRGB and RAW images, that adopts a novel neural-network module to utilize camera parameters, which is dubbed as ParamNet. Given the camera parameters provided in the EXIF data, ParamNet converts them into a feature vector to control the ISP networks. Extensive experiments demonstrate that ParamISP achieve superior RAW and sRGB reconstruction results compared to previous methods and it can be effectively used for a variety of applications such as deblurring dataset synthesis, raw deblurring, HDR reconstruction, and camera-to-camera transfer.
♻ ☆ Investigating Low Data, Confidence Aware Image Prediction on Smooth Repetitive Videos using Gaussian Processes
The ability to predict future states is crucial to informed decision-making while interacting with dynamic environments. With cameras providing a prevalent and information-rich sensing modality, the problem of predicting future states from image sequences has garnered a lot of attention. Current state-of-the-art methods typically train large parametric models for their predictions. Though often able to predict with accuracy these models often fail to provide interpretable confidence metrics around their predictions. Additionally these methods are reliant on the availability of large training datasets to converge to useful solutions. In this paper, we focus on the problem of predicting future images of an image sequence with interpretable confidence bounds from very little training data. To approach this problem, we use non-parametric models to take a probabilistic approach to image prediction. We generate probability distributions over sequentially predicted images, and propagate uncertainty through time to generate a confidence metric for our predictions. Gaussian Processes are used for their data efficiency and ability to readily incorporate new training data online. Our methods predictions are evaluated on a smooth fluid simulation environment. We showcase the capabilities of our approach on real world data by predicting pedestrian flows and weather patterns from satellite imagery.
♻ ☆ Transformer based Pluralistic Image Completion with Reduced Information Loss
Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize $256^3$ RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets. Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets (e.g., ImageNet). Codes are available at https://github.com/liuqk3/PUT.
comment: Accepted by TPAMI (2024). arXiv admin note: text overlap with arXiv:2205.05076
♻ ☆ Are Bias Mitigation Techniques for Deep Learning Effective? WACV 2022
A critical problem in deep learning is that systems learn inappropriate biases, resulting in their inability to perform well on minority groups. This has led to the creation of multiple algorithms that endeavor to mitigate bias. However, it is not clear how effective these methods are. This is because study protocols differ among papers, systems are tested on datasets that fail to test many forms of bias, and systems have access to hidden knowledge or are tuned specifically to the test set. To address this, we introduce an improved evaluation protocol, sensible metrics, and a new dataset, which enables us to ask and answer critical questions about bias mitigation algorithms. We evaluate seven state-of-the-art algorithms using the same network architecture and hyperparameter selection policy across three benchmark datasets. We introduce a new dataset called Biased MNIST that enables assessment of robustness to multiple bias sources. We use Biased MNIST and a visual question answering (VQA) benchmark to assess robustness to hidden biases. Rather than only tuning to the test set distribution, we study robustness across different tuning distributions, which is critical because for many applications the test distribution may not be known during development. We find that algorithms exploit hidden biases, are unable to scale to multiple forms of bias, and are highly sensitive to the choice of tuning set. Based on our findings, we implore the community to adopt more rigorous assessment of future bias mitigation methods. All data, code, and results are publicly available at: https://github.com/erobic/bias-mitigators.
comment: WACV 2022
♻ ☆ CADS: Unleashing the Diversity of Diffusion Models through Condition-Annealed Sampling ICLR 2024
While conditional diffusion models are known to have good coverage of the data distribution, they still face limitations in output diversity, particularly when sampled with a high classifier-free guidance scale for optimal image quality or when trained on small datasets. We attribute this problem to the role of the conditioning signal in inference and offer an improved sampling strategy for diffusion models that can increase generation diversity, especially at high guidance scales, with minimal loss of sample quality. Our sampling strategy anneals the conditioning signal by adding scheduled, monotonically decreasing Gaussian noise to the conditioning vector during inference to balance diversity and condition alignment. Our Condition-Annealed Diffusion Sampler (CADS) can be used with any pretrained model and sampling algorithm, and we show that it boosts the diversity of diffusion models in various conditional generation tasks. Further, using an existing pretrained diffusion model, CADS achieves a new state-of-the-art FID of 1.70 and 2.31 for class-conditional ImageNet generation at 256$\times$256 and 512$\times$512 respectively.
comment: Published as a conference paper at ICLR 2024
Information Retrieval 18
☆ Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context SIGIR 2024
Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
comment: Accepted by SIGIR 2024, 10 pages, 5 figures, 5 tables
☆ Recall-Augmented Ranking: Enhancing Click-Through Rate Prediction Accuracy with Cross-Stage Data WWW 2024
Click-through rate (CTR) prediction plays an indispensable role in online platforms. Numerous models have been proposed to capture users' shifting preferences by leveraging user behavior sequences. However, these historical sequences often suffer from severe homogeneity and scarcity compared to the extensive item pool. Relying solely on such sequences for user representations is inherently restrictive, as user interests extend beyond the scope of items they have previously engaged with. To address this challenge, we propose a data-driven approach to enrich user representations. We recognize user profiling and recall items as two ideal data sources within the cross-stage framework, encompassing the u2u (user-to-user) and i2i (item-to-item) aspects respectively. In this paper, we propose a novel architecture named Recall-Augmented Ranking (RAR). RAR consists of two key sub-modules, which synergistically gather information from a vast pool of look-alike users and recall items, resulting in enriched user representations. Notably, RAR is orthogonal to many existing CTR models, allowing for consistent performance improvements in a plug-and-play manner. Extensive experiments are conducted, which verify the efficacy and compatibility of RAR against the SOTA methods.
comment: 4 pages, accepted by WWW 2024 Short Track
☆ UniSAR: Modeling User Transition Behaviors between Search and Recommendation SIGIR 2024
Nowadays, many platforms provide users with both search and recommendation services as important tools for accessing information. The phenomenon has led to a correlation between user search and recommendation behaviors, providing an opportunity to model user interests in a fine-grained way. Existing approaches either model user search and recommendation behaviors separately or overlook the different transitions between user search and recommendation behaviors. In this paper, we propose a framework named UniSAR that effectively models the different types of fine-grained behavior transitions for providing users a Unified Search And Recommendation service. Specifically, UniSAR models the user transition behaviors between search and recommendation through three steps: extraction, alignment, and fusion, which are respectively implemented by transformers equipped with pre-defined masks, contrastive learning that aligns the extracted fine-grained user transitions, and cross-attentions that fuse different transitions. To provide users with a unified service, the learned representations are fed into the downstream search and recommendation models. Joint learning on both search and recommendation data is employed to utilize the knowledge and enhance each other. Experimental results on two public datasets demonstrated the effectiveness of UniSAR in terms of enhancing both search and recommendation simultaneously. The experimental analysis further validates that UniSAR enhances the results by successfully modeling the user transition behaviors between search and recommendation.
comment: Accepted by SIGIR 2024
☆ Exploring the Nexus Between Retrievability and Query Generation Strategies ECIR 2024
Quantifying bias in retrieval functions through document retrievability scores is vital for assessing recall-oriented retrieval systems. However, many studies investigating retrieval model bias lack validation of their query generation methods as accurate representations of retrievability for real users and their queries. This limitation results from the absence of established criteria for query generation in retrievability assessments. Typically, researchers resort to using frequent collocations from document corpora when no query log is available. In this study, we address the issue of reproducibility and seek to validate query generation methods by comparing retrievability scores generated from artificially generated queries to those derived from query logs. Our findings demonstrate a minimal or negligible correlation between retrievability scores from artificial queries and those from query logs. This suggests that artificially generated queries may not accurately reflect retrievability scores as derived from query logs. We further explore alternative query generation techniques, uncovering a variation that exhibits the highest correlation. This alternative approach holds promise for improving reproducibility when query logs are unavailable.
comment: Accepted at ECIR 2024
☆ TabSQLify: Enhancing Reasoning Capabilities of LLMs Through Table Decomposition NAACL 2024
Table reasoning is a challenging task that requires understanding both natural language questions and structured tabular data. Large language models (LLMs) have shown impressive capabilities in natural language understanding and generation, but they often struggle with large tables due to their limited input length. In this paper, we propose TabSQLify, a novel method that leverages text-to-SQL generation to decompose tables into smaller and relevant sub-tables, containing only essential information for answering questions or verifying statements, before performing the reasoning task. In our comprehensive evaluation on four challenging datasets, our approach demonstrates comparable or superior performance compared to prevailing methods reliant on full tables as input. Moreover, our method can reduce the input context length significantly, making it more scalable and efficient for large-scale table reasoning applications. Our method performs remarkably well on the WikiTQ benchmark, achieving an accuracy of 64.7%. Additionally, on the TabFact benchmark, it achieves a high accuracy of 79.5%. These results surpass other LLM-based baseline models on gpt-3.5-turbo (chatgpt). TabSQLify can reduce the table size significantly alleviating the computational load on LLMs when handling large tables without compromising performance.
comment: Accepted to NAACL 2024 (long, main)
☆ LegalPro-BERT: Classification of Legal Provisions by fine-tuning BERT Large Language Model
A contract is a type of legal document commonly used in organizations. Contract review is an integral and repetitive process to avoid business risk and liability. Contract analysis requires the identification and classification of key provisions and paragraphs within an agreement. Identification and validation of contract clauses can be a time-consuming and challenging task demanding the services of trained and expensive lawyers, paralegals or other legal assistants. Classification of legal provisions in contracts using artificial intelligence and natural language processing is complex due to the requirement of domain-specialized legal language for model training and the scarcity of sufficient labeled data in the legal domain. Using general-purpose models is not effective in this context due to the use of specialized legal vocabulary in contracts which may not be recognized by a general model. To address this problem, we propose the use of a pre-trained large language model which is subsequently calibrated on legal taxonomy. We propose LegalPro-BERT, a BERT transformer architecture model that we fine- tune to efficiently handle classification task for legal provisions. We conducted experiments to measure and compare metrics with current benchmark results. We found that LegalPro-BERT outperforms the previous benchmark used for comparison in this research.
comment: 17 pages, 4 figures
☆ Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems NAACL 2024
Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems (TDSs). Obtaining high-quality and consistent ground-truth labels from annotators presents challenges. When evaluating a TDS, annotators must fully comprehend the dialogue before providing judgments. Previous studies suggest using only a portion of the dialogue context in the annotation process. However, the impact of this limitation on label quality remains unexplored. This study investigates the influence of dialogue context on annotation quality, considering the truncated context for relevance and usefulness labeling. We further propose to use large language models (LLMs) to summarize the dialogue context to provide a rich and short description of the dialogue context and study the impact of doing so on the annotator's performance. Reducing context leads to more positive ratings. Conversely, providing the entire dialogue context yields higher-quality relevance ratings but introduces ambiguity in usefulness ratings. Using the first user utterance as context leads to consistent ratings, akin to those obtained using the entire dialogue, with significantly reduced annotation effort. Our findings show how task design, particularly the availability of dialogue context, affects the quality and consistency of crowdsourced evaluation labels.
comment: Accepted at NAACL 2024 Findings
☆ Is Table Retrieval a Solved Problem? Join-Aware Multi-Table Retrieval
Retrieving relevant tables containing the necessary information to accurately answer a given question over tables is critical to open-domain question-answering (QA) systems. Previous methods assume the answer to such a question can be found either in a single table or multiple tables identified through question decomposition or rewriting. However, neither of these approaches is sufficient, as many questions require retrieving multiple tables and joining them through a join plan that cannot be discerned from the user query itself. If the join plan is not considered in the retrieval stage, the subsequent steps of reasoning and answering based on those retrieved tables are likely to be incorrect. To address this problem, we introduce a method that uncovers useful join relations for any query and database during table retrieval. We use a novel re-ranking method formulated as a mixed-integer program that considers not only table-query relevance but also table-table relevance that requires inferring join relationships. Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
☆ LegalPro-BERT: Classification of Legal Provisions by fine-tuning BERT Large Language Model
A contract is a type of legal document commonly used in organizations. Contract review is an integral and repetitive process to avoid business risk and liability. Contract analysis requires the identification and classification of key provisions and paragraphs within an agreement. Identification and validation of contract clauses can be a time-consuming and challenging task demanding the services of trained and expensive lawyers, paralegals or other legal assistants. Classification of legal provisions in contracts using artificial intelligence and natural language processing is complex due to the requirement of domain-specialized legal language for model training and the scarcity of sufficient labeled data in the legal domain. Using general-purpose models is not effective in this context due to the use of specialized legal vocabulary in contracts which may not be recognized by a general model. To address this problem, we propose the use of a pre-trained large language model which is subsequently calibrated on legal taxonomy. We propose LegalPro-BERT, a BERT transformer architecture model that we fine-tune to efficiently handle classification task for legal provisions. We conducted experiments to measure and compare metrics with current benchmark results. We found that LegalPro-BERT outperforms the previous benchmark used for comparison in this research.
comment: 17 pages, 4 figures
♻ ☆ Explicitly Integrating Judgment Prediction with Legal Document Retrieval: A Law-Guided Generative Approach SIGIR'2024
Legal document retrieval and judgment prediction are crucial tasks in intelligent legal systems. In practice, determining whether two documents share the same judgments is essential for establishing their relevance in legal retrieval. However, existing legal retrieval studies either ignore the vital role of judgment prediction or rely on implicit training objectives, expecting a proper alignment of legal documents in vector space based on their judgments. Neither approach provides explicit evidence of judgment consistency for relevance modeling, leading to inaccuracies and a lack of transparency in retrieval. To address this issue, we propose a law-guided method, namely GEAR, within the generative retrieval framework. GEAR explicitly integrates judgment prediction with legal document retrieval in a sequence-to-sequence manner. Experiments on two Chinese legal case retrieval datasets show the superiority of GEAR over state-of-the-art methods while maintaining competitive judgment prediction performance. Moreover, we validate its robustness across languages and domains on a French statutory article retrieval dataset.
comment: Accepted by SIGIR'2024
♻ ☆ AFDGCF: Adaptive Feature De-correlation Graph Collaborative Filtering for Recommendations SIGIR2024
Collaborative filtering methods based on graph neural networks (GNNs) have witnessed significant success in recommender systems (RS), capitalizing on their ability to capture collaborative signals within intricate user-item relationships via message-passing mechanisms. However, these GNN-based RS inadvertently introduce excess linear correlation between user and item embeddings, contradicting the goal of providing personalized recommendations. While existing research predominantly ascribes this flaw to the over-smoothing problem, this paper underscores the critical, often overlooked role of the over-correlation issue in diminishing the effectiveness of GNN representations and subsequent recommendation performance. Up to now, the over-correlation issue remains unexplored in RS. Meanwhile, how to mitigate the impact of over-correlation while preserving collaborative filtering signals is a significant challenge. To this end, this paper aims to address the aforementioned gap by undertaking a comprehensive study of the over-correlation issue in graph collaborative filtering models. Firstly, we present empirical evidence to demonstrate the widespread prevalence of over-correlation in these models. Subsequently, we dive into a theoretical analysis which establishes a pivotal connection between the over-correlation and over-smoothing issues. Leveraging these insights, we introduce the Adaptive Feature De-correlation Graph Collaborative Filtering (AFDGCF) framework, which dynamically applies correlation penalties to the feature dimensions of the representation matrix, effectively alleviating both over-correlation and over-smoothing issues. The efficacy of the proposed framework is corroborated through extensive experiments conducted with four representative graph collaborative filtering models across four publicly available datasets.
comment: Accepted by SIGIR2024
♻ ☆ Generative Retrieval via Term Set Generation
Recently, generative retrieval emerges as a promising alternative to traditional retrieval paradigms. It assigns each document a unique identifier, known as DocID, and employs a generative model to directly generate the relevant DocID for the input query. A common choice for DocID is one or several natural language sequences, e.g. the title or n-grams, so that the pre-trained knowledge of the generative model can be utilized. However, a sequence is generated token by token, where only the most likely candidates are kept and the rest are pruned at each decoding step, thus, retrieval fails if any token within the relevant DocID is falsely pruned. What's worse, during decoding, the model can only perceive preceding tokens in DocID while being blind to subsequent ones, hence is prone to make such errors. To address this problem, we present a novel framework for generative retrieval, dubbed Term-Set Generation (TSGen). Instead of sequences, we use a set of terms as DocID, which are automatically selected to concisely summarize the document's semantics and distinguish it from others. On top of the term-set DocID, we propose a permutation-invariant decoding algorithm, with which the term set can be generated in any permutation yet will always lead to the corresponding document. Remarkably, TSGen perceives all valid terms rather than only the preceding ones at each decoding step. Given the constant decoding space, it can make more reliable decisions due to the broader perspective. TSGen is also resilient to errors: the relevant DocID will not be pruned as long as the decoded term belongs to it. Lastly, we design an iterative optimization procedure to incentivize the model to generate the relevant term set in its favorable permutation. We conduct extensive experiments on popular benchmarks, which validate the effectiveness, the generalizability, the scalability, and the efficiency of TSGen.
♻ ☆ Recommender Systems in the Era of Large Language Models (LLMs)
With the prosperity of e-commerce and web applications, Recommender Systems (RecSys) have become an important component of our daily life, providing personalized suggestions that cater to user preferences. While Deep Neural Networks (DNNs) have made significant advancements in enhancing recommender systems by modeling user-item interactions and incorporating textual side information, DNN-based methods still face limitations, such as difficulties in understanding users' interests and capturing textual side information, inabilities in generalizing to various recommendation scenarios and reasoning on their predictions, etc. Meanwhile, the emergence of Large Language Models (LLMs), such as ChatGPT and GPT4, has revolutionized the fields of Natural Language Processing (NLP) and Artificial Intelligence (AI), due to their remarkable abilities in fundamental responsibilities of language understanding and generation, as well as impressive generalization and reasoning capabilities. As a result, recent studies have attempted to harness the power of LLMs to enhance recommender systems. Given the rapid evolution of this research direction in recommender systems, there is a pressing need for a systematic overview that summarizes existing LLM-empowered recommender systems, to provide researchers in relevant fields with an in-depth understanding. Therefore, in this paper, we conduct a comprehensive review of LLM-empowered recommender systems from various aspects including Pre-training, Fine-tuning, and Prompting. More specifically, we first introduce representative methods to harness the power of LLMs (as a feature encoder) for learning representations of users and items. Then, we review recent techniques of LLMs for enhancing recommender systems from three paradigms, namely pre-training, fine-tuning, and prompting. Finally, we comprehensively discuss future directions in this emerging field.
comment: Accepted by IEEE TKDE
♻ ☆ M-scan: A Multi-Scenario Causal-driven Adaptive Network for Recommendation WWW'24
We primarily focus on the field of multi-scenario recommendation, which poses a significant challenge in effectively leveraging data from different scenarios to enhance predictions in scenarios with limited data. Current mainstream efforts mainly center around innovative model network architectures, with the aim of enabling the network to implicitly acquire knowledge from diverse scenarios. However, the uncertainty of implicit learning in networks arises from the absence of explicit modeling, leading to not only difficulty in training but also incomplete user representation and suboptimal performance. Furthermore, through causal graph analysis, we have discovered that the scenario itself directly influences click behavior, yet existing approaches directly incorporate data from other scenarios during the training of the current scenario, leading to prediction biases when they directly utilize click behaviors from other scenarios to train models. To address these problems, we propose the Multi-Scenario Causal-driven Adaptive Network M-scan). This model incorporates a Scenario-Aware Co-Attention mechanism that explicitly extracts user interests from other scenarios that align with the current scenario. Additionally, it employs a Scenario Bias Eliminator module utilizing causal counterfactual inference to mitigate biases introduced by data from other scenarios. Extensive experiments on two public datasets demonstrate the efficacy of our M-scan compared to the existing baseline models.
comment: This paper has been accepted by WWW'24
♻ ☆ Large-Scale Multi-Domain Recommendation: an Automatic Domain Feature Extraction and Personalized Integration Framework
Feed recommendation is currently the mainstream mode for many real-world applications (e.g., TikTok, Dianping), it is usually necessary to model and predict user interests in multiple scenarios (domains) within and even outside the application. Multi-domain learning is a typical solution in this regard. While considerable efforts have been made in this regard, there are still two long-standing challenges: (1) Accurately depicting the differences among domains using domain features is crucial for enhancing the performance of each domain. However, manually designing domain features and models for numerous domains can be a laborious task. (2) Users typically have limited impressions in only a few domains. Extracting features automatically from other domains and leveraging them to improve the predictive capabilities of each domain has consistently posed a challenging problem. In this paper, we propose an Automatic Domain Feature Extraction and Personalized Integration (DFEI) framework for the large-scale multi-domain recommendation. The framework automatically transforms the behavior of each individual user into an aggregation of all user behaviors within the domain, which serves as the domain features. Unlike offline feature engineering methods, the extracted domain features are higher-order representations and directly related to the target label. Besides, by personalized integration of domain features from other domains for each user and the innovation in the training mode, the DFEI framework can yield more accurate conversion identification. Experimental results on both public and industrial datasets, consisting of over 20 domains, clearly demonstrate that the proposed framework achieves significantly better performance compared with SOTA baselines. Furthermore, we have released the source code of the proposed framework at https://github.com/xidongbo/DFEI.
comment: 8 pages
♻ ☆ Leveraging LLMs for Synthesizing Training Data Across Many Languages in Multilingual Dense Retrieval NAACL 2024
There has been limited success for dense retrieval models in multilingual retrieval, due to uneven and scarce training data available across multiple languages. Synthetic training data generation is promising (e.g., InPars or Promptagator), but has been investigated only for English. Therefore, to study model capabilities across both cross-lingual and monolingual retrieval tasks, we develop SWIM-IR, a synthetic retrieval training dataset containing 33 (high to very-low resource) languages for fine-tuning multilingual dense retrievers without requiring any human supervision. To construct SWIM-IR, we propose SAP (summarize-then-ask prompting), where the large language model (LLM) generates a textual summary prior to the query generation step. SAP assists the LLM in generating informative queries in the target language. Using SWIM-IR, we explore synthetic fine-tuning of multilingual dense retrieval models and evaluate them robustly on three retrieval benchmarks: XOR-Retrieve (cross-lingual), MIRACL (monolingual) and XTREME-UP (cross-lingual). Our models, called SWIM-X, are competitive with human-supervised dense retrieval models, e.g., mContriever-X, finding that SWIM-IR can cheaply substitute for expensive human-labeled retrieval training data. SWIM-IR dataset and SWIM-X models are available at https://github.com/google-research-datasets/SWIM-IR.
comment: Accepted at NAACL 2024. Data released at https://github.com/google-research-datasets/swim-ir
♻ ☆ Gradient Flow of Energy: A General and Efficient Approach for Entity Alignment Decoding
Entity alignment (EA), a pivotal process in integrating multi-source Knowledge Graphs (KGs), seeks to identify equivalent entity pairs across these graphs. Most existing approaches regard EA as a graph representation learning task, concentrating on enhancing graph encoders. However, the decoding process in EA - essential for effective operation and alignment accuracy - has received limited attention and remains tailored to specific datasets and model architectures, necessitating both entity and additional explicit relation embeddings. This specificity limits its applicability, particularly in GNN-based models. To address this gap, we introduce a novel, generalized, and efficient decoding approach for EA, relying solely on entity embeddings. Our method optimizes the decoding process by minimizing Dirichlet energy, leading to the gradient flow within the graph, to maximize graph homophily. The discretization of the gradient flow produces a fast and scalable approach, termed Triple Feature Propagation (TFP). TFP innovatively generalizes adjacency matrices to multi-views matrices:entity-to-entity, entity-to-relation, relation-to-entity, and relation-to-triple. The gradient flow through generalized matrices enables TFP to harness the multi-view structural information of KGs. Rigorous experimentation on diverse public datasets demonstrates that our approach significantly enhances various EA methods. Notably, the approach achieves these advancements with less than 6 seconds of additional computational time, establishing a new benchmark in efficiency and adaptability for future EA methods.
♻ ☆ Claraprint: a chord and melody based fingerprint for western classical music cover detection
Cover song detection has been an active field in the Music Information Retrieval (MIR) community during the past decades. Most of the research community focused in solving it for a wide range of music genres with diverse characteristics. Western classical music, a genre heavily based on the recording of "cover songs", or musical works, represents a large heritage, offering immediate application for an efficient fingerprint algorithm. We propose an engineering approach for retrieving a cover song from a reference database thanks to a fingerprint designed for classical musical works. We open a new data set to encourage the scientific community to use it for further researches regarding this genre.
Machine Learning 114
☆ Personalized Collaborative Fine-Tuning for On-Device Large Language Models
We explore on-device self-supervised collaborative fine-tuning of large language models with limited local data availability. Taking inspiration from the collaborative learning community, we introduce three distinct trust-weighted gradient aggregation schemes: weight similarity-based, prediction similarity-based and validation performance-based. To minimize communication overhead, we integrate Low-Rank Adaptation (LoRA) and only exchange LoRA weight updates. Our protocols, driven by prediction and performance metrics, surpass both FedAvg and local fine-tuning methods, which is particularly evident in realistic scenarios with more diverse local data distributions. The results underscore the effectiveness of our approach in addressing heterogeneity and scarcity within local datasets.
☆ Can We Break Free from Strong Data Augmentations in Self-Supervised Learning?
Self-supervised learning (SSL) has emerged as a promising solution for addressing the challenge of limited labeled data in deep neural networks (DNNs), offering scalability potential. However, the impact of design dependencies within the SSL framework remains insufficiently investigated. In this study, we comprehensively explore SSL behavior across a spectrum of augmentations, revealing their crucial role in shaping SSL model performance and learning mechanisms. Leveraging these insights, we propose a novel learning approach that integrates prior knowledge, with the aim of curtailing the need for extensive data augmentations and thereby amplifying the efficacy of learned representations. Notably, our findings underscore that SSL models imbued with prior knowledge exhibit reduced texture bias, diminished reliance on shortcuts and augmentations, and improved robustness against both natural and adversarial corruptions. These findings not only illuminate a new direction in SSL research, but also pave the way for enhancing DNN performance while concurrently alleviating the imperative for intensive data augmentation, thereby enhancing scalability and real-world problem-solving capabilities.
☆ Quantization of Large Language Models with an Overdetermined Basis
In this paper, we introduce an algorithm for data quantization based on the principles of Kashin representation. This approach hinges on decomposing any given vector, matrix, or tensor into two factors. The first factor maintains a small infinity norm, while the second exhibits a similarly constrained norm when multiplied by an orthogonal matrix. Surprisingly, the entries of factors after decomposition are well-concentrated around several peaks, which allows us to efficiently replace them with corresponding centroids for quantization purposes. We study the theoretical properties of the proposed approach and rigorously evaluate our compression algorithm in the context of next-word prediction tasks and on a set of downstream tasks for text classification. Our findings demonstrate that Kashin Quantization achieves competitive or superior quality in model performance while ensuring data compression, marking a significant advancement in the field of data quantization.
☆ Convergence Analysis of Probability Flow ODE for Score-based Generative Models
Score-based generative models have emerged as a powerful approach for sampling high-dimensional probability distributions. Despite their effectiveness, their theoretical underpinnings remain relatively underdeveloped. In this work, we study the convergence properties of deterministic samplers based on probability flow ODEs from both theoretical and numerical perspectives. Assuming access to $L^2$-accurate estimates of the score function, we prove the total variation between the target and the generated data distributions can be bounded above by $\mathcal{O}(d\sqrt{\delta})$ in the continuous time level, where $d$ denotes the data dimension and $\delta$ represents the $L^2$-score matching error. For practical implementations using a $p$-th order Runge-Kutta integrator with step size $h$, we establish error bounds of $\mathcal{O}(d(\sqrt{\delta} + (dh)^p))$ at the discrete level. Finally, we present numerical studies on problems up to $128$ dimensions to verify our theory, which indicate a better score matching error and dimension dependence.
comment: 33 pages, 7 figures
☆ Amplitude-Phase Fusion for Enhanced Electrocardiogram Morphological Analysis
Considering the variability of amplitude and phase patterns in electrocardiogram (ECG) signals due to cardiac activity and individual differences, existing entropy-based studies have not fully utilized these two patterns and lack integration. To address this gap, this paper proposes a novel fusion entropy metric, morphological ECG entropy (MEE) for the first time, specifically designed for ECG morphology, to comprehensively describe the fusion of amplitude and phase patterns. MEE is computed based on beat-level samples, enabling detailed analysis of each cardiac cycle. Experimental results demonstrate that MEE achieves rapid, accurate, and label-free localization of abnormal ECG arrhythmia regions. Furthermore, MEE provides a method for assessing sample diversity, facilitating compression of imbalanced training sets (via representative sample selection), and outperforms random pruning. Additionally, MEE exhibits the ability to describe areas of poor quality. By discussing, it proves the robustness of MEE value calculation to noise interference and its low computational complexity. Finally, we integrate this method into a clinical interactive interface to provide a more convenient and intuitive user experience. These findings indicate that MEE serves as a valuable clinical descriptor for ECG characterization. The implementation code can be referenced at the following link: https://github.com/fdu-harry/ECG-MEE-metric.
comment: 16 pages, 12 figures
☆ VFLGAN: Vertical Federated Learning-based Generative Adversarial Network for Vertically Partitioned Data Publication
In the current artificial intelligence (AI) era, the scale and quality of the dataset play a crucial role in training a high-quality AI model. However, good data is not a free lunch and is always hard to access due to privacy regulations like the General Data Protection Regulation (GDPR). A potential solution is to release a synthetic dataset with a similar distribution to that of the private dataset. Nevertheless, in some scenarios, it has been found that the attributes needed to train an AI model belong to different parties, and they cannot share the raw data for synthetic data publication due to privacy regulations. In PETS 2023, Xue et al. proposed the first generative adversary network-based model, VertiGAN, for vertically partitioned data publication. However, after thoroughly investigating, we found that VertiGAN is less effective in preserving the correlation among the attributes of different parties. This article proposes a Vertical Federated Learning-based Generative Adversarial Network, VFLGAN, for vertically partitioned data publication to address the above issues. Our experimental results show that compared with VertiGAN, VFLGAN significantly improves the quality of synthetic data. Taking the MNIST dataset as an example, the quality of the synthetic dataset generated by VFLGAN is 3.2 times better than that generated by VertiGAN w.r.t. the Fr\'echet Distance. We also designed a more efficient and effective Gaussian mechanism for the proposed VFLGAN to provide the synthetic dataset with a differential privacy guarantee. On the other hand, differential privacy only gives the upper bound of the worst-case privacy guarantee. This article also proposes a practical auditing scheme that applies membership inference attacks to estimate privacy leakage through the synthetic dataset.
☆ Unveiling Imitation Learning: Exploring the Impact of Data Falsity to Large Language Model ACL
Many recent studies endeavor to improve open-source language models through imitation learning, and re-training on the synthetic instruction data from state-of-the-art proprietary models like ChatGPT and GPT-4. However, the innate nature of synthetic data inherently contains noisy data, giving rise to a substantial presence of low-quality data replete with erroneous responses, and flawed reasoning. Although we intuitively grasp the potential harm of noisy data, we lack a quantitative understanding of its impact. To this end, this paper explores the correlation between the degree of noise and its impact on language models through instruction tuning. We first introduce the Falsity-Controllable (FACO) dataset, which comprises pairs of true answers with corresponding reasoning, as well as false pairs to manually control the falsity ratio of the dataset.Through our extensive experiments, we found multiple intriguing findings of the correlation between the factuality of the dataset and instruction tuning: Specifically, we verified falsity of the instruction is highly relevant to various benchmark scores. Moreover, when LLMs are trained with false instructions, they learn to lie and generate fake unfaithful answers, even though they know the correct answer for the user request. Additionally, we noted that once the language model is trained with a dataset contaminated by noise, restoring its original performance is possible, but it failed to reach full performance.
comment: Under review @ *ACL
☆ Higher Replay Ratio Empowers Sample-Efficient Multi-Agent Reinforcement Learning
One of the notorious issues for Reinforcement Learning (RL) is poor sample efficiency. Compared to single agent RL, the sample efficiency for Multi-Agent Reinforcement Learning (MARL) is more challenging because of its inherent partial observability, non-stationary training, and enormous strategy space. Although much effort has been devoted to developing new methods and enhancing sample efficiency, we look at the widely used episodic training mechanism. In each training step, tens of frames are collected, but only one gradient step is made. We argue that this episodic training could be a source of poor sample efficiency. To better exploit the data already collected, we propose to increase the frequency of the gradient updates per environment interaction (a.k.a. Replay Ratio or Update-To-Data ratio). To show its generality, we evaluate $3$ MARL methods on $6$ SMAC tasks. The empirical results validate that a higher replay ratio significantly improves the sample efficiency for MARL algorithms. The codes to reimplement the results presented in this paper are open-sourced at https://anonymous.4open.science/r/rr_for_MARL-0D83/.
☆ Scenario-Adaptive Fine-Grained Personalization Network: Tailoring User Behavior Representation to the Scenario Context SIGIR 2024
Existing methods often adjust representations adaptively only after aggregating user behavior sequences. This coarse-grained approach to re-weighting the entire user sequence hampers the model's ability to accurately model the user interest migration across different scenarios. To enhance the model's capacity to capture user interests from historical behavior sequences in each scenario, we develop a ranking framework named the Scenario-Adaptive Fine-Grained Personalization Network (SFPNet), which designs a kind of fine-grained method for multi-scenario personalized recommendations. Specifically, SFPNet comprises a series of blocks named as Scenario-Tailoring Block, stacked sequentially. Each block initially deploys a parameter personalization unit to integrate scenario information at a coarse-grained level by redefining fundamental features. Subsequently, we consolidate scenario-adaptively adjusted feature representations to serve as context information. By employing residual connection, we incorporate this context into the representation of each historical behavior, allowing for context-aware fine-grained customization of the behavior representations at the scenario-level, which in turn supports scenario-aware user interest modeling.
comment: Accepted by SIGIR 2024, 10 pages, 5 figures, 5 tables
☆ Kernel-based learning with guarantees for multi-agent applications
This paper addresses a kernel-based learning problem for a network of agents locally observing a latent multidimensional, nonlinear phenomenon in a noisy environment. We propose a learning algorithm that requires only mild a priori knowledge about the phenomenon under investigation and delivers a model with corresponding non-asymptotic high probability error bounds. Both non-asymptotic analysis of the method and numerical simulation results are presented and discussed in the paper.
☆ Adaptive Patching for High-resolution Image Segmentation with Transformers
Attention-based models are proliferating in the space of image analytics, including segmentation. The standard method of feeding images to transformer encoders is to divide the images into patches and then feed the patches to the model as a linear sequence of tokens. For high-resolution images, e.g. microscopic pathology images, the quadratic compute and memory cost prohibits the use of an attention-based model, if we are to use smaller patch sizes that are favorable in segmentation. The solution is to either use custom complex multi-resolution models or approximate attention schemes. We take inspiration from Adapative Mesh Refinement (AMR) methods in HPC by adaptively patching the images, as a pre-processing step, based on the image details to reduce the number of patches being fed to the model, by orders of magnitude. This method has a negligible overhead, and works seamlessly with any attention-based model, i.e. it is a pre-processing step that can be adopted by any attention-based model without friction. We demonstrate superior segmentation quality over SoTA segmentation models for real-world pathology datasets while gaining a geomean speedup of $6.9\times$ for resolutions up to $64K^2$, on up to $2,048$ GPUs.
☆ AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
comment: Preprint version of the 3rd Chapter of the book: Competitions and Benchmarks, the science behind the contests (https://sites.google.com/chalearn.org/book/home)
☆ LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression for Large Language Models
Large language models (LLMs) show excellent performance in difficult tasks, but they often require massive memories and computational resources. How to reduce the parameter scale of LLMs has become research hotspots. In this study, we make an important observation that the multi-head self-attention (MHA) sub-layer of Transformer exhibits noticeable low-rank structure, while the feed-forward network (FFN) sub-layer does not. With this regard, we design a mixed compression model, which organically combines Low-Rank matrix approximation And structured Pruning (LoRAP). For the MHA sub-layer, we propose an input activation weighted singular value decomposition method to strengthen the low-rank characteristic. Furthermore, we discover that the weight matrices in MHA sub-layer have different low-rank degrees. Thus, a novel parameter allocation scheme according to the discrepancy of low-rank degrees is devised. For the FFN sub-layer, we propose a gradient-free structured channel pruning method. During the pruning, we get an interesting finding that the least important 1% of parameter actually play a vital role in model performance. Extensive evaluations on zero-shot perplexity and zero-shot task classification indicate that our proposal is superior to previous structured compression rivals under multiple compression ratios.
comment: 8 pages,4 figures
☆ Harnessing GPT-4V(ision) for Insurance: A Preliminary Exploration
The emergence of Large Multimodal Models (LMMs) marks a significant milestone in the development of artificial intelligence. Insurance, as a vast and complex discipline, involves a wide variety of data forms in its operational processes, including text, images, and videos, thereby giving rise to diverse multimodal tasks. Despite this, there has been limited systematic exploration of multimodal tasks specific to insurance, nor a thorough investigation into how LMMs can address these challenges. In this paper, we explore GPT-4V's capabilities in the insurance domain. We categorize multimodal tasks by focusing primarily on visual aspects based on types of insurance (e.g., auto, household/commercial property, health, and agricultural insurance) and insurance stages (e.g., risk assessment, risk monitoring, and claims processing). Our experiment reveals that GPT-4V exhibits remarkable abilities in insurance-related tasks, demonstrating not only a robust understanding of multimodal content in the insurance domain but also a comprehensive knowledge of insurance scenarios. However, there are notable shortcomings: GPT-4V struggles with detailed risk rating and loss assessment, suffers from hallucination in image understanding, and shows variable support for different languages. Through this work, we aim to bridge the insurance domain with cutting-edge LMM technology, facilitate interdisciplinary exchange and development, and provide a foundation for the continued advancement and evolution of future research endeavors.
☆ AntBatchInfer: Elastic Batch Inference in the Kubernetes Cluster
Offline batch inference is a common task in the industry for deep learning applications, but it can be challenging to ensure stability and performance when dealing with large amounts of data and complicated inference pipelines. This paper demonstrated AntBatchInfer, an elastic batch inference framework, which is specially optimized for the non-dedicated cluster. AntBatchInfer addresses these challenges by providing multi-level fault-tolerant capabilities, enabling the stable execution of versatile and long-running inference tasks. It also improves inference efficiency by pipelining, intra-node, and inter-node scaling. It further optimizes the performance in complicated multiple-model batch inference scenarios. Through extensive experiments and real-world statistics, we demonstrate the superiority of our framework in terms of stability and efficiency. In the experiment, it outperforms the baseline by at least $2\times$ and $6\times$ in the single-model or multiple-model batch inference. Also, it is widely used at Ant Group, with thousands of daily jobs from various scenarios, including DLRM, CV, and NLP, which proves its practicability in the industry.
☆ Post-Training Network Compression for 3D Medical Image Segmentation: Reducing Computational Efforts via Tucker Decomposition
We address the computational barrier of deploying advanced deep learning segmentation models in clinical settings by studying the efficacy of network compression through tensor decomposition. We propose a post-training Tucker factorization that enables the decomposition of pre-existing models to reduce computational requirements without impeding segmentation accuracy. We applied Tucker decomposition to the convolutional kernels of the TotalSegmentator (TS) model, an nnU-Net model trained on a comprehensive dataset for automatic segmentation of 117 anatomical structures. Our approach reduced the floating-point operations (FLOPs) and memory required during inference, offering an adjustable trade-off between computational efficiency and segmentation quality. This study utilized the publicly available TS dataset, employing various downsampling factors to explore the relationship between model size, inference speed, and segmentation performance. The application of Tucker decomposition to the TS model substantially reduced the model parameters and FLOPs across various compression rates, with limited loss in segmentation accuracy. We removed up to 88% of the model's parameters with no significant performance changes in the majority of classes after fine-tuning. Practical benefits varied across different graphics processing unit (GPU) architectures, with more distinct speed-ups on less powerful hardware. Post-hoc network compression via Tucker decomposition presents a viable strategy for reducing the computational demand of medical image segmentation models without substantially sacrificing accuracy. This approach enables the broader adoption of advanced deep learning technologies in clinical practice, offering a way to navigate the constraints of hardware capabilities.
☆ AntDT: A Self-Adaptive Distributed Training Framework for Leader and Straggler Nodes
Many distributed training techniques like Parameter Server and AllReduce have been proposed to take advantage of the increasingly large data and rich features. However, stragglers frequently occur in distributed training due to resource contention and hardware heterogeneity, which significantly hampers the training efficiency. Previous works only address part of the stragglers and could not adaptively solve various stragglers in practice. Additionally, it is challenging to use a systematic framework to address all stragglers because different stragglers require diverse data allocation and fault-tolerance mechanisms. Therefore, this paper proposes a unified distributed training framework called AntDT (Ant Distributed Training Framework) to adaptively solve the straggler problems. Firstly, the framework consists of four components, including the Stateful Dynamic Data Sharding service, Monitor, Controller, and Agent. These components work collaboratively to efficiently distribute workloads and provide a range of pre-defined straggler mitigation methods with fault tolerance, thereby hiding messy details of data allocation and fault handling. Secondly, the framework provides a high degree of flexibility, allowing for the customization of straggler mitigation solutions based on the specific circumstances of the cluster. Leveraging this flexibility, we introduce two straggler mitigation solutions, namely AntDT-ND for non-dedicated clusters and AntDT-DD for dedicated clusters, as practical examples to resolve various types of stragglers at Ant Group. Justified by our comprehensive experiments and industrial deployment statistics, AntDT outperforms other SOTA methods more than 3x in terms of training efficiency. Additionally, in Alipay's homepage recommendation scenario, using AntDT reduces the training duration of the ranking model from 27.8 hours to just 5.4 hours.
☆ Closing the Gap in the Trade-off between Fair Representations and Accuracy
The rapid developments of various machine learning models and their deployments in several applications has led to discussions around the importance of looking beyond the accuracies of these models. Fairness of such models is one such aspect that is deservedly gaining more attention. In this work, we analyse the natural language representations of documents and sentences (i.e., encodings) for any embedding-level bias that could potentially also affect the fairness of the downstream tasks that rely on them. We identify bias in these encodings either towards or against different sub-groups based on the difference in their reconstruction errors along various subsets of principal components. We explore and recommend ways to mitigate such bias in the encodings while also maintaining a decent accuracy in classification models that use them.
comment: DAI-24
☆ Sampling for Model Predictive Trajectory Planning in Autonomous Driving using Normalizing Flows
Alongside optimization-based planners, sampling-based approaches are often used in trajectory planning for autonomous driving due to their simplicity. Model predictive path integral control is a framework that builds upon optimization principles while incorporating stochastic sampling of input trajectories. This paper investigates several sampling approaches for trajectory generation. In this context, normalizing flows originating from the field of variational inference are considered for the generation of sampling distributions, as they model transformations of simple to more complex distributions. Accordingly, learning-based normalizing flow models are trained for a more efficient exploration of the input domain for the task at hand. The developed algorithm and the proposed sampling distributions are evaluated in two simulation scenarios.
comment: Accepted to be published as part of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island, Korea, June 2-5, 2024
☆ Learn Your Reference Model for Real Good Alignment
The complexity of the alignment problem stems from the fact that existing methods are unstable. Researchers continuously invent various tricks to address this shortcoming. For instance, in the fundamental Reinforcement Learning From Human Feedback (RLHF) technique of Language Model alignment, in addition to reward maximization, the Kullback-Leibler divergence between the trainable policy and the SFT policy is minimized. This addition prevents the model from being overfitted to the Reward Model (RM) and generating texts that are out-of-domain for the RM. The Direct Preference Optimization (DPO) method reformulates the optimization task of RLHF and eliminates the Reward Model while tacitly maintaining the requirement for the policy to be close to the SFT policy. In our paper, we argue that this implicit limitation in the DPO method leads to sub-optimal results. We propose a new method called Trust Region DPO (TR-DPO), which updates the reference policy during training. With such a straightforward update, we demonstrate the effectiveness of TR-DPO against DPO on the Anthropic HH and TLDR datasets. We show that TR-DPO outperforms DPO by up to 19%, measured by automatic evaluation with GPT-4. The new alignment approach that we propose allows us to improve the quality of models across several parameters at once, such as coherence, correctness, level of detail, helpfulness, and harmlessness.
☆ All-in-one simulation-based inference
Amortized Bayesian inference trains neural networks to solve stochastic inference problems using model simulations, thereby making it possible to rapidly perform Bayesian inference for any newly observed data. However, current simulation-based amortized inference methods are simulation-hungry and inflexible: They require the specification of a fixed parametric prior, simulator, and inference tasks ahead of time. Here, we present a new amortized inference method -- the Simformer -- which overcomes these limitations. By training a probabilistic diffusion model with transformer architectures, the Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks and is substantially more flexible: It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data, including both posterior and likelihood. We showcase the performance and flexibility of the Simformer on simulators from ecology, epidemiology, and neuroscience, and demonstrate that it opens up new possibilities and application domains for amortized Bayesian inference on simulation-based models.
☆ Bridging Vision and Language Spaces with Assignment Prediction ICLR 2024
This paper introduces VLAP, a novel approach that bridges pretrained vision models and large language models (LLMs) to make frozen LLMs understand the visual world. VLAP transforms the embedding space of pretrained vision models into the LLMs' word embedding space using a single linear layer for efficient and general-purpose visual and language understanding. Specifically, we harness well-established word embeddings to bridge two modality embedding spaces. The visual and text representations are simultaneously assigned to a set of word embeddings within pretrained LLMs by formulating the assigning procedure as an optimal transport problem. We predict the assignment of one modality from the representation of another modality data, enforcing consistent assignments for paired multimodal data. This allows vision and language representations to contain the same information, grounding the frozen LLMs' word embedding space in visual data. Moreover, a robust semantic taxonomy of LLMs can be preserved with visual data since the LLMs interpret and reason linguistic information from correlations between word embeddings. Experimental results show that VLAP achieves substantial improvements over the previous linear transformation-based approaches across a range of vision-language tasks, including image captioning, visual question answering, and cross-modal retrieval. We also demonstrate the learned visual representations hold a semantic taxonomy of LLMs, making visual semantic arithmetic possible.
comment: ICLR 2024 Camera-ready
☆ Privacy-Preserving Intrusion Detection using Convolutional Neural Networks
Privacy-preserving analytics is designed to protect valuable assets. A common service provision involves the input data from the client and the model on the analyst's side. The importance of the privacy preservation is fuelled by legal obligations and intellectual property concerns. We explore the use case of a model owner providing an analytic service on customer's private data. No information about the data shall be revealed to the analyst and no information about the model shall be leaked to the customer. Current methods involve costs: accuracy deterioration and computational complexity. The complexity, in turn, results in a longer processing time, increased requirement on computing resources, and involves data communication between the client and the server. In order to deploy such service architecture, we need to evaluate the optimal setting that fits the constraints. And that is what this paper addresses. In this work, we enhance an attack detection system based on Convolutional Neural Networks with privacy-preserving technology based on PriMIA framework that is initially designed for medical data.
comment: Accepted at IEEE Conference on Artificial Intelligence (CAI) 2024
☆ Safeguarding adaptive methods: global convergence of Barzilai-Borwein and other stepsize choices
Leveraging on recent advancements on adaptive methods for convex minimization problems, this paper provides a linesearch-free proximal gradient framework for globalizing the convergence of popular stepsize choices such as Barzilai-Borwein and one-dimensional Anderson acceleration. This framework can cope with problems in which the gradient of the differentiable function is merely locally H\"older continuous. Our analysis not only encompasses but also refines existing results upon which it builds. The theory is corroborated by numerical evidence that showcases the synergetic interplay between fast stepsize selections and adaptive methods.
☆ A Review and Efficient Implementation of Scene Graph Generation Metrics
Scene graph generation has emerged as a prominent research field in computer vision, witnessing significant advancements in the recent years. However, despite these strides, precise and thorough definitions for the metrics used to evaluate scene graph generation models are lacking. In this paper, we address this gap in the literature by providing a review and precise definition of commonly used metrics in scene graph generation. Our comprehensive examination clarifies the underlying principles of these metrics and can serve as a reference or introduction to scene graph metrics. Furthermore, to facilitate the usage of these metrics, we introduce a standalone Python package called SGBench that efficiently implements all defined metrics, ensuring their accessibility to the research community. Additionally, we present a scene graph benchmarking web service, that enables researchers to compare scene graph generation methods and increase visibility of new methods in a central place. All of our code can be found at https://lorjul.github.io/sgbench/.
☆ LoRA Dropout as a Sparsity Regularizer for Overfitting Control
Parameter-efficient fine-tuning methods, represented by LoRA, play an essential role in adapting large-scale pre-trained models to downstream tasks. However, fine-tuning LoRA-series models also faces the risk of overfitting on the training dataset, and yet there's still a lack of theoretical guidance and practical mechanism to control overfitting on LoRA-based PEFT methods. In this paper, we propose a LoRA Dropout mechanism for the LoRA-based methods by introducing random noises to the learnable low-rank matrices and increasing parameter sparsity. We then demonstrate the theoretical mechanism of our LoRA Dropout mechanism from the perspective of sparsity regularization by providing a generalization error bound under this framework. Theoretical results show that appropriate sparsity would help tighten the gap between empirical and generalization risks and thereby control overfitting. Furthermore, based on the LoRA Dropout framework, we introduce a test-time ensemble strategy and provide theoretical evidence demonstrating that the ensemble method can further compress the error bound, and lead to better performance during inference time. Extensive experiments on various NLP tasks provide practical validations of the effectiveness of our LoRA Dropout framework in improving model accuracy and calibration.
☆ A Self-feedback Knowledge Elicitation Approach for Chemical Reaction Predictions
The task of chemical reaction predictions (CRPs) plays a pivotal role in advancing drug discovery and material science. However, its effectiveness is constrained by the vast and uncertain chemical reaction space and challenges in capturing reaction selectivity, particularly due to existing methods' limitations in exploiting the data's inherent knowledge. To address these challenges, we introduce a data-curated self-feedback knowledge elicitation approach. This method starts from iterative optimization of molecular representations and facilitates the extraction of knowledge on chemical reaction types (RTs). Then, we employ adaptive prompt learning to infuse the prior knowledge into the large language model (LLM). As a result, we achieve significant enhancements: a 14.2% increase in retrosynthesis prediction accuracy, a 74.2% rise in reagent prediction accuracy, and an expansion in the model's capability for handling multi-task chemical reactions. This research offers a novel paradigm for knowledge elicitation in scientific research and showcases the untapped potential of LLMs in CRPs.
☆ Machine learning-based optimization workflow of the homogeneity of spunbond nonwovens with human validation
In the last ten years, the average annual growth rate of nonwoven production was 4%. In 2020 and 2021, nonwoven production has increased even further due to the huge demand for nonwoven products needed for protective clothing such as FFP2 masks to combat the COVID19 pandemic. Optimizing the production process is still a challenge due to its high nonlinearity. In this paper, we present a machine learning-based optimization workflow aimed at improving the homogeneity of spunbond nonwovens. The optimization workflow is based on a mathematical model that simulates the microstructures of nonwovens. Based on trainingy data coming from this simulator, different machine learning algorithms are trained in order to find a surrogate model for the time-consuming simulator. Human validation is employed to verify the outputs of machine learning algorithms by assessing the aesthetics of the nonwovens. We include scientific and expert knowledge into the training data to reduce the computational costs involved in the optimization process. We demonstrate the necessity and effectiveness of our workflow in optimizing the homogeneity of nonwovens.
☆ Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression
Deep Neural Networks are prone to learning and relying on spurious correlations in the training data, which, for high-risk applications, can have fatal consequences. Various approaches to suppress model reliance on harmful features have been proposed that can be applied post-hoc without additional training. Whereas those methods can be applied with efficiency, they also tend to harm model performance by globally shifting the distribution of latent features. To mitigate unintended overcorrection of model behavior, we propose a reactive approach conditioned on model-derived knowledge and eXplainable Artificial Intelligence (XAI) insights. While the reactive approach can be applied to many post-hoc methods, we demonstrate the incorporation of reactivity in particular for P-ClArC (Projective Class Artifact Compensation), introducing a new method called R-ClArC (Reactive Class Artifact Compensation). Through rigorous experiments in controlled settings (FunnyBirds) and with a real-world dataset (ISIC2019), we show that introducing reactivity can minimize the detrimental effect of the applied correction while simultaneously ensuring low reliance on spurious features.
☆ Mitigating the Curse of Dimensionality for Certified Robustness via Dual Randomized Smoothing
Randomized Smoothing (RS) has been proven a promising method for endowing an arbitrary image classifier with certified robustness. However, the substantial uncertainty inherent in the high-dimensional isotropic Gaussian noise imposes the curse of dimensionality on RS. Specifically, the upper bound of ${\ell_2}$ certified robustness radius provided by RS exhibits a diminishing trend with the expansion of the input dimension $d$, proportionally decreasing at a rate of $1/\sqrt{d}$. This paper explores the feasibility of providing ${\ell_2}$ certified robustness for high-dimensional input through the utilization of dual smoothing in the lower-dimensional space. The proposed Dual Randomized Smoothing (DRS) down-samples the input image into two sub-images and smooths the two sub-images in lower dimensions. Theoretically, we prove that DRS guarantees a tight ${\ell_2}$ certified robustness radius for the original input and reveal that DRS attains a superior upper bound on the ${\ell_2}$ robustness radius, which decreases proportionally at a rate of $(1/\sqrt m + 1/\sqrt n )$ with $m+n=d$. Extensive experiments demonstrate the generalizability and effectiveness of DRS, which exhibits a notable capability to integrate with established methodologies, yielding substantial improvements in both accuracy and ${\ell_2}$ certified robustness baselines of RS on the CIFAR-10 and ImageNet datasets. Code is available at https://github.com/xiasong0501/DRS.
☆ Predicting and Analyzing Pedestrian Crossing Behavior at Unsignalized Crossings
Understanding and predicting pedestrian crossing behavior is essential for enhancing automated driving and improving driving safety. Predicting gap selection behavior and the use of zebra crossing enables driving systems to proactively respond and prevent potential conflicts. This task is particularly challenging at unsignalized crossings due to the ambiguous right of way, requiring pedestrians to constantly interact with vehicles and other pedestrians. This study addresses these challenges by utilizing simulator data to investigate scenarios involving multiple vehicles and pedestrians. We propose and evaluate machine learning models to predict gap selection in non-zebra scenarios and zebra crossing usage in zebra scenarios. We investigate and discuss how pedestrians' behaviors are influenced by various factors, including pedestrian waiting time, walking speed, the number of unused gaps, the largest missed gap, and the influence of other pedestrians. This research contributes to the evolution of intelligent vehicles by providing predictive models and valuable insights into pedestrian crossing behavior.
comment: 8 pages, 10 figures, 4 tables. Accepted in 2024 IEEE Intelligent Vehicles Symposium (IV)
☆ Reliability Estimation of News Media Sources: Birds of a Feather Flock Together NAACL 2024
Evaluating the reliability of news sources is a routine task for journalists and organizations committed to acquiring and disseminating accurate information. Recent research has shown that predicting sources' reliability represents an important first-prior step in addressing additional challenges such as fake news detection and fact-checking. In this paper, we introduce a novel approach for source reliability estimation that leverages reinforcement learning strategies for estimating the reliability degree of news sources. Contrary to previous research, our proposed approach models the problem as the estimation of a reliability degree, and not a reliability label, based on how all the news media sources interact with each other on the Web. We validated the effectiveness of our method on a news media reliability dataset that is an order of magnitude larger than comparable existing datasets. Results show that the estimated reliability degrees strongly correlates with journalists-provided scores (Spearman=0.80) and can effectively predict reliability labels (macro-avg. F$_1$ score=81.05). We release our implementation and dataset, aiming to provide a valuable resource for the NLP community working on information verification.
comment: Accepted to NAACL 2024 Main Conference
☆ σ-GPTs: A New Approach to Autoregressive Models
Autoregressive models, such as the GPT family, use a fixed order, usually left-to-right, to generate sequences. However, this is not a necessity. In this paper, we challenge this assumption and show that by simply adding a positional encoding for the output, this order can be modulated on-the-fly per-sample which offers key advantageous properties. It allows for the sampling of and conditioning on arbitrary subsets of tokens, and it also allows sampling in one shot multiple tokens dynamically according to a rejection strategy, leading to a sub-linear number of model evaluations. We evaluate our method across various domains, including language modeling, path-solving, and aircraft vertical rate prediction, decreasing the number of steps required for generation by an order of magnitude.
☆ GNNavigator: Towards Adaptive Training of Graph Neural Networks via Automatic Guideline Exploration
Graph Neural Networks (GNNs) succeed significantly in many applications recently. However, balancing GNNs training runtime cost, memory consumption, and attainable accuracy for various applications is non-trivial. Previous training methodologies suffer from inferior adaptability and lack a unified training optimization solution. To address the problem, this work proposes GNNavigator, an adaptive GNN training configuration optimization framework. GNNavigator meets diverse GNN application requirements due to our unified software-hardware co-abstraction, proposed GNNs training performance model, and practical design space exploration solution. Experimental results show that GNNavigator can achieve up to 3.1x speedup and 44.9% peak memory reduction with comparable accuracy to state-of-the-art approaches.
comment: Accepted by DAC'24
☆ Application of the representative measure approach to assess the reliability of decision trees in dealing with unseen vehicle collision data
Machine learning algorithms are fundamental components of novel data-informed Artificial Intelligence architecture. In this domain, the imperative role of representative datasets is a cornerstone in shaping the trajectory of artificial intelligence (AI) development. Representative datasets are needed to train machine learning components properly. Proper training has multiple impacts: it reduces the final model's complexity, power, and uncertainties. In this paper, we investigate the reliability of the $\varepsilon$-representativeness method to assess the dataset similarity from a theoretical perspective for decision trees. We decided to focus on the family of decision trees because it includes a wide variety of models known to be explainable. Thus, in this paper, we provide a result guaranteeing that if two datasets are related by $\varepsilon$-representativeness, i.e., both of them have points closer than $\varepsilon$, then the predictions by the classic decision tree are similar. Experimentally, we have also tested that $\varepsilon$-representativeness presents a significant correlation with the ordering of the feature importance. Moreover, we extend the results experimentally in the context of unseen vehicle collision data for XGboost, a machine-learning component widely adopted for dealing with tabular data.
☆ Beyond Noise: Privacy-Preserving Decentralized Learning with Virtual Nodes
Decentralized learning (DL) enables collaborative learning without a server and without training data leaving the users' devices. However, the models shared in DL can still be used to infer training data. Conventional privacy defenses such as differential privacy and secure aggregation fall short in effectively safeguarding user privacy in DL. We introduce Shatter, a novel DL approach in which nodes create virtual nodes (VNs) to disseminate chunks of their full model on their behalf. This enhances privacy by (i) preventing attackers from collecting full models from other nodes, and (ii) hiding the identity of the original node that produced a given model chunk. We theoretically prove the convergence of Shatter and provide a formal analysis demonstrating how Shatter reduces the efficacy of attacks compared to when exchanging full models between participating nodes. We evaluate the convergence and attack resilience of Shatter with existing DL algorithms, with heterogeneous datasets, and against three standard privacy attacks, including gradient inversion. Our evaluation shows that Shatter not only renders these privacy attacks infeasible when each node operates 16 VNs but also exhibits a positive impact on model convergence compared to standard DL. This enhanced privacy comes with a manageable increase in communication volume.
☆ WiTUnet: A U-Shaped Architecture Integrating CNN and Transformer for Improved Feature Alignment and Local Information Fusion
Low-dose computed tomography (LDCT) has become the technology of choice for diagnostic medical imaging, given its lower radiation dose compared to standard CT, despite increasing image noise and potentially affecting diagnostic accuracy. To address this, advanced deep learning-based LDCT denoising algorithms have been developed, primarily using Convolutional Neural Networks (CNNs) or Transformer Networks with the Unet architecture. This architecture enhances image detail by integrating feature maps from the encoder and decoder via skip connections. However, current methods often overlook enhancements to the Unet architecture itself, focusing instead on optimizing encoder and decoder structures. This approach can be problematic due to the significant differences in feature map characteristics between the encoder and decoder, where simple fusion strategies may not effectively reconstruct images.In this paper, we introduce WiTUnet, a novel LDCT image denoising method that utilizes nested, dense skip pathways instead of traditional skip connections to improve feature integration. WiTUnet also incorporates a windowed Transformer structure to process images in smaller, non-overlapping segments, reducing computational load. Additionally, the integration of a Local Image Perception Enhancement (LiPe) module in both the encoder and decoder replaces the standard multi-layer perceptron (MLP) in Transformers, enhancing local feature capture and representation. Through extensive experimental comparisons, WiTUnet has demonstrated superior performance over existing methods in key metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Root Mean Square Error (RMSE), significantly improving noise removal and image quality.
☆ TMPQ-DM: Joint Timestep Reduction and Quantization Precision Selection for Efficient Diffusion Models
Diffusion models have emerged as preeminent contenders in the realm of generative models. Distinguished by their distinctive sequential generative processes, characterized by hundreds or even thousands of timesteps, diffusion models progressively reconstruct images from pure Gaussian noise, with each timestep necessitating full inference of the entire model. However, the substantial computational demands inherent to these models present challenges for deployment, quantization is thus widely used to lower the bit-width for reducing the storage and computing overheads. Current quantization methodologies primarily focus on model-side optimization, disregarding the temporal dimension, such as the length of the timestep sequence, thereby allowing redundant timesteps to continue consuming computational resources, leaving substantial scope for accelerating the generative process. In this paper, we introduce TMPQ-DM, which jointly optimizes timestep reduction and quantization to achieve a superior performance-efficiency trade-off, addressing both temporal and model optimization aspects. For timestep reduction, we devise a non-uniform grouping scheme tailored to the non-uniform nature of the denoising process, thereby mitigating the explosive combinations of timesteps. In terms of quantization, we adopt a fine-grained layer-wise approach to allocate varying bit-widths to different layers based on their respective contributions to the final generative performance, thus rectifying performance degradation observed in prior studies. To expedite the evaluation of fine-grained quantization, we further devise a super-network to serve as a precision solver by leveraging shared quantization results. These two design components are seamlessly integrated within our framework, enabling rapid joint exploration of the exponentially large decision space via a gradient-free evolutionary search algorithm.
☆ Prepacking: A Simple Method for Fast Prefilling and Increased Throughput in Large Language Models
During inference for transformer-based large language models (LLM), prefilling is the computation of the key-value (KV) cache for input tokens in the prompt prior to autoregressive generation. For longer input prompt lengths, prefilling will incur a significant overhead on decoding time. In this work, we highlight the following pitfall of prefilling: for batches containing high-varying prompt lengths, significant computation is wasted by the standard practice of padding sequences to the maximum length. As LLMs increasingly support longer context lengths, potentially up to 10 million tokens, variations in prompt lengths within a batch become more pronounced. To address this, we propose Prepacking, a simple yet effective method to optimize prefilling computation. To avoid redundant computation on pad tokens, prepacking combines prompts of varying lengths into a sequence and packs multiple sequences into a compact batch using a bin-packing algorithm. It then modifies the attention mask and positional encoding to compute multiple prefilled KV-caches for multiple prompts within a single sequence. On standard curated dataset containing prompts with varying lengths, we obtain a significant speed and memory efficiency improvements as compared to the default padding-based prefilling computation within Huggingface across a range of base model configurations and inference serving scenarios.
comment: 18 pages, code in https://github.com/siyan-zhao/prepacking
☆ LoongServe: Efficiently Serving Long-context Large Language Models with Elastic Sequence Parallelism
The context window of large language models (LLMs) is rapidly increasing, leading to a huge variance in resource usage between different requests as well as between different phases of the same request. Restricted by static parallelism strategies, existing LLM serving systems cannot efficiently utilize the underlying resources to serve variable-length requests in different phases. To address this problem, we propose a new parallelism paradigm, elastic sequence parallelism (ESP), to elastically adapt to the variance between different requests and phases. Based on ESP, we design and build LoongServe, an LLM serving system that (1) improves computation efficiency by elastically adjusting the degree of parallelism in real-time, (2) improves communication efficiency by reducing key-value cache migration overhead and overlapping partial decoding communication with computation, and (3) improves GPU memory efficiency by reducing key-value cache fragmentation across instances. Our evaluation under diverse real-world datasets shows that LoongServe improves the maximum throughput by up to 3.85$\times$ compared to the chunked prefill and 5.81$\times$ compared to the prefill-decoding disaggregation.
☆ Dynamic fault detection and diagnosis of industrial alkaline water electrolyzer process with variational Bayesian dictionary learning
Alkaline Water Electrolysis (AWE) is one of the simplest green hydrogen production method using renewable energy. AWE system typically yields process variables that are serially correlated and contaminated by measurement uncertainty. A novel robust dynamic variational Bayesian dictionary learning (RDVDL) monitoring approach is proposed to improve the reliability and safety of AWE operation. RDVDL employs a sparse Bayesian dictionary learning to preserve the dynamic mechanism information of AWE process which allows the easy interpretation of fault detection results. To improve the robustness to measurement uncertainty, a low-rank vector autoregressive (VAR) method is derived to reliably extract the serial correlation from process variables. The effectiveness of the proposed approach is demonstrated with an industrial hydrogen production process, and RDVDL can efficiently detect and diagnose critical AWE faults.
☆ Inferring Behavior-Specific Context Improves Zero-Shot Generalization in Reinforcement Learning
In this work, we address the challenge of zero-shot generalization (ZSG) in Reinforcement Learning (RL), where agents must adapt to entirely novel environments without additional training. We argue that understanding and utilizing contextual cues, such as the gravity level of the environment, is critical for robust generalization, and we propose to integrate the learning of context representations directly with policy learning. Our algorithm demonstrates improved generalization on various simulated domains, outperforming prior context-learning techniques in zero-shot settings. By jointly learning policy and context, our method acquires behavior-specific context representations, enabling adaptation to unseen environments and marks progress towards reinforcement learning systems that generalize across diverse real-world tasks. Our code and experiments are available at https://github.com/tidiane-camaret/contextual_rl_zero_shot.
comment: https://github.com/tidiane-camaret/contextual_rl_zero_shot
☆ Nonlinear sparse variational Bayesian learning based model predictive control with application to PEMFC temperature control
The accuracy of the underlying model predictions is crucial for the success of model predictive control (MPC) applications. If the model is unable to accurately analyze the dynamics of the controlled system, the performance and stability guarantees provided by MPC may not be achieved. Learning-based MPC can learn models from data, improving the applicability and reliability of MPC. This study develops a nonlinear sparse variational Bayesian learning based MPC (NSVB-MPC) for nonlinear systems, where the model is learned by the developed NSVB method. Variational inference is used by NSVB-MPC to assess the predictive accuracy and make the necessary corrections to quantify system uncertainty. The suggested approach ensures input-to-state (ISS) and the feasibility of recursive constraints in accordance with the concept of an invariant terminal region. Finally, a PEMFC temperature control model experiment confirms the effectiveness of the NSVB-MPC method.
☆ State Space Model for New-Generation Network Alternative to Transformers: A Survey
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
comment: The First review of State Space Model (SSM)/Mamba and their applications in artificial intelligence, 33 pages
☆ Listen to the Waves: Using a Neuronal Model of the Human Auditory System to Predict Ocean Waves
Artificial neural networks (ANNs) have evolved from the 1940s primitive models of brain function to become tools for artificial intelligence. They comprise many units, artificial neurons, interlinked through weighted connections. ANNs are trained to perform tasks through learning rules that modify the connection weights. With these rules being in the focus of research, ANNs have become a branch of machine learning developing independently from neuroscience. Although likely required for the development of truly intelligent machines, the integration of neuroscience into ANNs has remained a neglected proposition. Here, we demonstrate that designing an ANN along biological principles results in drastically improved task performance. As a challenging real-world problem, we choose real-time ocean-wave prediction which is essential for various maritime operations. Motivated by the similarity of ocean waves measured at a single location to sound waves arriving at the eardrum, we redesign an echo state network to resemble the brain's auditory system. This yields a powerful predictive tool which is computationally lean, robust with respect to network parameters, and works efficiently across a wide range of sea states. Our results demonstrate the advantages of integrating neuroscience with machine learning and offer a tool for use in the production of green energy from ocean waves.
comment: 23 pages, 6 figures
☆ On the Necessity of Collaboration in Online Model Selection with Decentralized Data
We consider online model selection with decentralized data over $M$ clients, and study a fundamental problem: the necessity of collaboration. Previous work gave a negative answer from the perspective of worst-case regret minimization, while we give a different answer from the perspective of regret-computational cost trade-off. We separately propose a federated algorithm with and without communication constraint and prove regret bounds that show (i) collaboration is unnecessary if we do not limit the computational cost on each client; (ii) collaboration is necessary if we limit the computational cost on each client to $o(K)$, where $K$ is the number of candidate hypothesis spaces. As a by-product, we improve the regret bounds of algorithms for distributed online multi-kernel learning at a smaller computational and communication cost. Our algorithms rely on three new techniques, i.e., an improved Bernstein's inequality for martingale, a federated algorithmic framework, named FOMD-No-LU, and decoupling model selection and predictions, which might be of independent interest.
☆ Large Language Models Can Automatically Engineer Features for Few-Shot Tabular Learning
Large Language Models (LLMs), with their remarkable ability to tackle challenging and unseen reasoning problems, hold immense potential for tabular learning, that is vital for many real-world applications. In this paper, we propose a novel in-context learning framework, FeatLLM, which employs LLMs as feature engineers to produce an input data set that is optimally suited for tabular predictions. The generated features are used to infer class likelihood with a simple downstream machine learning model, such as linear regression and yields high performance few-shot learning. The proposed FeatLLM framework only uses this simple predictive model with the discovered features at inference time. Compared to existing LLM-based approaches, FeatLLM eliminates the need to send queries to the LLM for each sample at inference time. Moreover, it merely requires API-level access to LLMs, and overcomes prompt size limitations. As demonstrated across numerous tabular datasets from a wide range of domains, FeatLLM generates high-quality rules, significantly (10% on average) outperforming alternatives such as TabLLM and STUNT.
☆ SpamDam: Towards Privacy-Preserving and Adversary-Resistant SMS Spam Detection
In this study, we introduce SpamDam, a SMS spam detection framework designed to overcome key challenges in detecting and understanding SMS spam, such as the lack of public SMS spam datasets, increasing privacy concerns of collecting SMS data, and the need for adversary-resistant detection models. SpamDam comprises four innovative modules: an SMS spam radar that identifies spam messages from online social networks(OSNs); an SMS spam inspector for statistical analysis; SMS spam detectors(SSDs) that enable both central training and federated learning; and an SSD analyzer that evaluates model resistance against adversaries in realistic scenarios. Leveraging SpamDam, we have compiled over 76K SMS spam messages from Twitter and Weibo between 2018 and 2023, forming the largest dataset of its kind. This dataset has enabled new insights into recent spam campaigns and the training of high-performing binary and multi-label classifiers for spam detection. Furthermore, effectiveness of federated learning has been well demonstrated to enable privacy-preserving SMS spam detection. Additionally, we have rigorously tested the adversarial robustness of SMS spam detection models, introducing the novel reverse backdoor attack, which has shown effectiveness and stealthiness in practical tests.
☆ LatticeML: A data-driven application for predicting the effective Young Modulus of high temperature graph based architected materials
Architected materials with their unique topology and geometry offer the potential to modify physical and mechanical properties. Machine learning can accelerate the design and optimization of these materials by identifying optimal designs and forecasting performance. This work presents LatticeML, a data-driven application for predicting the effective Young's Modulus of high-temperature graph-based architected materials. The study considers eleven graph-based lattice structures with two high-temperature alloys, Ti-6Al-4V and Inconel 625. Finite element simulations were used to compute the effective Young's Modulus of the 2x2x2 unit cell configurations. A machine learning framework was developed to predict Young's Modulus, involving data collection, preprocessing, implementation of regression models, and deployment of the best-performing model. Five supervised learning algorithms were evaluated, with the XGBoost Regressor achieving the highest accuracy (MSE = 2.7993, MAE = 1.1521, R-squared = 0.9875). The application uses the Streamlit framework to create an interactive web interface, allowing users to input material and geometric parameters and obtain predicted Young's Modulus values.
comment: 32 pages, 11 figures
☆ Virtually Enriched NYU Depth V2 Dataset for Monocular Depth Estimation: Do We Need Artificial Augmentation?
We present ANYU, a new virtually augmented version of the NYU depth v2 dataset, designed for monocular depth estimation. In contrast to the well-known approach where full 3D scenes of a virtual world are utilized to generate artificial datasets, ANYU was created by incorporating RGB-D representations of virtual reality objects into the original NYU depth v2 images. We specifically did not match each generated virtual object with an appropriate texture and a suitable location within the real-world image. Instead, an assignment of texture, location, lighting, and other rendering parameters was randomized to maximize a diversity of the training data, and to show that it is randomness that can improve the generalizing ability of a dataset. By conducting extensive experiments with our virtually modified dataset and validating on the original NYU depth v2 and iBims-1 benchmarks, we show that ANYU improves the monocular depth estimation performance and generalization of deep neural networks with considerably different architectures, especially for the current state-of-the-art VPD model. To the best of our knowledge, this is the first work that augments a real-world dataset with randomly generated virtual 3D objects for monocular depth estimation. We make our ANYU dataset publicly available in two training configurations with 10% and 100% additional synthetically enriched RGB-D pairs of training images, respectively, for efficient training and empirical exploration of virtual augmentation at https://github.com/ABrain-One/ANYU
☆ Scoring Intervals using Non-hierarchical Transformer For Automatic Piano Transcription
The neural semi-Markov Conditional Random Field (semi-CRF) framework has demonstrated promise for event-based piano transcription. In this framework, all events (notes or pedals) are represented as closed intervals tied to specific event types. The neural semi-CRF approach requires an interval scoring matrix that assigns a score for every candidate interval. However, designing an efficient and expressive architecture for scoring intervals is not trivial. In this paper, we introduce a simple method for scoring intervals using scaled inner product operations that resemble how attention scoring is done in transformers. We show theoretically that, due to the special structure from encoding the non-overlapping intervals, under a mild condition, the inner product operations are expressive enough to represent an ideal scoring matrix that can yield the correct transcription result. We then demonstrate that an encoder-only non-hierarchical transformer backbone, operating only on a low-time-resolution feature map, is capable of transcribing piano notes and pedals with high accuracy and time precision. The experiment shows that our approach achieves the new state-of-the-art performance across all subtasks in terms of the F1 measure on the Maestro dataset.
☆ PhyScene: Physically Interactable 3D Scene Synthesis for Embodied AI CVPR 2024
With recent developments in Embodied Artificial Intelligence (EAI) research, there has been a growing demand for high-quality, large-scale interactive scene generation. While prior methods in scene synthesis have prioritized the naturalness and realism of the generated scenes, the physical plausibility and interactivity of scenes have been largely left unexplored. To address this disparity, we introduce PhyScene, a novel method dedicated to generating interactive 3D scenes characterized by realistic layouts, articulated objects, and rich physical interactivity tailored for embodied agents. Based on a conditional diffusion model for capturing scene layouts, we devise novel physics- and interactivity-based guidance mechanisms that integrate constraints from object collision, room layout, and object reachability. Through extensive experiments, we demonstrate that PhyScene effectively leverages these guidance functions for physically interactable scene synthesis, outperforming existing state-of-the-art scene synthesis methods by a large margin. Our findings suggest that the scenes generated by PhyScene hold considerable potential for facilitating diverse skill acquisition among agents within interactive environments, thereby catalyzing further advancements in embodied AI research. Project website: http://physcene.github.io.
comment: Accepted by CVPR 2024, 18 pages
☆ PRIME: A CyberGIS Platform for Resilience Inference Measurement and Enhancement
In an era of increased climatic disasters, there is an urgent need to develop reliable frameworks and tools for evaluating and improving community resilience to climatic hazards at multiple geographical and temporal scales. Defining and quantifying resilience in the social domain is relatively subjective due to the intricate interplay of socioeconomic factors with disaster resilience. Meanwhile, there is a lack of computationally rigorous, user-friendly tools that can support customized resilience assessment considering local conditions. This study aims to address these gaps through the power of CyberGIS with three objectives: 1) To develop an empirically validated disaster resilience model - Customized Resilience Inference Measurement designed for multi-scale community resilience assessment and influential socioeconomic factors identification, 2) To implement a Platform for Resilience Inference Measurement and Enhancement module in the CyberGISX platform backed by high-performance computing, 3) To demonstrate the utility of PRIME through a representative study. CRIM generates vulnerability, adaptability, and overall resilience scores derived from empirical hazard parameters. Computationally intensive Machine Learning methods are employed to explain the intricate relationships between these scores and socioeconomic driving factors. PRIME provides a web-based notebook interface guiding users to select study areas, configure parameters, calculate and geo-visualize resilience scores, and interpret socioeconomic factors shaping resilience capacities. A representative study showcases the efficiency of the platform while explaining how the visual results obtained may be interpreted. The essence of this work lies in its comprehensive architecture that encapsulates the requisite data, analytical and geo-visualization functions, and ML models for resilience assessment.
comment: 28 pages, 6 figures
☆ Improved Object-Based Style Transfer with Single Deep Network
This research paper proposes a novel methodology for image-to-image style transfer on objects utilizing a single deep convolutional neural network. The proposed approach leverages the You Only Look Once version 8 (YOLOv8) segmentation model and the backbone neural network of YOLOv8 for style transfer. The primary objective is to enhance the visual appeal of objects in images by seamlessly transferring artistic styles while preserving the original object characteristics. The proposed approach's novelty lies in combining segmentation and style transfer in a single deep convolutional neural network. This approach omits the need for multiple stages or models, thus resulting in simpler training and deployment of the model for practical applications. The results of this approach are shown on two content images by applying different style images. The paper also demonstrates the ability to apply style transfer on multiple objects in the same image.
comment: In Proceedings of the Fourth International Conference on Innovations in Computational Intelligence and Computer Vision
☆ Hyperbolic Heterogeneous Graph Attention Networks
Most previous heterogeneous graph embedding models represent elements in a heterogeneous graph as vector representations in a low-dimensional Euclidean space. However, because heterogeneous graphs inherently possess complex structures, such as hierarchical or power-law structures, distortions can occur when representing them in Euclidean space. To overcome this limitation, we propose Hyperbolic Heterogeneous Graph Attention Networks (HHGAT) that learn vector representations in hyperbolic spaces with meta-path instances. We conducted experiments on three real-world heterogeneous graph datasets, demonstrating that HHGAT outperforms state-of-the-art heterogeneous graph embedding models in node classification and clustering tasks.
comment: Accepted in ACM THE WEB CONFERENCE 2024 short paper track
☆ Utility-Fairness Trade-Offs and How to Find Them
When building classification systems with demographic fairness considerations, there are two objectives to satisfy: 1) maximizing utility for the specific task and 2) ensuring fairness w.r.t. a known demographic attribute. These objectives often compete, so optimizing both can lead to a trade-off between utility and fairness. While existing works acknowledge the trade-offs and study their limits, two questions remain unanswered: 1) What are the optimal trade-offs between utility and fairness? and 2) How can we numerically quantify these trade-offs from data for a desired prediction task and demographic attribute of interest? This paper addresses these questions. We introduce two utility-fairness trade-offs: the Data-Space and Label-Space Trade-off. The trade-offs reveal three regions within the utility-fairness plane, delineating what is fully and partially possible and impossible. We propose U-FaTE, a method to numerically quantify the trade-offs for a given prediction task and group fairness definition from data samples. Based on the trade-offs, we introduce a new scheme for evaluating representations. An extensive evaluation of fair representation learning methods and representations from over 1000 pre-trained models revealed that most current approaches are far from the estimated and achievable fairness-utility trade-offs across multiple datasets and prediction tasks.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024
☆ Towards Greener Nights: Exploring AI-Driven Solutions for Light Pollution Management
This research endeavors to address the pervasive issue of light pollution through an interdisciplinary approach, leveraging data science and machine learning techniques. By analyzing extensive datasets and research findings, we aim to develop predictive models capable of estimating the degree of sky glow observed in various locations and times. Our research seeks to inform evidence-based interventions and promote responsible outdoor lighting practices to mitigate the adverse impacts of light pollution on ecosystems, energy consumption, and human well-being.
☆ kNN-CLIP: Retrieval Enables Training-Free Segmentation on Continually Expanding Large Vocabularies
Rapid advancements in continual segmentation have yet to bridge the gap of scaling to large continually expanding vocabularies under compute-constrained scenarios. We discover that traditional continual training leads to catastrophic forgetting under compute constraints, unable to outperform zero-shot segmentation methods. We introduce a novel strategy for semantic and panoptic segmentation with zero forgetting, capable of adapting to continually growing vocabularies without the need for retraining or large memory costs. Our training-free approach, kNN-CLIP, leverages a database of instance embeddings to enable open-vocabulary segmentation approaches to continually expand their vocabulary on any given domain with a single-pass through data, while only storing embeddings minimizing both compute and memory costs. This method achieves state-of-the-art mIoU performance across large-vocabulary semantic and panoptic segmentation datasets. We hope kNN-CLIP represents a step forward in enabling more efficient and adaptable continual segmentation, paving the way for advances in real-world large-vocabulary continual segmentation methods.
comment: 10 pages, 3 figures
☆ Exploring Text-to-Motion Generation with Human Preference CVPR 2024
This paper presents an exploration of preference learning in text-to-motion generation. We find that current improvements in text-to-motion generation still rely on datasets requiring expert labelers with motion capture systems. Instead, learning from human preference data does not require motion capture systems; a labeler with no expertise simply compares two generated motions. This is particularly efficient because evaluating the model's output is easier than gathering the motion that performs a desired task (e.g. backflip). To pioneer the exploration of this paradigm, we annotate 3,528 preference pairs generated by MotionGPT, marking the first effort to investigate various algorithms for learning from preference data. In particular, our exploration highlights important design choices when using preference data. Additionally, our experimental results show that preference learning has the potential to greatly improve current text-to-motion generative models. Our code and dataset are publicly available at https://github.com/THU-LYJ-Lab/InstructMotion}{https://github.com/THU-LYJ-Lab/InstructMotion to further facilitate research in this area.
comment: Accepted to CVPR 2024 HuMoGen Workshop
☆ Hybrid FedGraph: An efficient hybrid federated learning algorithm using graph convolutional neural network
Federated learning is an emerging paradigm for decentralized training of machine learning models on distributed clients, without revealing the data to the central server. Most existing works have focused on horizontal or vertical data distributions, where each client possesses different samples with shared features, or each client fully shares only sample indices, respectively. However, the hybrid scheme is much less studied, even though it is much more common in the real world. Therefore, in this paper, we propose a generalized algorithm, FedGraph, that introduces a graph convolutional neural network to capture feature-sharing information while learning features from a subset of clients. We also develop a simple but effective clustering algorithm that aggregates features produced by the deep neural networks of each client while preserving data privacy.
☆ Developing Lagrangian-based Methods for Nonsmooth Nonconvex Optimization
In this paper, we consider the minimization of a nonsmooth nonconvex objective function $f(x)$ over a closed convex subset $\mathcal{X}$ of $\mathbb{R}^n$, with additional nonsmooth nonconvex constraints $c(x) = 0$. We develop a unified framework for developing Lagrangian-based methods, which takes a single-step update to the primal variables by some subgradient methods in each iteration. These subgradient methods are ``embedded'' into our framework, in the sense that they are incorporated as black-box updates to the primal variables. We prove that our proposed framework inherits the global convergence guarantees from these embedded subgradient methods under mild conditions. In addition, we show that our framework can be extended to solve constrained optimization problems with expectation constraints. Based on the proposed framework, we show that a wide range of existing stochastic subgradient methods, including the proximal SGD, proximal momentum SGD, and proximal ADAM, can be embedded into Lagrangian-based methods. Preliminary numerical experiments on deep learning tasks illustrate that our proposed framework yields efficient variants of Lagrangian-based methods with convergence guarantees for nonconvex nonsmooth constrained optimization problems.
comment: 30 pages, 4 figures
☆ The 8th AI City Challenge CVPR 2024
The eighth AI City Challenge highlighted the convergence of computer vision and artificial intelligence in areas like retail, warehouse settings, and Intelligent Traffic Systems (ITS), presenting significant research opportunities. The 2024 edition featured five tracks, attracting unprecedented interest from 726 teams in 47 countries and regions. Track 1 dealt with multi-target multi-camera (MTMC) people tracking, highlighting significant enhancements in camera count, character number, 3D annotation, and camera matrices, alongside new rules for 3D tracking and online tracking algorithm encouragement. Track 2 introduced dense video captioning for traffic safety, focusing on pedestrian accidents using multi-camera feeds to improve insights for insurance and prevention. Track 3 required teams to classify driver actions in a naturalistic driving analysis. Track 4 explored fish-eye camera analytics using the FishEye8K dataset. Track 5 focused on motorcycle helmet rule violation detection. The challenge utilized two leaderboards to showcase methods, with participants setting new benchmarks, some surpassing existing state-of-the-art achievements.
comment: Summary of the 8th AI City Challenge Workshop in conjunction with CVPR 2024
☆ On the Efficiency of Privacy Attacks in Federated Learning
Recent studies have revealed severe privacy risks in federated learning, represented by Gradient Leakage Attacks. However, existing studies mainly aim at increasing the privacy attack success rate and overlook the high computation costs for recovering private data, making the privacy attack impractical in real applications. In this study, we examine privacy attacks from the perspective of efficiency and propose a framework for improving the Efficiency of Privacy Attacks in Federated Learning (EPAFL). We make three novel contributions. First, we systematically evaluate the computational costs for representative privacy attacks in federated learning, which exhibits a high potential to optimize efficiency. Second, we propose three early-stopping techniques to effectively reduce the computational costs of these privacy attacks. Third, we perform experiments on benchmark datasets and show that our proposed method can significantly reduce computational costs and maintain comparable attack success rates for state-of-the-art privacy attacks in federated learning. We provide the codes on GitHub at https://github.com/mlsysx/EPAFL.
comment: To appear on FedVision 2024. EPAFL (https://github.com/mlsysx/EPAFL)
☆ A Review on Machine Learning Algorithms for Dust Aerosol Detection using Satellite Data
Dust storms are associated with certain respiratory illnesses across different areas in the world. Researchers have devoted time and resources to study the elements surrounding dust storm phenomena. This paper reviews the efforts of those who have investigated dust aerosols using sensors onboard of satellites using machine learning-based approaches. We have reviewed the most common issues revolving dust aerosol modeling using different datasets and different sensors from a historical perspective. Our findings suggest that multi-spectral approaches based on linear and non-linear combinations of spectral bands are some of the most successful for visualization and quantitative analysis; however, when researchers have leveraged machine learning, performance has been improved and new opportunities to solve unique problems arise.
comment: The 23rd International Conference on Artificial Intelligence (ICAI 2021)
☆ On the Optimal Regret of Locally Private Linear Contextual Bandit
Contextual bandit with linear reward functions is among one of the most extensively studied models in bandit and online learning research. Recently, there has been increasing interest in designing \emph{locally private} linear contextual bandit algorithms, where sensitive information contained in contexts and rewards is protected against leakage to the general public. While the classical linear contextual bandit algorithm admits cumulative regret upper bounds of $\tilde O(\sqrt{T})$ via multiple alternative methods, it has remained open whether such regret bounds are attainable in the presence of local privacy constraints, with the state-of-the-art result being $\tilde O(T^{3/4})$. In this paper, we show that it is indeed possible to achieve an $\tilde O(\sqrt{T})$ regret upper bound for locally private linear contextual bandit. Our solution relies on several new algorithmic and analytical ideas, such as the analysis of mean absolute deviation errors and layered principal component regression in order to achieve small mean absolute deviation errors.
☆ Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
Optimal transport (OT) and the related Wasserstein metric (W) are powerful and ubiquitous tools for comparing distributions. However, computing pairwise Wasserstein distances rapidly becomes intractable as cohort size grows. An attractive alternative would be to find an embedding space in which pairwise Euclidean distances map to OT distances, akin to standard multidimensional scaling (MDS). We present Wasserstein Wormhole, a transformer-based autoencoder that embeds empirical distributions into a latent space wherein Euclidean distances approximate OT distances. Extending MDS theory, we show that our objective function implies a bound on the error incurred when embedding non-Euclidean distances. Empirically, distances between Wormhole embeddings closely match Wasserstein distances, enabling linear time computation of OT distances. Along with an encoder that maps distributions to embeddings, Wasserstein Wormhole includes a decoder that maps embeddings back to distributions, allowing for operations in the embedding space to generalize to OT spaces, such as Wasserstein barycenter estimation and OT interpolation. By lending scalability and interpretability to OT approaches, Wasserstein Wormhole unlocks new avenues for data analysis in the fields of computational geometry and single-cell biology.
comment: 23 Figures, 7 main figures, 2 supplemental figures
☆ Human-in-the-Loop Segmentation of Multi-species Coral Imagery
Broad-scale marine surveys performed by underwater vehicles significantly increase the availability of coral reef imagery, however it is costly and time-consuming for domain experts to label images. Point label propagation is an approach used to leverage existing image data labeled with sparse point labels. The resulting augmented ground truth generated is then used to train a semantic segmentation model. Here, we first demonstrate that recent advances in foundation models enable generation of multi-species coral augmented ground truth masks using denoised DINOv2 features and K-Nearest Neighbors (KNN), without the need for any pre-training or custom-designed algorithms. For extremely sparsely labeled images, we propose a labeling regime based on human-in-the-loop principles, resulting in significant improvement in annotation efficiency: If only 5 point labels per image are available, our proposed human-in-the-loop approach improves on the state-of-the-art by 17.3% for pixel accuracy and 22.6% for mIoU; and by 10.6% and 19.1% when 10 point labels per image are available. Even if the human-in-the-loop labeling regime is not used, the denoised DINOv2 features with a KNN outperforms the prior state-of-the-art by 3.5% for pixel accuracy and 5.7% for mIoU (5 grid points). We also provide a detailed analysis of how point labeling style and the quantity of points per image affects the point label propagation quality and provide general recommendations on maximizing point label efficiency.
comment: 10 pages, 6 figures, an additional 4 pages of supplementary material
☆ Neuro-Inspired Information-Theoretic Hierarchical Perception for Multimodal Learning
Integrating and processing information from various sources or modalities are critical for obtaining a comprehensive and accurate perception of the real world in autonomous systems and cyber-physical systems. Drawing inspiration from neuroscience, we develop the Information-Theoretic Hierarchical Perception (ITHP) model, which utilizes the concept of information bottleneck. Different from most traditional fusion models that incorporate all modalities identically in neural networks, our model designates a prime modality and regards the remaining modalities as detectors in the information pathway, serving to distill the flow of information. Our proposed perception model focuses on constructing an effective and compact information flow by achieving a balance between the minimization of mutual information between the latent state and the input modal state, and the maximization of mutual information between the latent states and the remaining modal states. This approach leads to compact latent state representations that retain relevant information while minimizing redundancy, thereby substantially enhancing the performance of multimodal representation learning. Experimental evaluations on the MUStARD, CMU-MOSI, and CMU-MOSEI datasets demonstrate that our model consistently distills crucial information in multimodal learning scenarios, outperforming state-of-the-art benchmarks. Remarkably, on the CMU-MOSI dataset, ITHP surpasses human-level performance in the multimodal sentiment binary classification task across all evaluation metrics (i.e., Binary Accuracy, F1 Score, Mean Absolute Error, and Pearson Correlation).
comment: The Twelfth International Conference on Learning Representations. arXiv admin note: text overlap with arXiv:2309.15877
☆ Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes AISTATS 2024
McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathematical description of the behavior of an infinite number of interacting particles by imposing a dependence on the particle density. As such, we study the influence of explicitly including distributional information in the parameterization of the SDE. We propose a series of semi-parametric methods for representing MV-SDEs, and corresponding estimators for inferring parameters from data based on the properties of the MV-SDE. We analyze the characteristics of the different architectures and estimators, and consider their applicability in relevant machine learning problems. We empirically compare the performance of the different architectures and estimators on real and synthetic datasets for time series and probabilistic modeling. The results suggest that explicitly including distributional dependence in the parameterization of the SDE is effective in modeling temporal data with interaction under an exchangeability assumption while maintaining strong performance for standard It\^o-SDEs due to the richer class of probability flows associated with MV-SDEs.
comment: Appears in AISTATS 2024
☆ An Autoencoder-Based Constellation Design for AirComp in Wireless Federated Learning
Wireless federated learning (FL) relies on efficient uplink communications to aggregate model updates across distributed edge devices. Over-the-air computation (a.k.a. AirComp) has emerged as a promising approach for addressing the scalability challenge of FL over wireless links with limited communication resources. Unlike conventional methods, AirComp allows multiple edge devices to transmit uplink signals simultaneously, enabling the parameter server to directly decode the average global model. However, existing AirComp solutions are intrinsically analog, while modern wireless systems predominantly adopt digital modulations. Consequently, careful constellation designs are necessary to accurately decode the sum model updates without ambiguity. In this paper, we propose an end-to-end communication system supporting AirComp with digital modulation, aiming to overcome the challenges associated with accurate decoding of the sum signal with constellation designs. We leverage autoencoder network structures and explore the joint optimization of transmitter and receiver components. Our approach fills an important gap in the context of accurately decoding the sum signal in digital modulation-based AirComp, which can advance the deployment of FL in contemporary wireless systems.
☆ Privacy at a Price: Exploring its Dual Impact on AI Fairness
The worldwide adoption of machine learning (ML) and deep learning models, particularly in critical sectors, such as healthcare and finance, presents substantial challenges in maintaining individual privacy and fairness. These two elements are vital to a trustworthy environment for learning systems. While numerous studies have concentrated on protecting individual privacy through differential privacy (DP) mechanisms, emerging research indicates that differential privacy in machine learning models can unequally impact separate demographic subgroups regarding prediction accuracy. This leads to a fairness concern, and manifests as biased performance. Although the prevailing view is that enhancing privacy intensifies fairness disparities, a smaller, yet significant, subset of research suggests the opposite view. In this article, with extensive evaluation results, we demonstrate that the impact of differential privacy on fairness is not monotonous. Instead, we observe that the accuracy disparity initially grows as more DP noise (enhanced privacy) is added to the ML process, but subsequently diminishes at higher privacy levels with even more noise. Moreover, implementing gradient clipping in the differentially private stochastic gradient descent ML method can mitigate the negative impact of DP noise on fairness. This mitigation is achieved by moderating the disparity growth through a lower clipping threshold.
☆ Masked and Shuffled Blind Spot Denoising for Real-World Images
We introduce a novel approach to single image denoising based on the Blind Spot Denoising principle, which we call MAsked and SHuffled Blind Spot Denoising (MASH). We focus on the case of correlated noise, which often plagues real images. MASH is the result of a careful analysis to determine the relationships between the level of blindness (masking) of the input and the (unknown) noise correlation. Moreover, we introduce a shuffling technique to weaken the local correlation of noise, which in turn yields an additional denoising performance improvement. We evaluate MASH via extensive experiments on real-world noisy image datasets. We demonstrate on par or better results compared to existing self-supervised denoising methods.
☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Among the ever-evolving development of vision-language models, contrastive language-image pretraining (CLIP) has set new benchmarks in many downstream tasks such as zero-shot classifications by leveraging self-supervised contrastive learning on large amounts of text-image pairs. However, its dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pretraining method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the enhanced capability of RankCLIP to effectively improve performance across various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the potential of RankCLIP in further advancing vision-language pretraining.
comment: 10 pages, 3 figures, 6 tables. Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
☆ Integrating Marketing Channels into Quantile Transformation and Bayesian Optimization of Ensemble Kernels for Sales Prediction with Gaussian Process Models
This study introduces an innovative Gaussian Process (GP) model utilizing an ensemble kernel that integrates Radial Basis Function (RBF), Rational Quadratic, and Mat\'ern kernels for product sales forecasting. By applying Bayesian optimization, we efficiently find the optimal weights for each kernel, enhancing the model's ability to handle complex sales data patterns. Our approach significantly outperforms traditional GP models, achieving a notable 98\% accuracy and superior performance across key metrics including Mean Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination ($R^2$). This advancement underscores the effectiveness of ensemble kernels and Bayesian optimization in improving predictive accuracy, offering profound implications for machine learning applications in sales forecasting.
comment: 11 pages, 3 figures
♻ ☆ New methods for drug synergy prediction: a mini-review
In this mini-review, we explore the new prediction methods for drug combination synergy relying on high-throughput combinatorial screens. The fast progress of the field is witnessed in the more than thirty original machine learning methods published since 2021, a clear majority of them based on deep learning techniques. We aim to put these papers under a unifying lens by highlighting the core technologies, the data sources, the input data types and synergy scores used in the methods, as well as the prediction scenarios and evaluation protocols that the papers deal with. Our finding is that the best methods accurately solve the synergy prediction scenarios involving known drugs or cell lines while the scenarios involving new drugs or cell lines still fall short of an accurate prediction level.
♻ ☆ Physics-guided Shape-from-Template: Monocular Video Perception through Neural Surrogate Models
3D reconstruction of dynamic scenes is a long-standing problem in computer graphics and increasingly difficult the less information is available. Shape-from-Template (SfT) methods aim to reconstruct a template-based geometry from RGB images or video sequences, often leveraging just a single monocular camera without depth information, such as regular smartphone recordings. Unfortunately, existing reconstruction methods are either unphysical and noisy or slow in optimization. To solve this problem, we propose a novel SfT reconstruction algorithm for cloth using a pre-trained neural surrogate model that is fast to evaluate, stable, and produces smooth reconstructions due to a regularizing physics simulation. Differentiable rendering of the simulated mesh enables pixel-wise comparisons between the reconstruction and a target video sequence that can be used for a gradient-based optimization procedure to extract not only shape information but also physical parameters such as stretching, shearing, or bending stiffness of the cloth. This allows to retain a precise, stable, and smooth reconstructed geometry while reducing the runtime by a factor of 400-500 compared to $\phi$-SfT, a state-of-the-art physics-based SfT approach.
♻ ☆ Dancing with Still Images: Video Distillation via Static-Dynamic Disentanglement CVPR 2024
Recently, dataset distillation has paved the way towards efficient machine learning, especially for image datasets. However, the distillation for videos, characterized by an exclusive temporal dimension, remains an underexplored domain. In this work, we provide the first systematic study of video distillation and introduce a taxonomy to categorize temporal compression. Our investigation reveals that the temporal information is usually not well learned during distillation, and the temporal dimension of synthetic data contributes little. The observations motivate our unified framework of disentangling the dynamic and static information in the videos. It first distills the videos into still images as static memory and then compensates the dynamic and motion information with a learnable dynamic memory block. Our method achieves state-of-the-art on video datasets at different scales, with a notably smaller memory storage budget. Our code is available at https://github.com/yuz1wan/video_distillation.
comment: CVPR 2024, project page: https://mvig-rhos.com/video-distill
♻ ☆ CBQ: Cross-Block Quantization for Large Language Models
Post-training quantization (PTQ) has played a key role in compressing large language models (LLMs) with ultra-low costs. However, existing PTQ methods only focus on handling the outliers within one layer or one block, which ignores the dependency of blocks and leads to severe performance degradation in low-bit settings. In this paper, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ employs a cross-block dependency using a homologous reconstruction scheme, establishing long-range dependencies across multiple blocks to minimize error accumulation. Furthermore, CBQ incorporates a coarse-to-fine preprocessing (CFP) strategy for suppressing weight and activation outliers, coupled with an adaptive LoRA-Rounding technique for precise weight quantization. These innovations enable CBQ to not only handle extreme outliers effectively but also improve overall quantization accuracy. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ quantizes the 4-bit LLAMA1-65B model within only 4.3 hours on a single GPU, achieving a commendable tradeoff between performance and quantization efficiency.
♻ ☆ Mind-to-Image: Projecting Visual Mental Imagination of the Brain from fMRI
The reconstruction of images observed by subjects from fMRI data collected during visual stimuli has made significant strides in the past decade, thanks to the availability of extensive fMRI datasets and advancements in generative models for image generation. However, the application of visual reconstruction has remained limited. Reconstructing visual imagination presents a greater challenge, with potentially revolutionary applications ranging from aiding individuals with disabilities to verifying witness accounts in court. The primary hurdles in this field are the absence of data collection protocols for visual imagery and the lack of datasets on the subject. Traditionally, fMRI-to-image relies on data collected from subjects exposed to visual stimuli, which poses issues for generating visual imagery based on the difference of brain activity between visual stimulation and visual imagery. For the first time, we have compiled a substantial dataset (around 6h of scans) on visual imagery along with a proposed data collection protocol. We then train a modified version of an fMRI-to-image model and demonstrate the feasibility of reconstructing images from two modes of imagination: from memory and from pure imagination. This marks an important step towards creating a technology that allow direct reconstruction of visual imagery.
comment: Pre-print to be updated
♻ ☆ TTK is Getting MPI-Ready
This system paper documents the technical foundations for the extension of the Topology ToolKit (TTK) to distributed-memory parallelism with the Message Passing Interface (MPI). While several recent papers introduced topology-based approaches for distributed-memory environments, these were reporting experiments obtained with tailored, mono-algorithm implementations. In contrast, we describe in this paper a versatile approach (supporting both triangulated domains and regular grids) for the support of topological analysis pipelines, i.e. a sequence of topological algorithms interacting together. While developing this extension, we faced several algorithmic and software engineering challenges, which we document in this paper. We describe an MPI extension of TTK's data structure for triangulation representation and traversal, a central component to the global performance and generality of TTK's topological implementations. We also introduce an intermediate interface between TTK and MPI, both at the global pipeline level, and at the fine-grain algorithmic level. We provide a taxonomy for the distributed-memory topological algorithms supported by TTK, depending on their communication needs and provide examples of hybrid MPI+thread parallelizations. Performance analyses show that parallel efficiencies range from 20% to 80% (depending on the algorithms), and that the MPI-specific preconditioning introduced by our framework induces a negligible computation time overhead. We illustrate the new distributed-memory capabilities of TTK with an example of advanced analysis pipeline, combining multiple algorithms, run on the largest publicly available dataset we have found (120 billion vertices) on a cluster with 64 nodes (for a total of 1536 cores). Finally, we provide a roadmap for the completion of TTK's MPI extension, along with generic recommendations for each algorithm communication category.
comment: 18 pages, 13 figures
♻ ☆ A Graph Transformer-Driven Approach for Network Robustness Learning
Learning and analysis of network robustness, including controllability robustness and connectivity robustness, is critical for various networked systems against attacks. Traditionally, network robustness is determined by attack simulations, which is very time-consuming and even incapable for large-scale networks. Network Robustness Learning, which is dedicated to learning network robustness with high precision and high speed, provides a powerful tool to analyze network robustness by replacing simulations. In this paper, a novel versatile and unified robustness learning approach via graph transformer (NRL-GT) is proposed, which accomplishes the task of controllability robustness learning and connectivity robustness learning from multiple aspects including robustness curve learning, overall robustness learning, and synthetic network classification. Numerous experiments show that: 1) NRL-GT is a unified learning framework for controllability robustness and connectivity robustness, demonstrating a strong generalization ability to ensure high precision when training and test sets are distributed differently; 2) Compared to the cutting-edge methods, NRL-GT can simultaneously perform network robustness learning from multiple aspects and obtains superior results in less time. NRL-GT is also able to deal with complex networks of different size with low learning error and high efficiency; 3) It is worth mentioning that the backbone of NRL-GT can serve as a transferable feature learning module for complex networks of different size and different downstream tasks.
comment: 14 pages, 7 figures
♻ ☆ Backward Learning for Goal-Conditioned Policies NeurIPS 2023
Can we learn policies in reinforcement learning without rewards? Can we learn a policy just by trying to reach a goal state? We answer these questions positively by proposing a multi-step procedure that first learns a world model that goes backward in time, secondly generates goal-reaching backward trajectories, thirdly improves those sequences using shortest path finding algorithms, and finally trains a neural network policy by imitation learning. We evaluate our method on a deterministic maze environment where the observations are $64\times 64$ pixel bird's eye images and can show that it consistently reaches several goals.
comment: World Models, Goal-conditioned, Reward-free, Workshop on Goal-Conditioned Reinforcement Learning - NeurIPS 2023
♻ ☆ On the Convergence of Continual Learning with Adaptive Methods UAI 2023
One of the objectives of continual learning is to prevent catastrophic forgetting in learning multiple tasks sequentially, and the existing solutions have been driven by the conceptualization of the plasticity-stability dilemma. However, the convergence of continual learning for each sequential task is less studied so far. In this paper, we provide a convergence analysis of memory-based continual learning with stochastic gradient descent and empirical evidence that training current tasks causes the cumulative degradation of previous tasks. We propose an adaptive method for nonconvex continual learning (NCCL), which adjusts step sizes of both previous and current tasks with the gradients. The proposed method can achieve the same convergence rate as the SGD method when the catastrophic forgetting term which we define in the paper is suppressed at each iteration. Further, we demonstrate that the proposed algorithm improves the performance of continual learning over existing methods for several image classification tasks.
comment: Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI 2023), see https://proceedings.mlr.press/v216/han23a.html
♻ ☆ Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces
Explainable AI aims to overcome the black-box nature of complex ML models like neural networks by generating explanations for their predictions. Explanations often take the form of a heatmap identifying input features (e.g. pixels) that are relevant to the model's decision. These explanations, however, entangle the potentially multiple factors that enter into the overall complex decision strategy. We propose to disentangle explanations by extracting at some intermediate layer of a neural network, subspaces that capture the multiple and distinct activation patterns (e.g. visual concepts) that are relevant to the prediction. To automatically extract these subspaces, we propose two new analyses, extending principles found in PCA or ICA to explanations. These novel analyses, which we call principal relevant component analysis (PRCA) and disentangled relevant subspace analysis (DRSA), maximize relevance instead of e.g. variance or kurtosis. This allows for a much stronger focus of the analysis on what the ML model actually uses for predicting, ignoring activations or concepts to which the model is invariant. Our approach is general enough to work alongside common attribution techniques such as Shapley Value, Integrated Gradients, or LRP. Our proposed methods show to be practically useful and compare favorably to the state of the art as demonstrated on benchmarks and three use cases.
comment: 17 pages + supplement
♻ ☆ A precise symbolic emulator of the linear matter power spectrum
Computing the matter power spectrum, $P(k)$, as a function of cosmological parameters can be prohibitively slow in cosmological analyses, hence emulating this calculation is desirable. Previous analytic approximations are insufficiently accurate for modern applications, so black-box, uninterpretable emulators are often used. We utilise an efficient genetic programming based symbolic regression framework to explore the space of potential mathematical expressions which can approximate the power spectrum and $\sigma_8$. We learn the ratio between an existing low-accuracy fitting function for $P(k)$ and that obtained by solving the Boltzmann equations and thus still incorporate the physics which motivated this earlier approximation. We obtain an analytic approximation to the linear power spectrum with a root mean squared fractional error of 0.2% between $k = 9\times10^{-3} - 9 \, h{\rm \, Mpc^{-1}}$ and across a wide range of cosmological parameters, and we provide physical interpretations for various terms in the expression. Our analytic approximation is 950 times faster to evaluate than camb and 36 times faster than the neural network based matter power spectrum emulator BACCO. We also provide a simple analytic approximation for $\sigma_8$ with a similar accuracy, with a root mean squared fractional error of just 0.1% when evaluated across the same range of cosmologies. This function is easily invertible to obtain $A_{\rm s}$ as a function of $\sigma_8$ and the other cosmological parameters, if preferred. It is possible to obtain symbolic approximations to a seemingly complex function at a precision required for current and future cosmological analyses without resorting to deep-learning techniques, thus avoiding their black-box nature and large number of parameters. Our emulator will be usable long after the codes on which numerical approximations are built become outdated.
comment: 9 pages, 5 figures. Accepted for publication in A&A
♻ ☆ syren-halofit: A fast, interpretable, high-precision formula for the $Λ$CDM nonlinear matter power spectrum
Rapid and accurate evaluation of the nonlinear matter power spectrum, $P(k)$, as a function of cosmological parameters and redshift is of fundamental importance in cosmology. Analytic approximations provide an interpretable solution, yet current approximations are neither fast nor accurate relative to numerical emulators. We use symbolic regression to obtain simple analytic approximations to the nonlinear scale, $k_\sigma$, the effective spectral index, $n_{\rm eff}$, and the curvature, $C$, which are required for the halofit model. We then re-optimise the coefficients of halofit to fit a wide range of cosmologies and redshifts. We explore the space of analytic expressions to fit the residuals between $P(k)$ and the optimised predictions of halofit. Our results are designed to match the predictions of EuclidEmulator2, but are validated against $N$-body simulations. Our symbolic expressions for $k_\sigma$, $n_{\rm eff}$ and $C$ have root mean squared fractional errors of 0.8%, 0.2% and 0.3%, respectively, for redshifts below 3 and a wide range of cosmologies. The re-optimised halofit parameters reduce the root mean squared fractional error (compared to EuclidEmulator2) from 3% to below 2% for wavenumbers $k=9\times10^{-3}-9 \, h{\rm Mpc^{-1}}$. We introduce syren-halofit (symbolic-regression-enhanced halofit), an extension to halofit containing a short symbolic correction which improves this error to 1%. Our method is 2350 and 3170 times faster than current halofit and hmcode implementations, respectively, and 2680 and 64 times faster than EuclidEmulator2 (which requires running class) and the BACCO emulator. We obtain comparable accuracy to EuclidEmulator2 and BACCO when tested on $N$-body simulations. Our work greatly increases the speed and accuracy of symbolic approximations to $P(k)$, making them significantly faster than their numerical counterparts without loss of accuracy.
comment: 11 pages, 8 figures. Accepted for publication in A&A
♻ ☆ Less is More: Understanding Word-level Textual Adversarial Attack via n-gram Frequency Descend
Word-level textual adversarial attacks have demonstrated notable efficacy in misleading Natural Language Processing (NLP) models. Despite their success, the underlying reasons for their effectiveness and the fundamental characteristics of adversarial examples (AEs) remain obscure. This work aims to interpret word-level attacks by examining their $n$-gram frequency patterns. Our comprehensive experiments reveal that in approximately 90\% of cases, word-level attacks lead to the generation of examples where the frequency of $n$-grams decreases, a tendency we term as the $n$-gram Frequency Descend ($n$-FD). This finding suggests a straightforward strategy to enhance model robustness: training models using examples with $n$-FD. To examine the feasibility of this strategy, we employed the $n$-gram frequency information, as an alternative to conventional loss gradients, to generate perturbed examples in adversarial training. The experiment results indicate that the frequency-based approach performs comparably with the gradient-based approach in improving model robustness. Our research offers a novel and more intuitive perspective for understanding word-level textual adversarial attacks and proposes a new direction to improve model robustness.
comment: To be published in: 2024 IEEE Conference on Artificial Intelligence (CAI 2024)
♻ ☆ Large Language Models as Optimizers ICLR 2024
Optimization is ubiquitous. While derivative-based algorithms have been powerful tools for various problems, the absence of gradient imposes challenges on many real-world applications. In this work, we propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as optimizers, where the optimization task is described in natural language. In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values, then the new solutions are evaluated and added to the prompt for the next optimization step. We first showcase OPRO on linear regression and traveling salesman problems, then move on to our main application in prompt optimization, where the goal is to find instructions that maximize the task accuracy. With a variety of LLMs, we demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks. Code at https://github.com/google-deepmind/opro.
comment: ICLR 2024; 42 pages, 26 figures, 15 tables. Code at https://github.com/google-deepmind/opro
♻ ☆ Optimal Inflationary Potentials
Inflation is a highly favoured theory for the early Universe. It is compatible with current observations of the cosmic microwave background and large scale structure and is a driver in the quest to detect primordial gravitational waves. It is also, given the current quality of the data, highly under-determined with a large number of candidate implementations. We use a new method in symbolic regression to generate all possible simple scalar field potentials for one of two possible basis sets of operators. Treating these as single-field, slow-roll inflationary models we then score them with an information-theoretic metric ("minimum description length") that quantifies their efficiency in compressing the information in current data. We explore two possible priors on the parameter space of potentials, one related to the functions' structural complexity and one that uses a Katz back-off language model to prefer functions that may be theoretically motivated. This enables us to identify the inflaton potentials that optimally balance simplicity with accuracy at explaining current data, which may subsequently find theoretical motivation. Our exploratory study opens the door to extraction of fundamental physics directly from data, and may be augmented with more refined theoretical priors in the quest for a complete understanding of the early Universe.
comment: 13+4 pages, 4 figures; Accepted for publication in Physical Review D
♻ ☆ Geographic Location Encoding with Spherical Harmonics and Sinusoidal Representation Networks
Learning representations of geographical space is vital for any machine learning model that integrates geolocated data, spanning application domains such as remote sensing, ecology, or epidemiology. Recent work embeds coordinates using sine and cosine projections based on Double Fourier Sphere (DFS) features. These embeddings assume a rectangular data domain even on global data, which can lead to artifacts, especially at the poles. At the same time, little attention has been paid to the exact design of the neural network architectures with which these functional embeddings are combined. This work proposes a novel location encoder for globally distributed geographic data that combines spherical harmonic basis functions, natively defined on spherical surfaces, with sinusoidal representation networks (SirenNets) that can be interpreted as learned Double Fourier Sphere embedding. We systematically evaluate positional embeddings and neural network architectures across various benchmarks and synthetic evaluation datasets. In contrast to previous approaches that require the combination of both positional encoding and neural networks to learn meaningful representations, we show that both spherical harmonics and sinusoidal representation networks are competitive on their own but set state-of-the-art performances across tasks when combined. The model code and experiments are available at https://github.com/marccoru/locationencoder.
comment: Camera-ready version
♻ ☆ Neuron-level LLM Patching for Code Generation
Large Language Models (LLMs) have found widespread adoption in software engineering, particularly in code generation tasks. However, updating these models with new knowledge can be prohibitively expensive, yet it is essential for maximizing their utility. In this paper, we propose a novel and effective model editing approach, \textsc{MENT}, to patch LLMs in coding tasks. \textsc{MENT} is effective, efficient, and reliable. It can correct a neural model by patching 1 or 2 neurons. As the pioneer work on neuron-level model editing of generative models, we formalize the editing process and introduce the involved concepts. Besides, we also introduce new measures to evaluate its generalization ability, and build a benchmark for further study. Our approach is evaluated on three coding tasks, including API-seq recommendation, line-level code generation, and pseudocode-to-code transaction. The experimental results show that the proposed approach outperforms the state of the arts by a significant margin in both effectiveness and efficiency measures. In addition, we demonstrate the usages of \textsc{MENT} for LLM reasoning in software engineering. By editing LLM knowledge, the directly or indirectly dependent behaviors of API invocation in the chain-of-thought will change accordingly. It explained the significance of repairing LLMs.
comment: 12 pages, 6 figures, 6 tables, under peer-review
♻ ☆ Few Shot Part Segmentation Reveals Compositional Logic for Industrial Anomaly Detection AAAI2024
Logical anomalies (LA) refer to data violating underlying logical constraints e.g., the quantity, arrangement, or composition of components within an image. Detecting accurately such anomalies requires models to reason about various component types through segmentation. However, curation of pixel-level annotations for semantic segmentation is both time-consuming and expensive. Although there are some prior few-shot or unsupervised co-part segmentation algorithms, they often fail on images with industrial object. These images have components with similar textures and shapes, and a precise differentiation proves challenging. In this study, we introduce a novel component segmentation model for LA detection that leverages a few labeled samples and unlabeled images sharing logical constraints. To ensure consistent segmentation across unlabeled images, we employ a histogram matching loss in conjunction with an entropy loss. As segmentation predictions play a crucial role, we propose to enhance both local and global sample validity detection by capturing key aspects from visual semantics via three memory banks: class histograms, component composition embeddings and patch-level representations. For effective LA detection, we propose an adaptive scaling strategy to standardize anomaly scores from different memory banks in inference. Extensive experiments on the public benchmark MVTec LOCO AD reveal our method achieves 98.1% AUROC in LA detection vs. 89.6% from competing methods.
comment: Accepted in AAAI2024
♻ ☆ On the Stability of Expressive Positional Encodings for Graphs ICLR 2023
Designing effective positional encodings for graphs is key to building powerful graph transformers and enhancing message-passing graph neural networks. Although widespread, using Laplacian eigenvectors as positional encodings faces two fundamental challenges: (1) \emph{Non-uniqueness}: there are many different eigendecompositions of the same Laplacian, and (2) \emph{Instability}: small perturbations to the Laplacian could result in completely different eigenspaces, leading to unpredictable changes in positional encoding. Despite many attempts to address non-uniqueness, most methods overlook stability, leading to poor generalization on unseen graph structures. We identify the cause of instability to be a ``hard partition'' of eigenspaces. Hence, we introduce Stable and Expressive Positional Encodings (SPE), an architecture for processing eigenvectors that uses eigenvalues to ``softly partition'' eigenspaces. SPE is the first architecture that is (1) provably stable, and (2) universally expressive for basis invariant functions whilst respecting all symmetries of eigenvectors. Besides guaranteed stability, we prove that SPE is at least as expressive as existing methods, and highly capable of counting graph structures. Finally, we evaluate the effectiveness of our method on molecular property prediction, and out-of-distribution generalization tasks, finding improved generalization compared to existing positional encoding methods. Our code is available at \url{https://github.com/Graph-COM/SPE}.
comment: ICLR 2023
♻ ☆ Data Imputation with Iterative Graph Reconstruction AAAI2023
Effective data imputation demands rich latent ``structure" discovery capabilities from ``plain" tabular data. Recent advances in graph neural networks-based data imputation solutions show their strong structure learning potential by directly translating tabular data as bipartite graphs. However, due to a lack of relations between samples, those solutions treat all samples equally which is against one important observation: ``similar sample should give more information about missing values." This paper presents a novel Iterative graph Generation and Reconstruction framework for Missing data imputation(IGRM). Instead of treating all samples equally, we introduce the concept: ``friend networks" to represent different relations among samples. To generate an accurate friend network with missing data, an end-to-end friend network reconstruction solution is designed to allow for continuous friend network optimization during imputation learning. The representation of the optimized friend network, in turn, is used to further optimize the data imputation process with differentiated message passing. Experiment results on eight benchmark datasets show that IGRM yields 39.13% lower mean absolute error compared with nine baselines and 9.04% lower than the second-best. Our code is available at https://github.com/G-AILab/IGRM.
comment: Published in AAAI2023
♻ ☆ Differentiable Search for Finding Optimal Quantization Strategy
To accelerate and compress deep neural networks (DNNs), many network quantization algorithms have been proposed. Although the quantization strategy of any algorithm from the state-of-the-arts may outperform others in some network architectures, it is hard to prove the strategy is always better than others, and even cannot judge that the strategy is always the best choice for all layers in a network. In other words, existing quantization algorithms are suboptimal as they ignore the different characteristics of different layers and quantize all layers by a uniform quantization strategy. To solve the issue, in this paper, we propose a differentiable quantization strategy search (DQSS) to assign optimal quantization strategy for individual layer by taking advantages of the benefits of different quantization algorithms. Specifically, we formulate DQSS as a differentiable neural architecture search problem and adopt an efficient convolution to efficiently explore the mixed quantization strategies from a global perspective by gradient-based optimization. We conduct DQSS for post-training quantization to enable their performance to be comparable with that in full precision models. We also employ DQSS in quantization-aware training for further validating the effectiveness of DQSS. To circumvent the expensive optimization cost when employing DQSS in quantization-aware training, we update the hyper-parameters and the network parameters in a single forward-backward pass. Besides, we adjust the optimization process to avoid the potential under-fitting problem. Comprehensive experiments on high level computer vision task, i.e., image classification, and low level computer vision task, i.e., image super-resolution, with various network architectures show that DQSS could outperform the state-of-the-arts.
♻ ☆ PhysGaussian: Physics-Integrated 3D Gaussians for Generative Dynamics CVPR 2024
We introduce PhysGaussian, a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a custom Material Point Method (MPM), our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes, all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing, marching cubes, "cage meshes," or any other geometry embedding, highlighting the principle of "what you see is what you simulate (WS$^2$)." Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities, metals, non-Newtonian fluids, and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. Our project page is at: https://xpandora.github.io/PhysGaussian/
comment: Accepted by CVPR 2024
♻ ☆ Analysis of Linear Mode Connectivity via Permutation-Based Weight Matching
Recently, Ainsworth et al. showed that using weight matching (WM) to minimize the $L_2$ distance in a permutation search of model parameters effectively identifies permutations that satisfy linear mode connectivity (LMC), in which the loss along a linear path between two independently trained models with different seeds remains nearly constant. This paper provides a theoretical analysis of LMC using WM, which is crucial for understanding stochastic gradient descent's effectiveness and its application in areas like model merging. We first experimentally and theoretically show that permutations found by WM do not significantly reduce the $L_2$ distance between two models and the occurrence of LMC is not merely due to distance reduction by WM in itself. We then provide theoretical insights showing that permutations can change the directions of the singular vectors, but not the singular values, of the weight matrices in each layer. This finding shows that permutations found by WM mainly align the directions of singular vectors associated with large singular values across models. This alignment brings the singular vectors with large singular values, which determine the model functionality, closer between pre-merged and post-merged models, so that the post-merged model retains functionality similar to the pre-merged models, making it easy to satisfy LMC. Finally, we analyze the difference between WM and straight-through estimator (STE), a dataset-dependent permutation search method, and show that WM outperforms STE, especially when merging three or more models.
comment: 26 pages
♻ ☆ Towards Eliminating Hard Label Constraints in Gradient Inversion Attacks ICLR2024
Gradient inversion attacks aim to reconstruct local training data from intermediate gradients exposed in the federated learning framework. Despite successful attacks, all previous methods, starting from reconstructing a single data point and then relaxing the single-image limit to batch level, are only tested under hard label constraints. Even for single-image reconstruction, we still lack an analysis-based algorithm to recover augmented soft labels. In this work, we change the focus from enlarging batchsize to investigating the hard label constraints, considering a more realistic circumstance where label smoothing and mixup techniques are used in the training process. In particular, we are the first to initiate a novel algorithm to simultaneously recover the ground-truth augmented label and the input feature of the last fully-connected layer from single-input gradients, and provide a necessary condition for any analytical-based label recovery methods. Extensive experiments testify to the label recovery accuracy, as well as the benefits to the following image reconstruction. We believe soft labels in classification tasks are worth further attention in gradient inversion attacks.
comment: ICLR2024 poster
♻ ☆ A Lightweight Method for Tackling Unknown Participation Statistics in Federated Averaging ICLR 2024
In federated learning (FL), clients usually have diverse participation statistics that are unknown a priori, which can significantly harm the performance of FL if not handled properly. Existing works aiming at addressing this problem are usually based on global variance reduction, which requires a substantial amount of additional memory in a multiplicative factor equal to the total number of clients. An important open problem is to find a lightweight method for FL in the presence of clients with unknown participation rates. In this paper, we address this problem by adapting the aggregation weights in federated averaging (FedAvg) based on the participation history of each client. We first show that, with heterogeneous participation statistics, FedAvg with non-optimal aggregation weights can diverge from the optimal solution of the original FL objective, indicating the need of finding optimal aggregation weights. However, it is difficult to compute the optimal weights when the participation statistics are unknown. To address this problem, we present a new algorithm called FedAU, which improves FedAvg by adaptively weighting the client updates based on online estimates of the optimal weights without knowing the statistics of client participation. We provide a theoretical convergence analysis of FedAU using a novel methodology to connect the estimation error and convergence. Our theoretical results reveal important and interesting insights, while showing that FedAU converges to an optimal solution of the original objective and has desirable properties such as linear speedup. Our experimental results also verify the advantage of FedAU over baseline methods with various participation patterns.
comment: Accepted to ICLR 2024
♻ ☆ The Role of Federated Learning in a Wireless World with Foundation Models
Foundation models (FMs) are general-purpose artificial intelligence (AI) models that have recently enabled multiple brand-new generative AI applications. The rapid advances in FMs serve as an important contextual backdrop for the vision of next-generation wireless networks, where federated learning (FL) is a key enabler of distributed network intelligence. Currently, the exploration of the interplay between FMs and FL is still in its nascent stage. Naturally, FMs are capable of boosting the performance of FL, and FL could also leverage decentralized data and computing resources to assist in the training of FMs. However, the exceptionally high requirements that FMs have for computing resources, storage, and communication overhead would pose critical challenges to FL-enabled wireless networks. In this article, we explore the extent to which FMs are suitable for FL over wireless networks, including a broad overview of research challenges and opportunities. In particular, we discuss multiple new paradigms for realizing future intelligent networks that integrate FMs and FL. We also consolidate several broad research directions associated with these paradigms.
comment: 8 pages, 4 figures, 2 tables. This version has been accepted by IEEE Wireless Communiactions
♻ ☆ Not all Layers of LLMs are Necessary during Inference
The inference phase of Large Language Models (LLMs) is very expensive. An ideal inference stage of LLMs could utilize fewer computational resources while still maintaining its capabilities (e.g., generalization and in-context learning ability). In this paper, we try to answer the question, "During LLM inference, can we use shallow layers for easy instances; and deep layers for hard ones?" To answer this question, we first indicate that Not all Layers are Necessary during Inference by statistically analyzing the activated layers across tasks. Then, we propose a simple algorithm named AdaInfer to determine the inference termination moment based on the input instance adaptively. More importantly, AdaInfer does not alter LLM parameters and maintains generalizability across tasks. Experiments on well-known LLMs (i.e., Llama2 series and OPT) show that AdaInfer saves an average of 14.8% of computational resources, even up to 50% on sentiment tasks, while maintaining comparable performance. Additionally, this method is orthogonal to other model acceleration techniques, potentially boosting inference efficiency further.
♻ ☆ LadleNet: A Two-Stage UNet for Infrared Image to Visible Image Translation Guided by Semantic Segmentation
The translation of thermal infrared (TIR) images into visible light (VI) images plays a critical role in enhancing model performance and generalization capability, particularly in various fields such as registration and fusion of TIR and VI images. However, current research in this field faces challenges of insufficiently realistic image quality after translation and the difficulty of existing models in adapting to unseen scenarios. In order to develop a more generalizable image translation architecture, we conducted an analysis of existing translation architectures. By exploring the interpretability of intermediate modalities in existing translation architectures, we found that the intermediate modality in the image translation process for street scene images essentially performs semantic segmentation, distinguishing street images based on background and foreground patterns before assigning color information. Based on these principles, we propose an improved algorithm based on U-net called LadleNet. This network utilizes a two-stage U-net concatenation structure, consisting of Handle and Bowl modules. The Handle module is responsible for constructing an abstract semantic space, while the Bowl module decodes the semantic space to obtain the mapped VI image. Due to the characteristic of semantic segmentation, the Handle module has strong extensibility. Therefore, we also propose LadleNet+, which replaces the Handle module in LadleNet with a pre-trained DeepLabv3+ network, enabling the model to have a more powerful capability in constructing semantic space. The proposed methods were trained and tested on the KAIST dataset, followed by quantitative and qualitative analysis. Compared to existing methods, LadleNet and LadleNet+ achieved an average improvement of 12.4% and 15.2% in SSIM metrics, and 37.9% and 50.6% in MS-SSIM metrics, respectively.
♻ ☆ Model-Free, Regret-Optimal Best Policy Identification in Online CMDPs
This paper considers the best policy identification (BPI) problem in online Constrained Markov Decision Processes (CMDPs). We are interested in algorithms that are model-free, have low regret, and identify an approximately optimal policy with a high probability. Existing model-free algorithms for online CMDPs with sublinear regret and constraint violation do not provide any convergence guarantee to an optimal policy and provide only average performance guarantees when a policy is uniformly sampled at random from all previously used policies. In this paper, we develop a new algorithm, named Pruning-Refinement-Identification (PRI), based on a fundamental structural property of CMDPs proved before, which we call limited stochasticity. The property says for a CMDP with $N$ constraints, there exists an optimal policy with at most $N$ stochastic decisions. The proposed algorithm first identifies at which step and in which state a stochastic decision has to be taken and then fine-tunes the distributions of these stochastic decisions. PRI achieves trio objectives: (i) PRI is a model-free algorithm; and (ii) it outputs an approximately optimal policy with a high probability at the end of learning; and (iii) PRI guarantees $\tilde{\mathcal{O}}(H\sqrt{K})$ regret and constraint violation, which significantly improves the best existing regret bound $\tilde{\mathcal{O}}(H^4 \sqrt{SA}K^{\frac{4}{5}})$ under a model-free algorithm, where $H$ is the length of each episode, $S$ is the number of states, $A$ is the number of actions, and the total number of episodes during learning is $2K+\tilde{\cal O}(K^{0.25}).$ We further present a matching lower via an example that shows under any online learning algorithm, there exists a well-separated CMDP instance such that either the regret or violation has to be $\Omega(H\sqrt{K}),$ which matches the upper bound by a polylogarithmic factor.
♻ ☆ Can LLM-Generated Misinformation Be Detected? ICLR 2024
The advent of Large Language Models (LLMs) has made a transformative impact. However, the potential that LLMs such as ChatGPT can be exploited to generate misinformation has posed a serious concern to online safety and public trust. A fundamental research question is: will LLM-generated misinformation cause more harm than human-written misinformation? We propose to tackle this question from the perspective of detection difficulty. We first build a taxonomy of LLM-generated misinformation. Then we categorize and validate the potential real-world methods for generating misinformation with LLMs. Then, through extensive empirical investigation, we discover that LLM-generated misinformation can be harder to detect for humans and detectors compared to human-written misinformation with the same semantics, which suggests it can have more deceptive styles and potentially cause more harm. We also discuss the implications of our discovery on combating misinformation in the age of LLMs and the countermeasures.
comment: Accepted to Proceedings of ICLR 2024. 9 pages for main paper, 38 pages including appendix. The code, results, dataset for this paper and more resources on "LLMs Meet Misinformation" have been released on the project website: https://llm-misinformation.github.io/
♻ ☆ AFLoRA: Adaptive Freezing of Low Rank Adaptation in Parameter Efficient Fine-Tuning of Large Models
We present a novel Parameter-Efficient Fine-Tuning (PEFT) method, dubbed as Adaptive Freezing of Low Rank Adaptation (AFLoRA). Specifically, for each pre-trained frozen weight tensor, we add a parallel path of trainable low-rank matrices, namely a down-projection and an up-projection matrix, each of which is followed by a feature transformation vector. Based on a novel freezing score, we the incrementally freeze these projection matrices during fine-tuning to reduce the computation and alleviate over-fitting. Our experimental results demonstrate that we can achieve state-of-the-art performance with an average improvement of up to $0.85\%$ as evaluated on GLUE benchmark while yeilding up to $9.5\times$ fewer average trainable parameters. While compared in terms of runtime, AFLoRA can yield up to $1.86\times$ improvement as opposed to similar PEFT alternatives. Besides the practical utility of our approach, we provide insights on the trainability requirements of LoRA paths at different modules and the freezing schedule for the different projection matrices. Code will be released.
comment: 5 pages, 5 figures
♻ ☆ Stochastic Hessian Fittings with Lie Groups
This paper studies the fitting of Hessian or its inverse for stochastic optimizations using a Hessian fitting criterion from the preconditioned stochastic gradient descent (PSGD) method, which is intimately related to many commonly used second order and adaptive gradient optimizers, e.g., BFGS, Gaussian-Newton and natural gradient descent, AdaGrad, etc. Our analyses reveal the efficiency and reliability differences among a wide range of preconditioner fitting methods, from closed-form to iterative solutions, using Hessian-vector products or stochastic gradients only, with Hessian fittings in the Euclidean space, the manifold of symmetric positive definite (SPL) matrices, to a variety of Lie groups. The most intriguing discovery is that the Hessian fitting itself as an optimization problem is strongly convex under mild conditions with a specific yet general enough Lie group. This discovery turns Hessian fitting into a well behaved optimization problem, and facilitates the designs of highly efficient and elegant Lie group sparse preconditioner fitting methods for large scale stochastic optimizations.
comment: 13 pages, 6 figures, 3 tables
♻ ☆ Suboptimal Performance of the Bayes Optimal Algorithm in Frequentist Best Arm Identification
We consider the fixed-budget best arm identification problem with rewards following normal distributions. In this problem, the forecaster is given $K$ arms (or treatments) and $T$ time steps. The forecaster attempts to find the arm with the largest mean, via an adaptive experiment conducted using an algorithm. The algorithm's performance is evaluated by simple regret, reflecting the quality of the estimated best arm. While frequentist simple regret can decrease exponentially with respect to $T$, Bayesian simple regret decreases polynomially. This paper demonstrates that the Bayes optimal algorithm, which minimizes the Bayesian simple regret, does not yield an exponential decrease in simple regret under certain parameter settings. This contrasts with the numerous findings that suggest the asymptotic equivalence of Bayesian and frequentist approaches in fixed sampling regimes. Although the Bayes optimal algorithm is formulated as a recursive equation that is virtually impossible to compute exactly, we lay the groundwork for future research by introducing a novel concept termed the expected Bellman improvement.
♻ ☆ SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation
In recent years, there has been growing interest in text-to-SQL translation, which is the task of converting natural language questions into executable SQL queries. This technology is important for its potential to democratize data extraction from databases. However, some of its key hurdles include domain generalisation, which is the ability to adapt to previously unseen databases, and alignment of natural language questions with the corresponding SQL queries. To overcome these challenges, we introduce SQLformer, a novel Transformer architecture specifically crafted to perform text-to-SQL translation tasks. Our model predicts SQL queries as abstract syntax trees (ASTs) in an autoregressive way, incorporating structural inductive bias in the encoder and decoder layers. This bias, guided by database table and column selection, aids the decoder in generating SQL query ASTs represented as graphs in a Breadth-First Search canonical order. Comprehensive experiments show the state-of-the-art performance of SQLformer across five widely used text-to-SQL benchmarks. Our implementation is available at https://github.com/AdrianBZG/SQLformer.
comment: 13 pages, 4 figures, 8 tables
♻ ☆ Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
♻ ☆ OccamNets: Mitigating Dataset Bias by Favoring Simpler Hypotheses ECCV 2022
Dataset bias and spurious correlations can significantly impair generalization in deep neural networks. Many prior efforts have addressed this problem using either alternative loss functions or sampling strategies that focus on rare patterns. We propose a new direction: modifying the network architecture to impose inductive biases that make the network robust to dataset bias. Specifically, we propose OccamNets, which are biased to favor simpler solutions by design. OccamNets have two inductive biases. First, they are biased to use as little network depth as needed for an individual example. Second, they are biased toward using fewer image locations for prediction. While OccamNets are biased toward simpler hypotheses, they can learn more complex hypotheses if necessary. In experiments, OccamNets outperform or rival state-of-the-art methods run on architectures that do not incorporate these inductive biases. Furthermore, we demonstrate that when the state-of-the-art debiasing methods are combined with OccamNets results further improve.
comment: ECCV 2022
♻ ☆ Are Bias Mitigation Techniques for Deep Learning Effective? WACV 2022
A critical problem in deep learning is that systems learn inappropriate biases, resulting in their inability to perform well on minority groups. This has led to the creation of multiple algorithms that endeavor to mitigate bias. However, it is not clear how effective these methods are. This is because study protocols differ among papers, systems are tested on datasets that fail to test many forms of bias, and systems have access to hidden knowledge or are tuned specifically to the test set. To address this, we introduce an improved evaluation protocol, sensible metrics, and a new dataset, which enables us to ask and answer critical questions about bias mitigation algorithms. We evaluate seven state-of-the-art algorithms using the same network architecture and hyperparameter selection policy across three benchmark datasets. We introduce a new dataset called Biased MNIST that enables assessment of robustness to multiple bias sources. We use Biased MNIST and a visual question answering (VQA) benchmark to assess robustness to hidden biases. Rather than only tuning to the test set distribution, we study robustness across different tuning distributions, which is critical because for many applications the test distribution may not be known during development. We find that algorithms exploit hidden biases, are unable to scale to multiple forms of bias, and are highly sensitive to the choice of tuning set. Based on our findings, we implore the community to adopt more rigorous assessment of future bias mitigation methods. All data, code, and results are publicly available at: https://github.com/erobic/bias-mitigators.
comment: WACV 2022
♻ ☆ Asynchronous Federated Reinforcement Learning with Policy Gradient Updates: Algorithm Design and Convergence Analysis
To improve the efficiency of reinforcement learning, we propose a novel asynchronous federated reinforcement learning framework termed AFedPG, which constructs a global model through collaboration among $N$ agents using policy gradient (PG) updates. To handle the challenge of lagged policies in asynchronous settings, we design delay-adaptive lookahead and normalized update techniques that can effectively handle the heterogeneous arrival times of policy gradients. We analyze the theoretical global convergence bound of AFedPG, and characterize the advantage of the proposed algorithm in terms of both the sample complexity and time complexity. Specifically, our AFedPG method achieves $\mathcal{O}(\frac{{\epsilon}^{-2.5}}{N})$ sample complexity at each agent on average. Compared to the single agent setting with $\mathcal{O}(\epsilon^{-2.5})$ sample complexity, it enjoys a linear speedup with respect to the number of agents. Moreover, compared to synchronous FedPG, AFedPG improves the time complexity from $\mathcal{O}(\frac{t_{\max}}{N})$ to $\mathcal{O}(\frac{1}{\sum_{i=1}^{N} \frac{1}{t_{i}}})$, where $t_{i}$ denotes the time consumption in each iteration at the agent $i$, and $t_{\max}$ is the largest one. The latter complexity $\mathcal{O}(\frac{1}{\sum_{i=1}^{N} \frac{1}{t_{i}}})$ is always smaller than the former one, and this improvement becomes significant in large-scale federated settings with heterogeneous computing powers ($t_{\max}\gg t_{\min}$). Finally, we empirically verify the improved performances of AFedPG in three MuJoCo environments with varying numbers of agents. We also demonstrate the improvements with different computing heterogeneity.
♻ ☆ Spatiotemporal k-means
Spatiotemporal data is increasingly available due to emerging sensor and data acquisition technologies that track moving objects. Spatiotemporal clustering addresses the need to efficiently discover patterns and trends in moving object behavior without human supervision. One application of interest is the discovery of moving clusters, where clusters have a static identity, but their location and content can change over time. We propose a two phase spatiotemporal clustering method called spatiotemporal k-means (STkM) that is able to analyze the multi-scale relationships within spatiotemporal data. By optimizing an objective function that is unified over space and time, the method can track dynamic clusters at both short and long timescales with minimal parameter tuning and no post-processing. We begin by proposing a theoretical generating model for spatiotemporal data and prove the efficacy of STkM in this setting. We then evaluate STkM on a recently developed collective animal behavior benchmark dataset and show that STkM outperforms baseline methods in the low-data limit, which is a critical regime of consideration in many emerging applications. Finally, we showcase how STkM can be extended to more complex machine learning tasks, particularly unsupervised region of interest detection and tracking in videos.
comment: 18 pages, 5 figures
♻ ☆ Sampling-based Distributed Training with Message Passing Neural Network
In this study, we introduce a domain-decomposition-based distributed training and inference approach for message-passing neural networks (MPNN). Our objective is to address the challenge of scaling edge-based graph neural networks as the number of nodes increases. Through our distributed training approach, coupled with Nystr\"om-approximation sampling techniques, we present a scalable graph neural network, referred to as DS-MPNN (D and S standing for distributed and sampled, respectively), capable of scaling up to $O(10^5)$ nodes. We validate our sampling and distributed training approach on two cases: (a) a Darcy flow dataset and (b) steady RANS simulations of 2-D airfoils, providing comparisons with both single-GPU implementation and node-based graph convolution networks (GCNs). The DS-MPNN model demonstrates comparable accuracy to single-GPU implementation, can accommodate a significantly larger number of nodes compared to the single-GPU variant (S-MPNN), and significantly outperforms the node-based GCN.
Multimedia 5
☆ Do LLMs Understand Visual Anomalies? Uncovering LLM Capabilities in Zero-shot Anomaly Detection
Large vision-language models (LVLMs) are markedly proficient in deriving visual representations guided by natural language. Recent explorations have utilized LVLMs to tackle zero-shot visual anomaly detection (VAD) challenges by pairing images with textual descriptions indicative of normal and abnormal conditions, referred to as anomaly prompts. However, existing approaches depend on static anomaly prompts that are prone to cross-semantic ambiguity, and prioritize global image-level representations over crucial local pixel-level image-to-text alignment that is necessary for accurate anomaly localization. In this paper, we present ALFA, a training-free approach designed to address these challenges via a unified model. We propose a run-time prompt adaptation strategy, which first generates informative anomaly prompts to leverage the capabilities of a large language model (LLM). This strategy is enhanced by a contextual scoring mechanism for per-image anomaly prompt adaptation and cross-semantic ambiguity mitigation. We further introduce a novel fine-grained aligner to fuse local pixel-level semantics for precise anomaly localization, by projecting the image-text alignment from global to local semantic spaces. Extensive evaluations on the challenging MVTec and VisA datasets confirm ALFA's effectiveness in harnessing the language potential for zero-shot VAD, achieving significant PRO improvements of 12.1% on MVTec AD and 8.9% on VisA compared to state-of-the-art zero-shot VAD approaches.
☆ State Space Model for New-Generation Network Alternative to Transformers: A Survey
In the post-deep learning era, the Transformer architecture has demonstrated its powerful performance across pre-trained big models and various downstream tasks. However, the enormous computational demands of this architecture have deterred many researchers. To further reduce the complexity of attention models, numerous efforts have been made to design more efficient methods. Among them, the State Space Model (SSM), as a possible replacement for the self-attention based Transformer model, has drawn more and more attention in recent years. In this paper, we give the first comprehensive review of these works and also provide experimental comparisons and analysis to better demonstrate the features and advantages of SSM. Specifically, we first give a detailed description of principles to help the readers quickly capture the key ideas of SSM. After that, we dive into the reviews of existing SSMs and their various applications, including natural language processing, computer vision, graph, multi-modal and multi-media, point cloud/event stream, time series data, and other domains. In addition, we give statistical comparisons and analysis of these models and hope it helps the readers to understand the effectiveness of different structures on various tasks. Then, we propose possible research points in this direction to better promote the development of the theoretical model and application of SSM. More related works will be continuously updated on the following GitHub: https://github.com/Event-AHU/Mamba_State_Space_Model_Paper_List.
comment: The First review of State Space Model (SSM)/Mamba and their applications in artificial intelligence, 33 pages
☆ ANCHOR: LLM-driven News Subject Conditioning for Text-to-Image Synthesis
Text-to-Image (T2I) Synthesis has made tremendous strides in enhancing synthesized image quality, but current datasets evaluate model performance only on descriptive, instruction-based prompts. Real-world news image captions take a more pragmatic approach, providing high-level situational and Named-Entity (NE) information and limited physical object descriptions, making them abstractive. To evaluate the ability of T2I models to capture intended subjects from news captions, we introduce the Abstractive News Captions with High-level cOntext Representation (ANCHOR) dataset, containing 70K+ samples sourced from 5 different news media organizations. With Large Language Models (LLM) achieving success in language and commonsense reasoning tasks, we explore the ability of different LLMs to identify and understand key subjects from abstractive captions. Our proposed method Subject-Aware Finetuning (SAFE), selects and enhances the representation of key subjects in synthesized images by leveraging LLM-generated subject weights. It also adapts to the domain distribution of news images and captions through custom Domain Fine-tuning, outperforming current T2I baselines on ANCHOR. By launching the ANCHOR dataset, we hope to motivate research in furthering the Natural Language Understanding (NLU) capabilities of T2I models.
comment: 23 pages, 9 figures
☆ Quality of Experience Oriented Cross-layer Optimization for Real-time XR Video Transmission
Extended reality (XR) is one of the most important applications of beyond 5G and 6G networks. Real-time XR video transmission presents challenges in terms of data rate and delay. In particular, the frame-by-frame transmission mode of XR video makes real-time XR video very sensitive to dynamic network environments. To improve the users' quality of experience (QoE), we design a cross-layer transmission framework for real-time XR video. The proposed framework allows the simple information exchange between the base station (BS) and the XR server, which assists in adaptive bitrate and wireless resource scheduling. We utilize the cross-layer information to formulate the problem of maximizing user QoE by finding the optimal scheduling and bitrate adjustment strategies. To address the issue of mismatched time scales between two strategies, we decouple the original problem and solve them individually using a multi-agent-based approach. Specifically, we propose the multi-step Deep Q-network (MS-DQN) algorithm to obtain a frame-priority-based wireless resource scheduling strategy and then propose the Transformer-based Proximal Policy Optimization (TPPO) algorithm for video bitrate adaptation. The experimental results show that the TPPO+MS-DQN algorithm proposed in this study can improve the QoE by 3.6% to 37.8%. More specifically, the proposed MS-DQN algorithm enhances the transmission quality by 49.9%-80.2%.
comment: 14 pages, 13 figures. arXiv admin note: text overlap with arXiv:2402.01180
♻ ☆ WebXR, A-Frame and Networked-Aframe as a Basis for an Open Metaverse: A Conceptual Architecture
This work proposes a WebXR-based cross-platform conceptual architecture, leveraging the A-Frame and Networked-Aframe frameworks, in order to facilitate the development of an open, accessible, and interoperable metaverse. By introducing the concept of spatial web app, this research contributes to the discourse on the metaverse, offering an architecture that democratizes access to virtual environments and extended reality through the web, and aligns with Tim Berners-Lee's original vision of the World Wide Web as an open platform in the digital realm.
comment: updated section II-C ("A-Frame"), updated references
Computation and Language 46
☆ Tasks People Prompt: A Taxonomy of LLM Downstream Tasks in Software Verification and Falsification Approaches
Prompting has become one of the main approaches to leverage emergent capabilities of Large Language Models [Brown et al. NeurIPS 2020, Wei et al. TMLR 2022, Wei et al. NeurIPS 2022]. During the last year, researchers and practitioners have been playing with prompts to see how to make the most of LLMs. By homogeneously dissecting 80 papers, we investigate in deep how software testing and verification research communities have been abstractly architecting their LLM-enabled solutions. More precisely, first, we want to validate whether downstream tasks are an adequate concept to convey the blueprint of prompt-based solutions. We also aim at identifying number and nature of such tasks in solutions. For such goal, we develop a novel downstream task taxonomy that enables pinpointing some engineering patterns in a rather varied spectrum of Software Engineering problems that encompasses testing, fuzzing, debugging, vulnerability detection, static analysis and program verification approaches.
☆ Low-Resource Named Entity Recognition with Cross-Lingual, Character-Level Neural Conditional Random Fields
Low-resource named entity recognition is still an open problem in NLP. Most state-of-the-art systems require tens of thousands of annotated sentences in order to obtain high performance. However, for most of the world's languages, it is unfeasible to obtain such annotation. In this paper, we present a transfer learning scheme, whereby we train character-level neural CRFs to predict named entities for both high-resource languages and low resource languages jointly. Learning character representations for multiple related languages allows transfer among the languages, improving F1 by up to 9.8 points over a loglinear CRF baseline.
comment: IJCNLP 2017
☆ Deceptive Patterns of Intelligent and Interactive Writing Assistants
Large Language Models have become an integral part of new intelligent and interactive writing assistants. Many are offered commercially with a chatbot-like UI, such as ChatGPT, and provide little information about their inner workings. This makes this new type of widespread system a potential target for deceptive design patterns. For example, such assistants might exploit hidden costs by providing guidance up until a certain point before asking for a fee to see the rest. As another example, they might sneak unwanted content/edits into longer generated or revised text pieces (e.g. to influence the expressed opinion). With these and other examples, we conceptually transfer several deceptive patterns from the literature to the new context of AI writing assistants. Our goal is to raise awareness and encourage future research into how the UI and interaction design of such systems can impact people and their writing.
comment: Published as a workshop paper to the In2Writing workshop at CHI 2024
☆ The Effect of Data Partitioning Strategy on Model Generalizability: A Case Study of Morphological Segmentation
Recent work to enhance data partitioning strategies for more realistic model evaluation face challenges in providing a clear optimal choice. This study addresses these challenges, focusing on morphological segmentation and synthesizing limitations related to language diversity, adoption of multiple datasets and splits, and detailed model comparisons. Our study leverages data from 19 languages, including ten indigenous or endangered languages across 10 language families with diverse morphological systems (polysynthetic, fusional, and agglutinative) and different degrees of data availability. We conduct large-scale experimentation with varying sized combinations of training and evaluation sets as well as new test data. Our results show that, when faced with new test data: (1) models trained from random splits are able to achieve higher numerical scores; (2) model rankings derived from random splits tend to generalize more consistently.
comment: Accepted to 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (16 pages including 9 tables and 1 figure)
☆ Understanding the Role of Temperature in Diverse Question Generation by GPT-4
We conduct a preliminary study of the effect of GPT's temperature parameter on the diversity of GPT4-generated questions. We find that using higher temperature values leads to significantly higher diversity, with different temperatures exposing different types of similarity between generated sets of questions. We also demonstrate that diverse question generation is especially difficult for questions targeting lower levels of Bloom's Taxonomy.
☆ LLeMpower: Understanding Disparities in the Control and Access of Large Language Models
Large Language Models (LLMs) are a powerful technology that augment human skill to create new opportunities, akin to the development of steam engines and the internet. However, LLMs come with a high cost. They require significant computing resources and energy to train and serve. Inequity in their control and access has led to concentration of ownership and power to a small collection of corporations. In our study, we collect training and inference requirements for various LLMs. We then analyze the economic strengths of nations and organizations in the context of developing and serving these models. Additionally, we also look at whether individuals around the world can access and use this emerging technology. We compare and contrast these groups to show that these technologies are monopolized by a surprisingly few entities. We conclude with a qualitative study on the ethical implications of our findings and discuss future directions towards equity in LLM access.
comment: 11 total pages, 7 page text, 4 page references, 3 figures (with subfigures), 1 table
☆ Towards Practical Tool Usage for Continually Learning LLMs
Large language models (LLMs) show an innate skill for solving language based tasks. But insights have suggested an inability to adjust for information or task-solving skills becoming outdated, as their knowledge, stored directly within their parameters, remains static in time. Tool use helps by offloading work to systems that the LLM can access through an interface, but LLMs that use them still must adapt to nonstationary environments for prolonged use, as new tools can emerge and existing tools can change. Nevertheless, tools require less specialized knowledge, therefore we hypothesize they are better suited for continual learning (CL) as they rely less on parametric memory for solving tasks and instead focus on learning when to apply pre-defined tools. To verify this, we develop a synthetic benchmark and follow this by aggregating existing NLP tasks to form a more realistic testing scenario. While we demonstrate scaling model size is not a solution, regardless of tool usage, continual learning techniques can enable tool LLMs to both adapt faster while forgetting less, highlighting their potential as continual learners.
comment: 20 pages, 11 tables, 7 figures
☆ Entropy Guided Extrapolative Decoding to Improve Factuality in Large Language Models
Large language models (LLMs) exhibit impressive natural language capabilities but suffer from hallucination -- generating content ungrounded in the realities of training data. Recent work has focused on decoding techniques to improve factuality during inference by leveraging LLMs' hierarchical representation of factual knowledge, manipulating the predicted distributions at inference time. Current state-of-the-art approaches refine decoding by contrasting early-exit distributions from a lower layer with the final layer to exploit information related to factuality within the model forward procedure. However, such methods often assume the final layer is the most reliable and the lower layer selection process depends on it. In this work, we first propose extrapolation of critical token probabilities beyond the last layer for more accurate contrasting. We additionally employ layer-wise entropy-guided lower layer selection, decoupling the selection process from the final layer. Experiments demonstrate strong performance - surpassing state-of-the-art on multiple different datasets by large margins. Analyses show different kinds of prompts respond to different selection strategies.
comment: Work in Progress
☆ Self-Selected Attention Span for Accelerating Large Language Model Inference
Large language models (LLMs) can solve challenging tasks. However, their inference computation on modern GPUs is highly inefficient due to the increasing number of tokens they must attend to as they generate new ones. To address this inefficiency, we capitalize on LLMs' problem-solving capabilities to optimize their own inference-time efficiency. We demonstrate with two specific tasks: (a) evaluating complex arithmetic expressions and (b) summarizing news articles. For both tasks, we create custom datasets to fine-tune an LLM. The goal of fine-tuning is twofold: first, to make the LLM learn to solve the evaluation or summarization task, and second, to train it to identify the minimal attention spans required for each step of the task. As a result, the fine-tuned model is able to convert these self-identified minimal attention spans into sparse attention masks on-the-fly during inference. We develop a custom CUDA kernel to take advantage of the reduced context to attend to. We demonstrate that using this custom CUDA kernel improves the throughput of LLM inference by 28%. Our work presents an end-to-end demonstration showing that training LLMs to self-select their attention spans speeds up autoregressive inference in solving real-world tasks.
☆ Large Language Models are as persuasive as humans, but why? About the cognitive effort and moral-emotional language of LLM arguments
Large Language Models (LLMs) are already as persuasive as humans. However, we know very little about why. This paper investigates the persuasion strategies of LLMs, comparing them with human-generated arguments. Using a dataset of 1,251 participants in an experiment, we analyze the persuaion strategies of LLM-generated and human-generated arguments using measures of cognitive effort (lexical and grammatical complexity) and moral-emotional language (sentiment and moral analysis). The study reveals that LLMs produce arguments that require higher cognitive effort, exhibiting more complex grammatical and lexical structures than human counterparts. Additionally, LLMs demonstrate a significant propensity to engage more deeply with moral language, utilizing both positive and negative moral foundations more frequently than humans. In contrast with previous research, no significant difference was found in the emotional content produced by LLMs and humans. These findings contribute to the discourse on AI and persuasion, highlighting the dual potential of LLMs to both enhance and undermine informational integrity through communication strategies for digital persuasion.
☆ Reap the Wild Wind: Detecting Media Storms in Large-Scale News Corpora
Media Storms, dramatic outbursts of attention to a story, are central components of media dynamics and the attention landscape. Despite their significance, there has been little systematic and empirical research on this concept due to issues of measurement and operationalization. We introduce an iterative human-in-the-loop method to identify media storms in a large-scale corpus of news articles. The text is first transformed into signals of dispersion based on several textual characteristics. In each iteration, we apply unsupervised anomaly detection to these signals; each anomaly is then validated by an expert to confirm the presence of a storm, and those results are then used to tune the anomaly detection in the next iteration. We demonstrate the applicability of this method in two scenarios: first, supplementing an initial list of media storms within a specific time frame; and second, detecting media storms in new time periods. We make available a media storm dataset compiled using both scenarios. Both the method and dataset offer the basis for comprehensive empirical research into the concept of media storms, including characterizing them and predicting their outbursts and durations, in mainstream media or social media platforms.
☆ Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A~Case~Study~at~HCMUT
In today's rapidly evolving landscape of Artificial Intelligence, large language models (LLMs) have emerged as a vibrant research topic. LLMs find applications in various fields and contribute significantly. Despite their powerful language capabilities, similar to pre-trained language models (PLMs), LLMs still face challenges in remembering events, incorporating new information, and addressing domain-specific issues or hallucinations. To overcome these limitations, researchers have proposed Retrieval-Augmented Generation (RAG) techniques, some others have proposed the integration of LLMs with Knowledge Graphs (KGs) to provide factual context, thereby improving performance and delivering more accurate feedback to user queries. Education plays a crucial role in human development and progress. With the technology transformation, traditional education is being replaced by digital or blended education. Therefore, educational data in the digital environment is increasing day by day. Data in higher education institutions are diverse, comprising various sources such as unstructured/structured text, relational databases, web/app-based API access, etc. Constructing a Knowledge Graph from these cross-data sources is not a simple task. This article proposes a method for automatically constructing a Knowledge Graph from multiple data sources and discusses some initial applications (experimental trials) of KG in conjunction with LLMs for question-answering tasks.
comment: 8 pages, 7 figures
☆ TrafficVLM: A Controllable Visual Language Model for Traffic Video Captioning
Traffic video description and analysis have received much attention recently due to the growing demand for efficient and reliable urban surveillance systems. Most existing methods only focus on locating traffic event segments, which severely lack descriptive details related to the behaviour and context of all the subjects of interest in the events. In this paper, we present TrafficVLM, a novel multi-modal dense video captioning model for vehicle ego camera view. TrafficVLM models traffic video events at different levels of analysis, both spatially and temporally, and generates long fine-grained descriptions for the vehicle and pedestrian at different phases of the event. We also propose a conditional component for TrafficVLM to control the generation outputs and a multi-task fine-tuning paradigm to enhance TrafficVLM's learning capability. Experiments show that TrafficVLM performs well on both vehicle and overhead camera views. Our solution achieved outstanding results in Track 2 of the AI City Challenge 2024, ranking us third in the challenge standings. Our code is publicly available at https://github.com/quangminhdinh/TrafficVLM.
☆ JaFIn: Japanese Financial Instruction Dataset
We construct an instruction dataset for the large language model (LLM) in the Japanese finance domain. Domain adaptation of language models, including LLMs, is receiving more attention as language models become more popular. This study demonstrates the effectiveness of domain adaptation through instruction tuning. To achieve this, we propose an instruction tuning data in Japanese called JaFIn, the Japanese Financial Instruction Dataset. JaFIn is manually constructed based on multiple data sources, including Japanese government websites, which provide extensive financial knowledge. We then utilize JaFIn to apply instruction tuning for several LLMs, demonstrating that our models specialized in finance have better domain adaptability than the original models. The financial-specialized LLMs created were evaluated using a quantitative Japanese financial benchmark and qualitative response comparisons, showing improved performance over the originals.
comment: 10 pages, 1 figure
☆ Test Code Generation for Telecom Software Systems using Two-Stage Generative Model
In recent years, the evolution of Telecom towards achieving intelligent, autonomous, and open networks has led to an increasingly complex Telecom Software system, supporting various heterogeneous deployment scenarios, with multi-standard and multi-vendor support. As a result, it becomes a challenge for large-scale Telecom software companies to develop and test software for all deployment scenarios. To address these challenges, we propose a framework for Automated Test Generation for large-scale Telecom Software systems. We begin by generating Test Case Input data for test scenarios observed using a time-series Generative model trained on historical Telecom Network data during field trials. Additionally, the time-series Generative model helps in preserving the privacy of Telecom data. The generated time-series software performance data are then utilized with test descriptions written in natural language to generate Test Script using the Generative Large Language Model. Our comprehensive experiments on public datasets and Telecom datasets obtained from operational Telecom Networks demonstrate that the framework can effectively generate comprehensive test case data input and useful test code.
comment: 6 pages, 5 figures, Accepted at 1st Workshop on The Impact of Large Language Models on 6G Networks - IEEE International Conference on Communications (ICC) 2024
☆ Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts
Reinforcement learning (RL) trains agents to accomplish complex tasks through environmental interaction data, but its capacity is also limited by the scope of the available data. To obtain a knowledgeable agent, a promising approach is to leverage the knowledge from large language models (LLMs). Despite previous studies combining LLMs with RL, seamless integration of the two components remains challenging due to their semantic gap. This paper introduces a novel method, Knowledgeable Agents from Language Model Rollouts (KALM), which extracts knowledge from LLMs in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods. The primary challenge of KALM lies in LLM grounding, as LLMs are inherently limited to textual data, whereas environmental data often comprise numerical vectors unseen to LLMs. To address this, KALM fine-tunes the LLM to perform various tasks based on environmental data, including bidirectional translation between natural language descriptions of skills and their corresponding rollout data. This grounding process enhances the LLM's comprehension of environmental dynamics, enabling it to generate diverse and meaningful imaginary rollouts that reflect novel skills. Initial empirical evaluations on the CLEVR-Robot environment demonstrate that KALM enables agents to complete complex rephrasings of task goals and extend their capabilities to novel tasks requiring unprecedented optimal behaviors. KALM achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods. Furthermore, KALM effectively enables the LLM to comprehend environmental dynamics, resulting in the generation of meaningful imaginary rollouts that reflect novel skills and demonstrate the seamless integration of large language models and reinforcement learning.
☆ Towards Fast Inference: Exploring and Improving Blockwise Parallel Drafts
Despite the remarkable strides made by autoregressive language models, their potential is often hampered by the slow inference speeds inherent in sequential token generation. Blockwise parallel decoding (BPD) was proposed by Stern et al. (2018) as a way to improve inference speed of language models. In this paper, we make two contributions to understanding and improving BPD drafts. We first offer an analysis of the token distributions produced by the BPD prediction heads. Secondly, we use this analysis to inform algorithms to improve BPD inference speed by refining the BPD drafts using small n-gram or neural language models. We empirically show that these refined BPD drafts yield a higher average verified prefix length across tasks.
☆ Compass: Large Multilingual Language Model for South-east Asia
Large language models have exhibited significant proficiency in languages endowed with extensive linguistic resources, such as English and Chinese. Nevertheless, their effectiveness notably diminishes when applied to languages characterized by limited linguistic resources, particularly within the Southeast Asian linguistic landscape, such as Indonesian. The scarcity of linguistic resources for these languages presents challenges associated with inadequate training, restricted vocabulary coverage, and challenging evaluation processes. In response to these exigencies, we have introduced CompassLLM, a large multilingual model specifically tailored for Southeast Asian languages, with the primary aim of supporting the developmental requirements of Shopee. Our methodology encompasses several key strategies. To progressively enhance multilingual proficiencies, we implemented a multi-stage pre-training strategy integrated with curriculum learning, gradually intensifying the focus on low-resource languages. Concurrently, to better accommodate low-resource human instructions, we curated and generated a repository of high-quality multilingual human instructions, culminating the CompassLLM-SFT model through supervised instruction fine-tuning. Finally, to reinforce the model's alignment with human preference behaviors, we have embraced the principle of Direct Preference Optimization (DPO) to obtain CompassLLM-DPO model. Preliminary evaluation of the CompassLLM model yields promising results, with our model surpassing benchmark models like Vicuna-7b-v1.5, Sealion, Falcon and SeaLLM, across diverse evaluation tasks, as verified through both automated and human-driven assessments. Notably, our model exhibits its superior performance in South-east Asia languages, such as Indonesian language.
☆ DKE-Research at SemEval-2024 Task 2: Incorporating Data Augmentation with Generative Models and Biomedical Knowledge to Enhance Inference Robustness
Safe and reliable natural language inference is critical for extracting insights from clinical trial reports but poses challenges due to biases in large pre-trained language models. This paper presents a novel data augmentation technique to improve model robustness for biomedical natural language inference in clinical trials. By generating synthetic examples through semantic perturbations and domain-specific vocabulary replacement and adding a new task for numerical and quantitative reasoning, we introduce greater diversity and reduce shortcut learning. Our approach, combined with multi-task learning and the DeBERTa architecture, achieved significant performance gains on the NLI4CT 2024 benchmark compared to the original language models. Ablation studies validate the contribution of each augmentation method in improving robustness. Our best-performing model ranked 12th in terms of faithfulness and 8th in terms of consistency, respectively, out of the 32 participants.
TransformerFAM: Feedback attention is working memory
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.
comment: 24 pages, 12 figures, 14 tables
☆ Post-Semantic-Thinking: A Robust Strategy to Distill Reasoning Capacity from Large Language Models
Chain of thought finetuning aims to endow small student models with reasoning capacity to improve their performance towards a specific task by allowing them to imitate the reasoning procedure of large language models (LLMs) beyond simply predicting the answer to the question. However, the existing methods 1) generate rationale before the answer, making their answer correctness sensitive to the hallucination in the rationale;2) force the student model to repeat the exact LLMs rationale expression word-after-word, which could have the model biased towards learning the expression in rationale but count against the model from understanding the core logic behind it. Therefore, we propose a robust Post-Semantic-Thinking (PST) strategy to generate answers before rationale. Thanks to this answer-first setting, 1) the answering procedure can escape from the adverse effects caused by hallucinations in the rationale; 2) the complex reasoning procedure is tightly bound with the relatively concise answer, making the reasoning for questions easier with the prior information in the answer; 3) the efficiency of the method can also benefit from the setting since users can stop the generation right after answers are outputted when inference is conducted. Furthermore, the PST strategy loose the constraint against the generated rationale to be close to the LLMs gold standard in the hidden semantic space instead of the vocabulary space, thus making the small student model better comprehend the semantic reasoning logic in rationale. Extensive experiments conducted across 12 reasoning tasks demonstrate the effectiveness of PST.
☆ GeMQuAD : Generating Multilingual Question Answering Datasets from Large Language Models using Few Shot Learning NeurIPS 2023
The emergence of Large Language Models (LLMs) with capabilities like In-Context Learning (ICL) has ushered in new possibilities for data generation across various domains while minimizing the need for extensive data collection and modeling techniques. Researchers have explored ways to use this generated synthetic data to optimize smaller student models for reduced deployment costs and lower latency in downstream tasks. However, ICL-generated data often suffers from low quality as the task specificity is limited with few examples used in ICL. In this paper, we propose GeMQuAD - a semi-supervised learning approach, extending the WeakDAP framework, applied to a dataset generated through ICL with just one example in the target language using AlexaTM 20B Seq2Seq LLM. Through our approach, we iteratively identify high-quality data to enhance model performance, especially for low-resource multilingual setting in the context of Extractive Question Answering task. Our framework outperforms the machine translation-augmented model by 0.22/1.68 F1/EM (Exact Match) points for Hindi and 0.82/1.37 F1/EM points for Spanish on the MLQA dataset, and it surpasses the performance of model trained on an English-only dataset by 5.05/6.50 F1/EM points for Hindi and 3.81/3.69 points F1/EM for Spanish on the same dataset. Notably, our approach uses a pre-trained LLM for generation with no fine-tuning (FT), utilizing just a single annotated example in ICL to generate data, providing a cost-effective development process.
comment: Accepted to The 37th International Conference on Neural Information Processing Systems (NeurIPS 2023)December 10-16, 2023 - SyntheticData4ML workshop, New Orleans, United States https://neurips.cc/Conferences/2023
☆ Mitigating Heterogeneity among Factor Tensors via Lie Group Manifolds for Tensor Decomposition Based Temporal Knowledge Graph Embedding
Recent studies have highlighted the effectiveness of tensor decomposition methods in the Temporal Knowledge Graphs Embedding (TKGE) task. However, we found that inherent heterogeneity among factor tensors in tensor decomposition significantly hinders the tensor fusion process and further limits the performance of link prediction. To overcome this limitation, we introduce a novel method that maps factor tensors onto a unified smooth Lie group manifold to make the distribution of factor tensors approximating homogeneous in tensor decomposition. We provide the theoretical proof of our motivation that homogeneous tensors are more effective than heterogeneous tensors in tensor fusion and approximating the target for tensor decomposition based TKGE methods. The proposed method can be directly integrated into existing tensor decomposition based TKGE methods without introducing extra parameters. Extensive experiments demonstrate the effectiveness of our method in mitigating the heterogeneity and in enhancing the tensor decomposition based TKGE models.
☆ ToNER: Type-oriented Named Entity Recognition with Generative Language Model LREC
In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types' merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model's encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types' exploitation.
comment: Accepted at LREC-COLING 2024
☆ From Bytes to Borsch: Fine-Tuning Gemma and Mistral for the Ukrainian Language Representation
In the rapidly advancing field of AI and NLP, generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation. However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology. Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency and benchmarking them against other existing models capable of processing Ukrainian language. This endeavor not only aims to mitigate language bias in technology but also promotes inclusivity in the digital realm. Our transparent and reproducible approach encourages further NLP research and development. Additionally, we present the Ukrainian Knowledge and Instruction Dataset (UKID) to aid future efforts in language model fine-tuning. Our research not only advances the field of NLP but also highlights the importance of linguistic diversity in AI, which is crucial for cultural preservation, education, and expanding AI's global utility. Ultimately, we advocate for a future where technology is inclusive, enabling AI to communicate effectively across all languages, especially those currently underrepresented.
☆ TLDR at SemEval-2024 Task 2: T5-generated clinical-Language summaries for DeBERTa Report Analysis
This paper introduces novel methodologies for the Natural Language Inference for Clinical Trials (NLI4CT) task. We present TLDR (T5-generated clinical-Language summaries for DeBERTa Report Analysis) which incorporates T5-model generated premise summaries for improved entailment and contradiction analysis in clinical NLI tasks. This approach overcomes the challenges posed by small context windows and lengthy premises, leading to a substantial improvement in Macro F1 scores: a 0.184 increase over truncated premises. Our comprehensive experimental evaluation, including detailed error analysis and ablations, confirms the superiority of TLDR in achieving consistency and faithfulness in predictions against semantically altered inputs.
☆ Unveiling LLM Evaluation Focused on Metrics: Challenges and Solutions
Natural Language Processing (NLP) is witnessing a remarkable breakthrough driven by the success of Large Language Models (LLMs). LLMs have gained significant attention across academia and industry for their versatile applications in text generation, question answering, and text summarization. As the landscape of NLP evolves with an increasing number of domain-specific LLMs employing diverse techniques and trained on various corpus, evaluating performance of these models becomes paramount. To quantify the performance, it's crucial to have a comprehensive grasp of existing metrics. Among the evaluation, metrics which quantifying the performance of LLMs play a pivotal role. This paper offers a comprehensive exploration of LLM evaluation from a metrics perspective, providing insights into the selection and interpretation of metrics currently in use. Our main goal is to elucidate their mathematical formulations and statistical interpretations. We shed light on the application of these metrics using recent Biomedical LLMs. Additionally, we offer a succinct comparison of these metrics, aiding researchers in selecting appropriate metrics for diverse tasks. The overarching goal is to furnish researchers with a pragmatic guide for effective LLM evaluation and metric selection, thereby advancing the understanding and application of these large language models.
☆ When Hindsight is Not 20/20: Testing Limits on Reflective Thinking in Large Language Models NAACL 2024
Recent studies suggest that self-reflective prompting can significantly enhance the reasoning capabilities of Large Language Models (LLMs). However, the use of external feedback as a stop criterion raises doubts about the true extent of LLMs' ability to emulate human-like self-reflection. In this paper, we set out to clarify these capabilities under a more stringent evaluation setting in which we disallow any kind of external feedback. Our findings under this setting show a split: while self-reflection enhances performance in TruthfulQA, it adversely affects results in HotpotQA. We conduct follow-up analyses to clarify the contributing factors in these patterns, and find that the influence of self-reflection is impacted both by reliability of accuracy in models' initial responses, and by overall question difficulty: specifically, self-reflection shows the most benefit when models are less likely to be correct initially, and when overall question difficulty is higher. We also find that self-reflection reduces tendency toward majority voting. Based on our findings, we propose guidelines for decisions on when to implement self-reflection. We release the codebase for reproducing our experiments at https://github.com/yanhong-lbh/LLM-SelfReflection-Eval.
comment: NAACL 2024 Findings paper (Camera-Ready Version)
☆ Confidence Calibration and Rationalization for LLMs via Multi-Agent Deliberation ICLR 2024
Uncertainty estimation is a significant issue for current large language models (LLMs) that are generally poorly calibrated and over-confident, especially with reinforcement learning from human feedback (RLHF). Unlike humans, whose decisions and confidences not only stem from intrinsic beliefs but can also be adjusted through daily observations, existing calibration methods for LLMs focus on estimating or eliciting individual confidence without taking full advantage of the "Collective Wisdom": the interaction among multiple LLMs that can collectively improve both accuracy and calibration. In this work, we propose Collaborative Calibration, a post-hoc training-free calibration strategy that leverages the collaborative and expressive capabilities of multiple tool-augmented LLM agents in a simulated group deliberation process. We demonstrate the effectiveness of Collaborative Calibration on generative QA tasks across various domains, showing its potential in harnessing the rationalization of collectively calibrated confidence assessments and improving the reliability of model predictions.
comment: Accepted at ICLR 2024 Workshop on Reliable and Responsible Foundation Models
☆ Provable Interactive Learning with Hindsight Instruction Feedback
We study interactive learning in a setting where the agent has to generate a response (e.g., an action or trajectory) given a context and an instruction. In contrast, to typical approaches that train the system using reward or expert supervision on response, we study learning with hindsight instruction where a teacher provides an instruction that is most suitable for the agent's generated response. This hindsight labeling of instruction is often easier to provide than providing expert supervision of the optimal response which may require expert knowledge or can be impractical to elicit. We initiate the theoretical analysis of interactive learning with hindsight labeling. We first provide a lower bound showing that in general, the regret of any algorithm must scale with the size of the agent's response space. We then study a specialized setting where the underlying instruction-response distribution can be decomposed as a low-rank matrix. We introduce an algorithm called LORIL for this setting and show that its regret scales as $\sqrt{T}$ where $T$ is the number of rounds and depends on the intrinsic rank but does not depend on the size of the agent's response space. We provide experiments in two domains showing that LORIL outperforms baselines even when the low-rank assumption is violated.
♻ ☆ Raidar: geneRative AI Detection viA Rewriting ICLR 2024
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
comment: Accepted by ICLR 2024, Large Language Models, Detection
♻ ☆ Detection of ChatGPT Fake Science with the xFakeSci Learning Algorithm
Generative AI tools exemplified by ChatGPT are becoming a new reality. This study is motivated by the premise that ``AI generated content may exhibit a distinctive behavior that can be separated from scientific articles''. In this study, we show how articles can be generated using means of prompt engineering for various diseases and conditions. We then show how we tested this premise in two phases and prove its validity. Subsequently, we introduce xFakeSci, a novel learning algorithm, that is capable of distinguishing ChatGPT-generated articles from publications produced by scientists. The algorithm is trained using network models driven from both sources. As for the classification step, it was performed using 300 articles per condition. The actual label steps took place against an equal mix of 50 generated articles and 50 authentic PubMed abstracts. The testing also spanned publication periods from 2010 to 2024 and encompassed research on three distinct diseases: cancer, depression, and Alzheimer's. Further, we evaluated the accuracy of the xFakeSci algorithm against some of the classical data mining algorithms (e.g., Support Vector Machines, Regression, and Naive Bayes). The xFakeSci algorithm achieved F1 scores ranging from 80% to 94%, outperforming common data mining algorithms, which scored F1 values between 38% and 52%. We attribute the noticeable difference to the introduction of calibration and a proximity distance heuristic, which underscores this promising performance. Indeed, the prediction of fake science generated by ChatGPT presents a considerable challenge. Nonetheless, the introduction of the xFakeSci algorithm is a significant step on the way to combating fake science.
comment: 18 pages, 8 figures, 8 tables, 5 algorithms
♻ ☆ Rethinking ASTE: A Minimalist Tagging Scheme Alongside Contrastive Learning
Aspect Sentiment Triplet Extraction (ASTE) is a burgeoning subtask of fine-grained sentiment analysis, aiming to extract structured sentiment triplets from unstructured textual data. Existing approaches to ASTE often complicate the task with additional structures or external data. In this research, we propose a novel tagging scheme and employ a contrastive learning approach to mitigate these challenges. The proposed approach demonstrates comparable or superior performance in comparison to state-of-the-art techniques, while featuring a more compact design and reduced computational overhead. Notably, even in the era of Large Language Models (LLMs), our method exhibits superior efficacy compared to GPT 3.5 and GPT 4 in a few-shot learning scenarios. This study also provides valuable insights for the advancement of ASTE techniques within the paradigm of large language models.
♻ ☆ Contextual Label Projection for Cross-Lingual Structured Prediction NAACL 2024
Label projection, which involves obtaining translated labels and texts jointly, is essential for leveraging machine translation to facilitate cross-lingual transfer in structured prediction tasks. Prior research exploring label projection often compromise translation accuracy by favoring simplified label translation or relying solely on word-level alignments. In this paper, we introduce a novel label projection approach, CLaP, which translates text to the target language and performs contextual translation on the labels using the translated text as the context, ensuring better accuracy for the translated labels. We leverage instruction-tuned language models with multilingual capabilities as our contextual translator, imposing the constraint of the presence of translated labels in the translated text via instructions. We benchmark CLaP with other label projection techniques on zero-shot cross-lingual transfer across 39 languages on two representative structured prediction tasks - event argument extraction (EAE) and named entity recognition (NER), showing over 2.4 F1 improvement for EAE and 1.4 F1 improvement for NER. We further explore the applicability of CLaP on ten extremely low-resource languages to showcase its potential for cross-lingual structured prediction.
comment: Accepted at NAACL 2024
♻ ☆ Good Books are Complex Matters: Gauging Complexity Profiles Across Diverse Categories of Perceived Literary Quality
In this study, we employ a classification approach to show that different categories of literary "quality" display unique linguistic profiles, leveraging a corpus that encompasses titles from the Norton Anthology, Penguin Classics series, and the Open Syllabus project, contrasted against contemporary bestsellers, Nobel prize winners and recipients of prestigious literary awards. Our analysis reveals that canonical and so called high-brow texts exhibit distinct textual features when compared to other quality categories such as bestsellers and popular titles as well as to control groups, likely responding to distinct (but not mutually exclusive) models of quality. We apply a classic machine learning approach, namely Random Forest, to distinguish quality novels from "control groups", achieving up to 77\% F1 scores in differentiating between the categories. We find that quality category tend to be easier to distinguish from control groups than from other quality categories, suggesting than literary quality features might be distinguishable but shared through quality proxies.
♻ ☆ Language Models for Text Classification: Is In-Context Learning Enough? LREC
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings. An advantage of these models over more standard approaches based on fine-tuning is the ability to understand instructions written in natural language (prompts), which helps them generalise better to different tasks and domains without the need for specific training data. This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances. However, existing research is limited in scale and lacks understanding of how text generation models combined with prompting techniques compare to more established methods for text classification such as fine-tuning masked language models. In this paper, we address this research gap by performing a large-scale evaluation study for 16 text classification datasets covering binary, multiclass, and multilabel problems. In particular, we compare zero- and few-shot approaches of large language models to fine-tuning smaller language models. We also analyse the results by prompt, classification type, domain, and number of labels. In general, the results show how fine-tuning smaller and more efficient language models can still outperform few-shot approaches of larger language models, which have room for improvement when it comes to text classification.
comment: Accepted at LREC-COLING 2024
♻ ☆ Z-AGI Labs at ClimateActivism 2024: Stance and Hate Event Detection on Social Media
In the digital realm, rich data serves as a crucial source of insights into the complexities of social, political, and economic landscapes. Addressing the growing need for high-quality information on events and the imperative to combat hate speech, this research led to the establishment of the Shared Task on Climate Activism Stance and Hate Event Detection at CASE 2024. Focused on climate activists contending with hate speech on social media, our study contributes to hate speech identification from tweets. Analyzing three sub-tasks - Hate Speech Detection (Sub-task A), Targets of Hate Speech Identification (Sub-task B), and Stance Detection (Sub-task C) - Team Z-AGI Labs evaluated various models, including LSTM, Xgboost, and LGBM based on Tf-Idf. Results unveiled intriguing variations, with Catboost excelling in Subtask-B (F1: 0.5604) and Subtask-C (F1: 0.7081), while LGBM emerged as the top-performing model for Subtask-A (F1: 0.8684). This research provides valuable insights into the suitability of classical machine learning models for climate hate speech and stance detection, aiding informed model selection for robust mechanisms.
comment: Authors weren't supposed to upload given organisational agreements
♻ ☆ EE-TTS: Emphatic Expressive TTS with Linguistic Information
While Current TTS systems perform well in synthesizing high-quality speech, producing highly expressive speech remains a challenge. Emphasis, as a critical factor in determining the expressiveness of speech, has attracted more attention nowadays. Previous works usually enhance the emphasis by adding intermediate features, but they can not guarantee the overall expressiveness of the speech. To resolve this matter, we propose Emphatic Expressive TTS (EE-TTS), which leverages multi-level linguistic information from syntax and semantics. EE-TTS contains an emphasis predictor that can identify appropriate emphasis positions from text and a conditioned acoustic model to synthesize expressive speech with emphasis and linguistic information. Experimental results indicate that EE-TTS outperforms baseline with MOS improvements of 0.49 and 0.67 in expressiveness and naturalness. EE-TTS also shows strong generalization across different datasets according to AB test results.
comment: Accepted by Interspeech 2023, fix some typos
♻ ☆ Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data will be publicly released.
comment: Work in progress
♻ ☆ Making Large Language Models Perform Better in Knowledge Graph Completion
Large language model (LLM) based knowledge graph completion (KGC) aims to predict the missing triples in the KGs with LLMs. However, research about LLM-based KGC fails to sufficiently harness LLMs' inference proficiencies, overlooking critical structural information integral to KGs. In this paper, we explore methods to incorporate structural information into the LLMs, with the overarching goal of facilitating structure-aware reasoning. We first discuss on the existing LLM paradigms like in-context learning and instruction tuning, proposing basic structural information injection approaches. Then we propose a Knowledge Prefix Adapter (KoPA) to fulfill this stated goal. The KoPA uses a structural pre-training phase to comprehend the intricate entities and relations within KGs, representing them as structural embeddings. Then KoPA communicates such cross-modal structural information understanding to the LLMs through a knowledge prefix adapter which projects the structural embeddings into the textual space and obtains virtual knowledge tokens positioned as a prefix of the input prompt. We conduct comprehensive experiments and provide incisive analysis concerning how the introduction of cross-modal structural information would be better for LLM's factual knowledge reasoning ability. Our code and data are available at https://github.com/zjukg/KoPA .
comment: Working in progress
♻ ☆ The Curse of Recursion: Training on Generated Data Makes Models Forget
Stable Diffusion revolutionised image creation from descriptive text. GPT-2, GPT-3(.5) and GPT-4 demonstrated astonishing performance across a variety of language tasks. ChatGPT introduced such language models to the general public. It is now clear that large language models (LLMs) are here to stay, and will bring about drastic change in the whole ecosystem of online text and images. In this paper we consider what the future might hold. What will happen to GPT-{n} once LLMs contribute much of the language found online? We find that use of model-generated content in training causes irreversible defects in the resulting models, where tails of the original content distribution disappear. We refer to this effect as Model Collapse and show that it can occur in Variational Autoencoders, Gaussian Mixture Models and LLMs. We build theoretical intuition behind the phenomenon and portray its ubiquity amongst all learned generative models. We demonstrate that it has to be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of content generated by LLMs in data crawled from the Internet.
comment: Fixed typos in eqn 4,5
♻ ☆ In-Context Learning through the Bayesian Prism ICLR 2024
In-context learning (ICL) is one of the surprising and useful features of large language models and subject of intense research. Recently, stylized meta-learning-like ICL setups have been devised that train transformers on sequences of input-output pairs $(x, f(x))$. The function $f$ comes from a function class and generalization is checked by evaluating on sequences generated from unseen functions from the same class. One of the main discoveries in this line of research has been that for several function classes, such as linear regression, transformers successfully generalize to new functions in the class. However, the inductive biases of these models resulting in this behavior are not clearly understood. A model with unlimited training data and compute is a Bayesian predictor: it learns the pretraining distribution. In this paper we empirically examine how far this Bayesian perspective can help us understand ICL. To this end, we generalize the previous meta-ICL setup to hierarchical meta-ICL setup which involve unions of multiple task families. We instantiate this setup on a diverse range of linear and nonlinear function families and find that transformers can do ICL in this setting as well. Where Bayesian inference is tractable, we find evidence that high-capacity transformers mimic the Bayesian predictor. The Bayesian perspective provides insights into the inductive bias of ICL and how transformers perform a particular task when they are trained on multiple tasks. We also find that transformers can learn to generalize to new function classes that were not seen during pretraining. This involves deviation from the Bayesian predictor. We examine these deviations in more depth offering new insights and hypotheses.
comment: ICLR 2024
♻ ☆ FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets ICLR 2024
Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.
comment: ICLR 2024 Spotlight
♻ ☆ Adapting LLM Agents with Universal Feedback in Communication
Recent advances in large language models (LLMs) have demonstrated potential for LLM agents. To facilitate the training for these agents with both linguistic feedback and non-linguistic reward signals, we introduce Learning through Communication (LTC). We design a universal buffer to store all the feedback, and an iterative pipeline to enable an LLM agent to explore and update its policy in an given environment. To optimize agent interactions for task-specific learning with our universal buffer and pipeline, we introduce diverse communication patterns tailored for both single-agent and multi-agent environments. We evaluate the efficacy of our LTC approach on four diverse datasets: ALFWorld (single-agent), HotpotQA (multi-agent collaboration), Chameleon (multi-agent competition), and GSM8k (multi-agent teacher-student). On these data sets, LTC outperforms the supervised instruction fine-tuning baselines by 3.6% to 12%. These results highlight the versatility and efficiency of LTC in facilitating online adaptation for LLM agents.
comment: Preprint
♻ ☆ Quantity Matters: Towards Assessing and Mitigating Number Hallucination in Large Vision-Language Models
Large-scale vision-language models have demonstrated impressive skill in handling tasks that involve both areas. Nevertheless, these models frequently experience significant issues with generating inaccurate information, which is hallucination. In this study, we concentrate on a specific type of hallucination-number hallucination, referring to models incorrectly identifying the number of certain objects in pictures. We perform quantitative evaluations regarding number hallucination, showing it to be critical in major open-source large vision-language models. Furthermore, we utilizes two related tasks to conduct an in-depth analysis of number hallucination, revealing the severe inner and outer inconsistency among all tasks. Based on this examination, we devise a training approach aimed at improving consistency to reduce number hallucinations, which leads to an 8% enhancement in performance over direct finetuning methods. Our code and dataset will be released to the community.
comment: 10 pages
♻ ☆ Understanding Catastrophic Forgetting in Language Models via Implicit Inference ICLR 2024
We lack a systematic understanding of the effects of fine-tuning (via methods such as instruction-tuning or reinforcement learning from human feedback), particularly on tasks outside the narrow fine-tuning distribution. In a simplified scenario, we demonstrate that improving performance on tasks within the fine-tuning data distribution comes at the expense of capabilities on other tasks. We hypothesize that language models implicitly infer the task of the prompt and that fine-tuning skews this inference towards tasks in the fine-tuning distribution. To test this, we propose Conjugate Prompting, which artificially makes the task look farther from the fine-tuning distribution while requiring the same capability, and we find that this recovers some of the pretraining capabilities in our synthetic setup. Since real-world fine-tuning distributions are predominantly English, we apply conjugate prompting to recover pretrained capabilities in LLMs by simply translating the prompts to different languages. This allows us to recover in-context learning abilities lost via instruction tuning, natural reasoning capability lost during code fine-tuning, and, more concerningly, harmful content generation suppressed by safety fine-tuning in chatbots like ChatGPT.
comment: ICLR 2024
Computer Vision and Pattern Recognition 42
☆ Orientation-conditioned Facial Texture Mapping for Video-based Facial Remote Photoplethysmography Estimation
Camera-based remote photoplethysmography (rPPG) enables contactless measurement of important physiological signals such as pulse rate (PR). However, dynamic and unconstrained subject motion introduces significant variability into the facial appearance in video, confounding the ability of video-based methods to accurately extract the rPPG signal. In this study, we leverage the 3D facial surface to construct a novel orientation-conditioned facial texture video representation which improves the motion robustness of existing video-based facial rPPG estimation methods. Our proposed method achieves a significant 18.2% performance improvement in cross-dataset testing on MMPD over our baseline using the PhysNet model trained on PURE, highlighting the efficacy and generalization benefits of our designed video representation. We demonstrate significant performance improvements of up to 29.6% in all tested motion scenarios in cross-dataset testing on MMPD, even in the presence of dynamic and unconstrained subject motion. Emphasizing the benefits the benefits of disentangling motion through modeling the 3D facial surface for motion robust facial rPPG estimation. We validate the efficacy of our design decisions and the impact of different video processing steps through an ablation study. Our findings illustrate the potential strengths of exploiting the 3D facial surface as a general strategy for addressing dynamic and unconstrained subject motion in videos. The code is available at https://samcantrill.github.io/orientation-uv-rppg/.
comment: 12 pages, 8 figures, 6 tables
☆ \textit{sweet} -- An Open Source Modular Platform for Contactless Hand Vascular Biometric Experiments
Current finger-vein or palm-vein recognition systems usually require direct contact of the subject with the apparatus. This can be problematic in environments where hygiene is of primary importance. In this work we present a contactless vascular biometrics sensor platform named \sweet which can be used for hand vascular biometrics studies (wrist-, palm- and finger-vein) and surface features such as palmprint. It supports several acquisition modalities such as multi-spectral Near-Infrared (NIR), RGB-color, Stereo Vision (SV) and Photometric Stereo (PS). Using this platform we collect a dataset consisting of the fingers, palm and wrist vascular data of 120 subjects and develop a powerful 3D pipeline for the pre-processing of this data. We then present biometric experimental results, focusing on Finger-Vein Recognition (FVR). Finally, we discuss fusion of multiple modalities, such palm-vein combined with palm-print biometrics. The acquisition software, parts of the hardware design, the new FV dataset, as well as source-code for our experiments are publicly available for research purposes.
☆ Exploring Feedback Generation in Automated Skeletal Movement Assessment: A Comprehensive Overview
The application of machine-learning solutions to movement assessment from skeleton videos has attracted significant research attention in recent years. This advancement has made rehabilitation at home more accessible, utilizing movement assessment algorithms that can operate on affordable equipment for human pose detection from 2D or 3D videos. While the primary objective of automatic assessment tasks is to score movements, the automatic generation of feedback highlighting key movement issues has the potential to significantly enhance and accelerate the rehabilitation process. In this study, we explain the types of feedback that can be generated, review existing solutions for automatic feedback generation, and discuss future research directions. To our knowledge, this is the first comprehensive review of feedback generation in skeletal movement assessment.
☆ Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies
This paper revisits the simple, long-studied, yet still unsolved problem of making image classifiers robust to imperceptible perturbations. Taking CIFAR10 as an example, SOTA clean accuracy is about $100$%, but SOTA robustness to $\ell_{\infty}$-norm bounded perturbations barely exceeds $70$%. To understand this gap, we analyze how model size, dataset size, and synthetic data quality affect robustness by developing the first scaling laws for adversarial training. Our scaling laws reveal inefficiencies in prior art and provide actionable feedback to advance the field. For instance, we discovered that SOTA methods diverge notably from compute-optimal setups, using excess compute for their level of robustness. Leveraging a compute-efficient setup, we surpass the prior SOTA with $20$% ($70$%) fewer training (inference) FLOPs. We trained various compute-efficient models, with our best achieving $74$% AutoAttack accuracy ($+3$% gain). However, our scaling laws also predict robustness slowly grows then plateaus at $90$%: dwarfing our new SOTA by scaling is impractical, and perfect robustness is impossible. To better understand this predicted limit, we carry out a small-scale human evaluation on the AutoAttack data that fools our top-performing model. Concerningly, we estimate that human performance also plateaus near $90$%, which we show to be attributable to $\ell_{\infty}$-constrained attacks' generation of invalid images not consistent with their original labels. Having characterized limiting roadblocks, we outline promising paths for future research.
☆ Face-voice Association in Multilingual Environments (FAME) Challenge 2024 Evaluation Plan
The advancements of technology have led to the use of multimodal systems in various real-world applications. Among them, the audio-visual systems are one of the widely used multimodal systems. In the recent years, associating face and voice of a person has gained attention due to presence of unique correlation between them. The Face-voice Association in Multilingual Environments (FAME) Challenge 2024 focuses on exploring face-voice association under a unique condition of multilingual scenario. This condition is inspired from the fact that half of the world's population is bilingual and most often people communicate under multilingual scenario. The challenge uses a dataset namely, Multilingual Audio-Visual (MAV-Celeb) for exploring face-voice association in multilingual environments. This report provides the details of the challenge, dataset, baselines and task details for the FAME Challenge.
comment: ACM Multimedia Conference - Grand Challenge
☆ Weight Copy and Low-Rank Adaptation for Few-Shot Distillation of Vision Transformers
Few-shot knowledge distillation recently emerged as a viable approach to harness the knowledge of large-scale pre-trained models, using limited data and computational resources. In this paper, we propose a novel few-shot feature distillation approach for vision transformers. Our approach is based on two key steps. Leveraging the fact that vision transformers have a consistent depth-wise structure, we first copy the weights from intermittent layers of existing pre-trained vision transformers (teachers) into shallower architectures (students), where the intermittence factor controls the complexity of the student transformer with respect to its teacher. Next, we employ an enhanced version of Low-Rank Adaptation (LoRA) to distill knowledge into the student in a few-shot scenario, aiming to recover the information processing carried out by the skipped teacher layers. We present comprehensive experiments with supervised and self-supervised transformers as teachers, on five data sets from various domains, including natural, medical and satellite images. The empirical results confirm the superiority of our approach over competitive baselines. Moreover, the ablation results demonstrate the usefulness of each component of the proposed pipeline.
☆ In My Perspective, In My Hands: Accurate Egocentric 2D Hand Pose and Action Recognition
Action recognition is essential for egocentric video understanding, allowing automatic and continuous monitoring of Activities of Daily Living (ADLs) without user effort. Existing literature focuses on 3D hand pose input, which requires computationally intensive depth estimation networks or wearing an uncomfortable depth sensor. In contrast, there has been insufficient research in understanding 2D hand pose for egocentric action recognition, despite the availability of user-friendly smart glasses in the market capable of capturing a single RGB image. Our study aims to fill this research gap by exploring the field of 2D hand pose estimation for egocentric action recognition, making two contributions. Firstly, we introduce two novel approaches for 2D hand pose estimation, namely EffHandNet for single-hand estimation and EffHandEgoNet, tailored for an egocentric perspective, capturing interactions between hands and objects. Both methods outperform state-of-the-art models on H2O and FPHA public benchmarks. Secondly, we present a robust action recognition architecture from 2D hand and object poses. This method incorporates EffHandEgoNet, and a transformer-based action recognition method. Evaluated on H2O and FPHA datasets, our architecture has a faster inference time and achieves an accuracy of 91.32% and 94.43%, respectively, surpassing state of the art, including 3D-based methods. Our work demonstrates that using 2D skeletal data is a robust approach for egocentric action understanding. Extensive evaluation and ablation studies show the impact of the hand pose estimation approach, and how each input affects the overall performance.
comment: Accepted at: The 18th IEEE International Conference on Automatic Face and Gesture Recognition
☆ A Simple Strategy for Body Estimation from Partial-View Images CVPR
Virtual try-on and product personalization have become increasingly important in modern online shopping, highlighting the need for accurate body measurement estimation. Although previous research has advanced in estimating 3D body shapes from RGB images, the task is inherently ambiguous as the observed scale of human subjects in the images depends on two unknown factors: capture distance and body dimensions. This ambiguity is particularly pronounced in partial-view scenarios. To address this challenge, we propose a modular and simple height normalization solution. This solution relocates the subject skeleton to the desired position, thereby normalizing the scale and disentangling the relationship between the two variables. Our experimental results demonstrate that integrating this technique into state-of-the-art human mesh reconstruction models significantly enhances partial body measurement estimation. Additionally, we illustrate the applicability of this approach to multi-view settings, showcasing its versatility.
comment: Accepted to CVPRW 2024 Computer Vision for Fashion, Art, and Design
☆ A Novel State Space Model with Local Enhancement and State Sharing for Image Fusion
In image fusion tasks, images from different sources possess distinct characteristics. This has driven the development of numerous methods to explore better ways of fusing them while preserving their respective characteristics. Mamba, as a state space model, has emerged in the field of natural language processing. Recently, many studies have attempted to extend Mamba to vision tasks. However, due to the nature of images different from casual language sequences, the limited state capacity of Mamba weakens its ability to model image information. Additionally, the sequence modeling ability of Mamba is only capable of spatial information and cannot effectively capture the rich spectral information in images. Motivated by these challenges, we customize and improve the vision Mamba network designed for the image fusion task. Specifically, we propose the local-enhanced vision Mamba block, dubbed as LEVM. The LEVM block can improve local information perception of the network and simultaneously learn local and global spatial information. Furthermore, we propose the state sharing technique to enhance spatial details and integrate spatial and spectral information. Finally, the overall network is a multi-scale structure based on vision Mamba, called LE-Mamba. Extensive experiments show the proposed methods achieve state-of-the-art results on multispectral pansharpening and multispectral and hyperspectral image fusion datasets, and demonstrate the effectiveness of the proposed approach. Code will be made available.
☆ Bridging Data Islands: Geographic Heterogeneity-Aware Federated Learning for Collaborative Remote Sensing Semantic Segmentation
Remote sensing semantic segmentation (RSS) is an essential task in Earth Observation missions. Due to data privacy concerns, high-quality remote sensing images with annotations cannot be well shared among institutions, making it difficult to fully utilize RSS data to train a generalized model. Federated Learning (FL), a privacy-preserving collaborative learning technology, is a potential solution. However, the current research on how to effectively apply FL in RSS is still scarce and requires further investigation. Remote sensing images in various institutions often exhibit strong geographical heterogeneity. More specifically, it is reflected in terms of class-distribution heterogeneity and object-appearance heterogeneity. Unfortunately, most existing FL studies show inadequate focus on geographical heterogeneity, thus leading to performance degradation in the global model. Considering the aforementioned issues, we propose a novel Geographic Heterogeneity-Aware Federated Learning (GeoFed) framework to address privacy-preserving RSS. Through Global Feature Extension and Tail Regeneration modules, class-distribution heterogeneity is alleviated. Additionally, we design an Essential Feature Mining strategy to alleviate object-appearance heterogeneity by constructing essential features. Extensive experiments on three datasets (i.e., FBP, CASID, Inria) show that our GeoFed consistently outperforms the current state-of-the-art methods. The code will be available publicly.
comment: 13 pages,9 figures, 4 tables
☆ RoofDiffusion: Constructing Roofs from Severely Corrupted Point Data via Diffusion
Accurate completion and denoising of roof height maps are crucial to reconstructing high-quality 3D buildings. Repairing sparse points can enhance low-cost sensor use and reduce UAV flight overlap. RoofDiffusion is a new end-to-end self-supervised diffusion technique for robustly completing, in particular difficult, roof height maps. RoofDiffusion leverages widely-available curated footprints and can so handle up to 99\% point sparsity and 80\% roof area occlusion (regional incompleteness). A variant, No-FP RoofDiffusion, simultaneously predicts building footprints and heights. Both quantitatively outperform state-of-the-art unguided depth completion and representative inpainting methods for Digital Elevation Models (DEM), on both a roof-specific benchmark and the BuildingNet dataset. Qualitative assessments show the effectiveness of RoofDiffusion for datasets with real-world scans including AHN3, Dales3D, and USGS 3DEP LiDAR. Tested with the leading City3D algorithm, preprocessing height maps with RoofDiffusion noticeably improves 3D building reconstruction. RoofDiffusion is complemented by a new dataset of 13k complex roof geometries, focusing on long-tail issues in remote sensing; a novel simulation of tree occlusion; and a wide variety of large-area roof cut-outs for data augmentation and benchmarking.
☆ SyntStereo2Real: Edge-Aware GAN for Remote Sensing Image-to-Image Translation while Maintaining Stereo Constraint CVPR
In the field of remote sensing, the scarcity of stereo-matched and particularly lack of accurate ground truth data often hinders the training of deep neural networks. The use of synthetically generated images as an alternative, alleviates this problem but suffers from the problem of domain generalization. Unifying the capabilities of image-to-image translation and stereo-matching presents an effective solution to address the issue of domain generalization. Current methods involve combining two networks, an unpaired image-to-image translation network and a stereo-matching network, while jointly optimizing them. We propose an edge-aware GAN-based network that effectively tackles both tasks simultaneously. We obtain edge maps of input images from the Sobel operator and use it as an additional input to the encoder in the generator to enforce geometric consistency during translation. We additionally include a warping loss calculated from the translated images to maintain the stereo consistency. We demonstrate that our model produces qualitatively and quantitatively superior results than existing models, and its applicability extends to diverse domains, including autonomous driving.
comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW) EarthVision
☆ TrafficVLM: A Controllable Visual Language Model for Traffic Video Captioning
Traffic video description and analysis have received much attention recently due to the growing demand for efficient and reliable urban surveillance systems. Most existing methods only focus on locating traffic event segments, which severely lack descriptive details related to the behaviour and context of all the subjects of interest in the events. In this paper, we present TrafficVLM, a novel multi-modal dense video captioning model for vehicle ego camera view. TrafficVLM models traffic video events at different levels of analysis, both spatially and temporally, and generates long fine-grained descriptions for the vehicle and pedestrian at different phases of the event. We also propose a conditional component for TrafficVLM to control the generation outputs and a multi-task fine-tuning paradigm to enhance TrafficVLM's learning capability. Experiments show that TrafficVLM performs well on both vehicle and overhead camera views. Our solution achieved outstanding results in Track 2 of the AI City Challenge 2024, ranking us third in the challenge standings. Our code is publicly available at https://github.com/quangminhdinh/TrafficVLM.
☆ VRS-NeRF: Visual Relocalization with Sparse Neural Radiance Field
Visual relocalization is a key technique to autonomous driving, robotics, and virtual/augmented reality. After decades of explorations, absolute pose regression (APR), scene coordinate regression (SCR), and hierarchical methods (HMs) have become the most popular frameworks. However, in spite of high efficiency, APRs and SCRs have limited accuracy especially in large-scale outdoor scenes; HMs are accurate but need to store a large number of 2D descriptors for matching, resulting in poor efficiency. In this paper, we propose an efficient and accurate framework, called VRS-NeRF, for visual relocalization with sparse neural radiance field. Precisely, we introduce an explicit geometric map (EGM) for 3D map representation and an implicit learning map (ILM) for sparse patches rendering. In this localization process, EGP provides priors of spare 2D points and ILM utilizes these sparse points to render patches with sparse NeRFs for matching. This allows us to discard a large number of 2D descriptors so as to reduce the map size. Moreover, rendering patches only for useful points rather than all pixels in the whole image reduces the rendering time significantly. This framework inherits the accuracy of HMs and discards their low efficiency. Experiments on 7Scenes, CambridgeLandmarks, and Aachen datasets show that our method gives much better accuracy than APRs and SCRs, and close performance to HMs but is much more efficient.
comment: source code https://github.com/feixue94/vrs-nerf
☆ PANet: A Physics-guided Parametric Augmentation Net for Image Dehazing by Hazing
Image dehazing faces challenges when dealing with hazy images in real-world scenarios. A huge domain gap between synthetic and real-world haze images degrades dehazing performance in practical settings. However, collecting real-world image datasets for training dehazing models is challenging since both hazy and clean pairs must be captured under the same conditions. In this paper, we propose a Physics-guided Parametric Augmentation Network (PANet) that generates photo-realistic hazy and clean training pairs to effectively enhance real-world dehazing performance. PANet comprises a Haze-to-Parameter Mapper (HPM) to project hazy images into a parameter space and a Parameter-to-Haze Mapper (PHM) to map the resampled haze parameters back to hazy images. In the parameter space, we can pixel-wisely resample individual haze parameter maps to generate diverse hazy images with physically-explainable haze conditions unseen in the training set. Our experimental results demonstrate that PANet can augment diverse realistic hazy images to enrich existing hazy image benchmarks so as to effectively boost the performances of state-of-the-art image dehazing models.
☆ Task-Driven Exploration: Decoupling and Inter-Task Feedback for Joint Moment Retrieval and Highlight Detection
Video moment retrieval and highlight detection are two highly valuable tasks in video understanding, but until recently they have been jointly studied. Although existing studies have made impressive advancement recently, they predominantly follow the data-driven bottom-up paradigm. Such paradigm overlooks task-specific and inter-task effects, resulting in poor model performance. In this paper, we propose a novel task-driven top-down framework TaskWeave for joint moment retrieval and highlight detection. The framework introduces a task-decoupled unit to capture task-specific and common representations. To investigate the interplay between the two tasks, we propose an inter-task feedback mechanism, which transforms the results of one task as guiding masks to assist the other task. Different from existing methods, we present a task-dependent joint loss function to optimize the model. Comprehensive experiments and in-depth ablation studies on QVHighlights, TVSum, and Charades-STA datasets corroborate the effectiveness and flexibility of the proposed framework. Codes are available at https://github.com/EdenGabriel/TaskWeave.
☆ FedCCL: Federated Dual-Clustered Feature Contrast Under Domain Heterogeneity
Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server. One significant challenge is that the distributed data is not independently and identically distributed (non-IID), typically including both intra-domain and inter-domain heterogeneity. However, recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges. Given these limitations, this paper clarifies these two non-IID challenges and attempts to introduce cluster representation to address them from both local and global perspectives. Specifically, we propose a dual-clustered feature contrast-based FL framework with dual focuses. First, we employ clustering on the local representations of each client, aiming to capture intra-class information based on these local clusters at a high level of granularity. Then, we facilitate cross-client knowledge sharing by pulling the local representation closer to clusters shared by clients with similar semantics while pushing them away from clusters with dissimilar semantics. Second, since the sizes of local clusters belonging to the same class may differ for each client, we further utilize clustering on the global side and conduct averaging to create a consistent global signal for guiding each local training in a contrastive manner. Experimental results on multiple datasets demonstrate that our proposal achieves comparable or superior performance gain under intra-domain and inter-domain heterogeneity.
☆ TEXT2TASTE: A Versatile Egocentric Vision System for Intelligent Reading Assistance Using Large Language Model
The ability to read, understand and find important information from written text is a critical skill in our daily lives for our independence, comfort and safety. However, a significant part of our society is affected by partial vision impairment, which leads to discomfort and dependency in daily activities. To address the limitations of this part of society, we propose an intelligent reading assistant based on smart glasses with embedded RGB cameras and a Large Language Model (LLM), whose functionality goes beyond corrective lenses. The video recorded from the egocentric perspective of a person wearing the glasses is processed to localise text information using object detection and optical character recognition methods. The LLM processes the data and allows the user to interact with the text and responds to a given query, thus extending the functionality of corrective lenses with the ability to find and summarize knowledge from the text. To evaluate our method, we create a chat-based application that allows the user to interact with the system. The evaluation is conducted in a real-world setting, such as reading menus in a restaurant, and involves four participants. The results show robust accuracy in text retrieval. The system not only provides accurate meal suggestions but also achieves high user satisfaction, highlighting the potential of smart glasses and LLMs in assisting people with special needs.
comment: Accepted at ICCHP 2024
☆ Arena: A Patch-of-Interest ViT Inference Acceleration System for Edge-Assisted Video Analytics
The advent of edge computing has made real-time intelligent video analytics feasible. Previous works, based on traditional model architecture (e.g., CNN, RNN, etc.), employ various strategies to filter out non-region-of-interest content to minimize bandwidth and computation consumption but show inferior performance in adverse environments. Recently, visual foundation models based on transformers have shown great performance in adverse environments due to their amazing generalization capability. However, they require a large amount of computation power, which limits their applications in real-time intelligent video analytics. In this paper, we find visual foundation models like Vision Transformer (ViT) also have a dedicated acceleration mechanism for video analytics. To this end, we introduce Arena, an end-to-end edge-assisted video inference acceleration system based on ViT. We leverage the capability of ViT that can be accelerated through token pruning by only offloading and feeding Patches-of-Interest (PoIs) to the downstream models. Additionally, we employ probability-based patch sampling, which provides a simple but efficient mechanism for determining PoIs where the probable locations of objects are in subsequent frames. Through extensive evaluations on public datasets, our findings reveal that Arena can boost inference speeds by up to $1.58\times$ and $1.82\times$ on average while consuming only 54% and 34% of the bandwidth, respectively, all with high inference accuracy.
☆ Tri-modal Confluence with Temporal Dynamics for Scene Graph Generation in Operating Rooms
A comprehensive understanding of surgical scenes allows for monitoring of the surgical process, reducing the occurrence of accidents and enhancing efficiency for medical professionals. Semantic modeling within operating rooms, as a scene graph generation (SGG) task, is challenging since it involves consecutive recognition of subtle surgical actions over prolonged periods. To address this challenge, we propose a Tri-modal (i.e., images, point clouds, and language) confluence with Temporal dynamics framework, termed TriTemp-OR. Diverging from previous approaches that integrated temporal information via memory graphs, our method embraces two advantages: 1) we directly exploit bi-modal temporal information from the video streaming for hierarchical feature interaction, and 2) the prior knowledge from Large Language Models (LLMs) is embedded to alleviate the class-imbalance problem in the operating theatre. Specifically, our model performs temporal interactions across 2D frames and 3D point clouds, including a scale-adaptive multi-view temporal interaction (ViewTemp) and a geometric-temporal point aggregation (PointTemp). Furthermore, we transfer knowledge from the biomedical LLM, LLaVA-Med, to deepen the comprehension of intraoperative relations. The proposed TriTemp-OR enables the aggregation of tri-modal features through relation-aware unification to predict relations so as to generate scene graphs. Experimental results on the 4D-OR benchmark demonstrate the superior performance of our model for long-term OR streaming.
comment: 10 pages, 4 figures, 3 tables
☆ DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling
Recent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.
☆ Breast Cancer Image Classification Method Based on Deep Transfer Learning
To address the issues of limited samples, time-consuming feature design, and low accuracy in detection and classification of breast cancer pathological images, a breast cancer image classification model algorithm combining deep learning and transfer learning is proposed. This algorithm is based on the DenseNet structure of deep neural networks, and constructs a network model by introducing attention mechanisms, and trains the enhanced dataset using multi-level transfer learning. Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0\% in the test set, with a significantly improved classification accuracy compared to previous models, making it applicable to medical breast cancer detection tasks.
☆ DetCLIPv3: Towards Versatile Generative Open-vocabulary Object Detection CVPR2024
Existing open-vocabulary object detectors typically require a predefined set of categories from users, significantly confining their application scenarios. In this paper, we introduce DetCLIPv3, a high-performing detector that excels not only at both open-vocabulary object detection, but also generating hierarchical labels for detected objects. DetCLIPv3 is characterized by three core designs: 1. Versatile model architecture: we derive a robust open-set detection framework which is further empowered with generation ability via the integration of a caption head. 2. High information density data: we develop an auto-annotation pipeline leveraging visual large language model to refine captions for large-scale image-text pairs, providing rich, multi-granular object labels to enhance the training. 3. Efficient training strategy: we employ a pre-training stage with low-resolution inputs that enables the object captioner to efficiently learn a broad spectrum of visual concepts from extensive image-text paired data. This is followed by a fine-tuning stage that leverages a small number of high-resolution samples to further enhance detection performance. With these effective designs, DetCLIPv3 demonstrates superior open-vocabulary detection performance, \eg, our Swin-T backbone model achieves a notable 47.0 zero-shot fixed AP on the LVIS minival benchmark, outperforming GLIPv2, GroundingDINO, and DetCLIPv2 by 18.0/19.6/6.6 AP, respectively. DetCLIPv3 also achieves a state-of-the-art 19.7 AP in dense captioning task on VG dataset, showcasing its strong generative capability.
comment: Accepted to CVPR2024
♻ ☆ In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing
3D-aware GANs offer new capabilities for view synthesis while preserving the editing functionalities of their 2D counterparts. GAN inversion is a crucial step that seeks the latent code to reconstruct input images or videos, subsequently enabling diverse editing tasks through manipulation of this latent code. However, a model pre-trained on a particular dataset (e.g., FFHQ) often has difficulty reconstructing images with out-of-distribution (OOD) objects such as faces with heavy make-up or occluding objects. We address this issue by explicitly modeling OOD objects from the input in 3D-aware GANs. Our core idea is to represent the image using two individual neural radiance fields: one for the in-distribution content and the other for the out-of-distribution object. The final reconstruction is achieved by optimizing the composition of these two radiance fields with carefully designed regularization. We demonstrate that our explicit decomposition alleviates the inherent trade-off between reconstruction fidelity and editability. We evaluate reconstruction accuracy and editability of our method on challenging real face images and videos and showcase favorable results against other baselines.
comment: Project page: https://in-n-out-3d.github.io/
♻ ☆ Gaussian Splatting SLAM CVPR2024
We present the first application of 3D Gaussian Splatting in monocular SLAM, the most fundamental but the hardest setup for Visual SLAM. Our method, which runs live at 3fps, utilises Gaussians as the only 3D representation, unifying the required representation for accurate, efficient tracking, mapping, and high-quality rendering. Designed for challenging monocular settings, our approach is seamlessly extendable to RGB-D SLAM when an external depth sensor is available. Several innovations are required to continuously reconstruct 3D scenes with high fidelity from a live camera. First, to move beyond the original 3DGS algorithm, which requires accurate poses from an offline Structure from Motion (SfM) system, we formulate camera tracking for 3DGS using direct optimisation against the 3D Gaussians, and show that this enables fast and robust tracking with a wide basin of convergence. Second, by utilising the explicit nature of the Gaussians, we introduce geometric verification and regularisation to handle the ambiguities occurring in incremental 3D dense reconstruction. Finally, we introduce a full SLAM system which not only achieves state-of-the-art results in novel view synthesis and trajectory estimation but also reconstruction of tiny and even transparent objects.
comment: CVPR2024 Highlight. First two authors contributed equally to this work. Project Page: https://rmurai.co.uk/projects/GaussianSplattingSLAM/
♻ ☆ OmniControl: Control Any Joint at Any Time for Human Motion Generation ICLR 2024
We present a novel approach named OmniControl for incorporating flexible spatial control signals into a text-conditioned human motion generation model based on the diffusion process. Unlike previous methods that can only control the pelvis trajectory, OmniControl can incorporate flexible spatial control signals over different joints at different times with only one model. Specifically, we propose analytic spatial guidance that ensures the generated motion can tightly conform to the input control signals. At the same time, realism guidance is introduced to refine all the joints to generate more coherent motion. Both the spatial and realism guidance are essential and they are highly complementary for balancing control accuracy and motion realism. By combining them, OmniControl generates motions that are realistic, coherent, and consistent with the spatial constraints. Experiments on HumanML3D and KIT-ML datasets show that OmniControl not only achieves significant improvement over state-of-the-art methods on pelvis control but also shows promising results when incorporating the constraints over other joints.
comment: ICLR 2024. Project page: https://neu-vi.github.io/omnicontrol/
♻ ☆ Analysis of the Two-Step Heterogeneous Transfer Learning for Laryngeal Blood Vessel Classification: Issue and Improvement
Accurate classification of laryngeal vascular as benign or malignant is crucial for early detection of laryngeal cancer. However, organizations with limited access to laryngeal vascular images face challenges due to the lack of large and homogeneous public datasets for effective learning. Distinguished from the most familiar works, which directly transfer the ImageNet pre-trained models to the target domain for fine-tuning, this work pioneers exploring two-step heterogeneous transfer learning (THTL) for laryngeal lesion classification with nine deep-learning models, utilizing the diabetic retinopathy color fundus images, semantically non-identical yet vascular images, as the intermediate domain. Attention visualization technique, Layer Class Activate Map (LayerCAM), reveals a novel finding that yet the intermediate and the target domain both reflect vascular structure to a certain extent, the prevalent radial vascular pattern in the intermediate domain prevents learning the features of twisted and tangled vessels that distinguish the malignant class in the target domain, summarizes a vital rule for laryngeal lesion classification using THTL. To address this, we introduce an enhanced fine-tuning strategy in THTL called Step-Wise Fine-Tuning (SWFT) and apply it to the ResNet models. SWFT progressively refines model performance by accumulating fine-tuning layers from back to front, guided by the visualization results of LayerCAM. Comparison with the original THTL approach shows significant improvements. For ResNet18, the accuracy and malignant recall increases by 26.1% and 79.8%, respectively, while for ResNet50, these indicators improve by 20.4% and 62.2%, respectively.
♻ ☆ VMambaMorph: a Multi-Modality Deformable Image Registration Framework based on Visual State Space Model with Cross-Scan Module
Image registration, a critical process in medical imaging, involves aligning different sets of medical imaging data into a single unified coordinate system. Deep learning networks, such as the Convolutional Neural Network (CNN)-based VoxelMorph, Vision Transformer (ViT)-based TransMorph, and State Space Model (SSM)-based MambaMorph, have demonstrated effective performance in this domain. The recent Visual State Space Model (VMamba), which incorporates a cross-scan module with SSM, has exhibited promising improvements in modeling global-range dependencies with efficient computational cost in computer vision tasks. This paper hereby introduces an exploration of VMamba with image registration, named VMambaMorph. This novel hybrid VMamba-CNN network is designed specifically for 3D image registration. Utilizing a U-shaped network architecture, VMambaMorph computes the deformation field based on target and source volumes. The VMamba-based block with 2D cross-scan module is redesigned for 3D volumetric feature processing. To overcome the complex motion and structure on multi-modality images, we further propose a fine-tune recursive registration framework. We validate VMambaMorph using a public benchmark brain MR-CT registration dataset, comparing its performance against current state-of-the-art methods. The results indicate that VMambaMorph achieves competitive registration quality. The code for VMambaMorph with all baseline methods is available on GitHub.
♻ ☆ Image Restoration by Denoising Diffusion Models with Iteratively Preconditioned Guidance CVPR 2024
Training deep neural networks has become a common approach for addressing image restoration problems. An alternative for training a "task-specific" network for each observation model is to use pretrained deep denoisers for imposing only the signal's prior within iterative algorithms, without additional training. Recently, a sampling-based variant of this approach has become popular with the rise of diffusion/score-based generative models. Using denoisers for general purpose restoration requires guiding the iterations to ensure agreement of the signal with the observations. In low-noise settings, guidance that is based on back-projection (BP) has been shown to be a promising strategy (used recently also under the names "pseudoinverse" or "range/null-space" guidance). However, the presence of noise in the observations hinders the gains from this approach. In this paper, we propose a novel guidance technique, based on preconditioning that allows traversing from BP-based guidance to least squares based guidance along the restoration scheme. The proposed approach is robust to noise while still having much simpler implementation than alternative methods (e.g., it does not require SVD or a large number of iterations). We use it within both an optimization scheme and a sampling-based scheme, and demonstrate its advantages over existing methods for image deblurring and super-resolution.
comment: CVPR 2024 (camera-ready). Code can be found at: https://github.com/tirer-lab/DDPG
♻ ☆ SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation CVPR 2024
Despite their ability to generate high-resolution and diverse images from text prompts, text-to-image diffusion models often suffer from slow iterative sampling processes. Model distillation is one of the most effective directions to accelerate these models. However, previous distillation methods fail to retain the generation quality while requiring a significant amount of images for training, either from real data or synthetically generated by the teacher model. In response to this limitation, we present a novel image-free distillation scheme named $\textbf{SwiftBrush}$. Drawing inspiration from text-to-3D synthesis, in which a 3D neural radiance field that aligns with the input prompt can be obtained from a 2D text-to-image diffusion prior via a specialized loss without the use of any 3D data ground-truth, our approach re-purposes that same loss for distilling a pretrained multi-step text-to-image model to a student network that can generate high-fidelity images with just a single inference step. In spite of its simplicity, our model stands as one of the first one-step text-to-image generators that can produce images of comparable quality to Stable Diffusion without reliance on any training image data. Remarkably, SwiftBrush achieves an FID score of $\textbf{16.67}$ and a CLIP score of $\textbf{0.29}$ on the COCO-30K benchmark, achieving competitive results or even substantially surpassing existing state-of-the-art distillation techniques.
comment: Accepted to CVPR 2024; Project Page: https://thuanz123.github.io/swiftbrush/
♻ ☆ TFNet: Exploiting Temporal Cues for Fast and Accurate LiDAR Semantic Segmentation CVPR2024
LiDAR semantic segmentation plays a crucial role in enabling autonomous driving and robots to understand their surroundings accurately and robustly. A multitude of methods exist within this domain, including point-based, range-image-based, polar-coordinate-based, and hybrid strategies. Among these, range-image-based techniques have gained widespread adoption in practical applications due to their efficiency. However, they face a significant challenge known as the ``many-to-one'' problem caused by the range image's limited horizontal and vertical angular resolution. As a result, around 20% of the 3D points can be occluded. In this paper, we present TFNet, a range-image-based LiDAR semantic segmentation method that utilizes temporal information to address this issue. Specifically, we incorporate a temporal fusion layer to extract useful information from previous scans and integrate it with the current scan. We then design a max-voting-based post-processing technique to correct false predictions, particularly those caused by the ``many-to-one'' issue. We evaluated the approach on two benchmarks and demonstrated that the plug-in post-processing technique is generic and can be applied to various networks.
comment: accepted by CVPR2024 Workshop on Autonomous Driving
♻ ☆ InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models
We present InstantMesh, a feed-forward framework for instant 3D mesh generation from a single image, featuring state-of-the-art generation quality and significant training scalability. By synergizing the strengths of an off-the-shelf multiview diffusion model and a sparse-view reconstruction model based on the LRM architecture, InstantMesh is able to create diverse 3D assets within 10 seconds. To enhance the training efficiency and exploit more geometric supervisions, e.g, depths and normals, we integrate a differentiable iso-surface extraction module into our framework and directly optimize on the mesh representation. Experimental results on public datasets demonstrate that InstantMesh significantly outperforms other latest image-to-3D baselines, both qualitatively and quantitatively. We release all the code, weights, and demo of InstantMesh, with the intention that it can make substantial contributions to the community of 3D generative AI and empower both researchers and content creators.
comment: Technical report. Project: https://github.com/TencentARC/InstantMesh
♻ ☆ Specialty-Oriented Generalist Medical AI for Chest CT Screening
Modern medical records include a vast amount of multimodal free text clinical data and imaging data from radiology, cardiology, and digital pathology. Fully mining such big data requires multitasking; otherwise, occult but important aspects may be overlooked, adversely affecting clinical management and population healthcare. Despite remarkable successes of AI in individual tasks with single-modal data, the progress in developing generalist medical AI remains relatively slow to combine multimodal data for multitasks because of the dual challenges of data curation and model architecture. The data challenge involves querying and curating multimodal structured and unstructured text, alphanumeric, and especially 3D tomographic scans on an individual patient level for real-time decisions and on a scale to estimate population health statistics. The model challenge demands a scalable and adaptable network architecture to integrate multimodal datasets for diverse clinical tasks. Here we propose the first-of-its-kind medical multimodal-multitask foundation model (M3FM) with application in lung cancer screening and related tasks. After we curated a comprehensive multimodal multitask dataset consisting of 49 clinical data types including 163,725 chest CT series and 17 medical tasks involved in LCS, we develop a multimodal question-answering framework as a unified training and inference strategy to synergize multimodal information and perform multiple tasks via free-text prompting. M3FM consistently outperforms the state-of-the-art single-modal task-specific models, identifies multimodal data elements informative for clinical tasks and flexibly adapts to new tasks with a small out-of-distribution dataset. As a specialty-oriented generalist medical AI model, M3FM paves the way for similar breakthroughs in other areas of medicine, closing the gap between specialists and the generalist.
♻ ☆ Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation
In recent years, precision agriculture has gradually oriented farming closer to automation processes to support all the activities related to field management. Service robotics plays a predominant role in this evolution by deploying autonomous agents that can navigate fields while performing tasks such as monitoring, spraying, and harvesting without human intervention. To execute these precise actions, mobile robots need a real-time perception system that understands their surroundings and identifies their targets in the wild. Existing methods, however, often fall short in generalizing to new crops and environmental conditions. This limit is critical for practical applications where labeled samples are rarely available. In this paper, we investigate the problem of crop segmentation and propose a novel approach to enhance domain generalization using knowledge distillation. In the proposed framework, we transfer knowledge from a standardized ensemble of models individually trained on source domains to a student model that can adapt to unseen realistic scenarios. To support the proposed method, we present a synthetic multi-domain dataset for crop segmentation containing plants of variegate species and covering different terrain styles, weather conditions, and light scenarios for more than 70,000 samples. We demonstrate significant improvements in performance over state-of-the-art methods and superior sim-to-real generalization. Our approach provides a promising solution for domain generalization in crop segmentation and has the potential to enhance a wide variety of agriculture applications.
♻ ☆ RSBuilding: Towards General Remote Sensing Image Building Extraction and Change Detection with Foundation Model
The intelligent interpretation of buildings plays a significant role in urban planning and management, macroeconomic analysis, population dynamics, etc. Remote sensing image building interpretation primarily encompasses building extraction and change detection. However, current methodologies often treat these two tasks as separate entities, thereby failing to leverage shared knowledge. Moreover, the complexity and diversity of remote sensing image scenes pose additional challenges, as most algorithms are designed to model individual small datasets, thus lacking cross-scene generalization. In this paper, we propose a comprehensive remote sensing image building understanding model, termed RSBuilding, developed from the perspective of the foundation model. RSBuilding is designed to enhance cross-scene generalization and task universality. Specifically, we extract image features based on the prior knowledge of the foundation model and devise a multi-level feature sampler to augment scale information. To unify task representation and integrate image spatiotemporal clues, we introduce a cross-attention decoder with task prompts. Addressing the current shortage of datasets that incorporate annotations for both tasks, we have developed a federated training strategy to facilitate smooth model convergence even when supervision for some tasks is missing, thereby bolstering the complementarity of different tasks. Our model was trained on a dataset comprising up to 245,000 images and validated on multiple building extraction and change detection datasets. The experimental results substantiate that RSBuilding can concurrently handle two structurally distinct tasks and exhibits robust zero-shot generalization capabilities.
♻ ☆ AM-RADIO: Agglomerative Vision Foundation Model -- Reduce All Domains Into One CVPR 2024
A handful of visual foundation models (VFMs) have recently emerged as the backbones for numerous downstream tasks. VFMs like CLIP, DINOv2, SAM are trained with distinct objectives, exhibiting unique characteristics for various downstream tasks. We find that despite their conceptual differences, these models can be effectively merged into a unified model through multi-teacher distillation. We name this approach AM-RADIO (Agglomerative Model -- Reduce All Domains Into One). This integrative approach not only surpasses the performance of individual teacher models but also amalgamates their distinctive features, such as zero-shot vision-language comprehension, detailed pixel-level understanding, and open vocabulary segmentation capabilities. In pursuit of the most hardware-efficient backbone, we evaluated numerous architectures in our multi-teacher distillation pipeline using the same training recipe. This led to the development of a novel architecture (E-RADIO) that exceeds the performance of its predecessors and is at least 7x faster than the teacher models. Our comprehensive benchmarking process covers downstream tasks including ImageNet classification, ADE20k semantic segmentation, COCO object detection and LLaVa-1.5 framework. Code: https://github.com/NVlabs/RADIO
comment: CVPR 2024 Version 3: CVPR Camera Ready, reconfigured full paper, table 1 is now more comprehensive Version 2: Added more acknowledgements and updated table 7 with more recent results. Ensured that the link in the abstract to our code is working properly Version 3: Fix broken hyperlinks
♻ ☆ RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network
Predicting accurate normal maps of objects from two-dimensional images in regions of complex structure and spatial material variations is challenging using photometric stereo methods due to the influence of surface reflection properties caused by variations in object geometry and surface materials. To address this issue, we propose a photometric stereo network called a RMAFF-PSN that uses residual multiscale attentional feature fusion to handle the ``difficult'' regions of the object. Unlike previous approaches that only use stacked convolutional layers to extract deep features from the input image, our method integrates feature information from different resolution stages and scales of the image. This approach preserves more physical information, such as texture and geometry of the object in complex regions, through shallow-deep stage feature extraction, double branching enhancement, and attention optimization. To test the network structure under real-world conditions, we propose a new real dataset called Simple PS data, which contains multiple objects with varying structures and materials. Experimental results on a publicly available benchmark dataset demonstrate that our method outperforms most existing calibrated photometric stereo methods for the same number of input images, especially in the case of highly non-convex object structures. Our method also obtains good results under sparse lighting conditions.
comment: 17 pages,12 figures
♻ ☆ Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning AAAI2024
Semi-supervised learning (SSL) methods assume that labeled data, unlabeled data and test data are from the same distribution. Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers). Most previous works focused on outlier detection via binary classifiers, which suffer from insufficient scalability and inability to distinguish different types of uncertainty. In this paper, we propose a novel framework, Adaptive Negative Evidential Deep Learning (ANEDL) to tackle these limitations. Concretely, we first introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference. Furthermore, we propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers. As demonstrated empirically, our proposed method outperforms existing state-of-the-art methods across four datasets.
comment: Accepted by AAAI2024
♻ ☆ DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity AAAI2024
Removing soft and self shadows that lack clear boundaries from a single image is still challenging. Self shadows are shadows that are cast on the object itself. Most existing methods rely on binary shadow masks, without considering the ambiguous boundaries of soft and self shadows. In this paper, we present DeS3, a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity. Our novel ViT similarity loss utilizes features extracted from a pre-trained Vision Transformer. This loss helps guide the reverse sampling towards recovering scene structures. Our adaptive attention is able to differentiate shadow regions from the underlying objects, as well as shadow regions from the object casting the shadow. This capability enables DeS3 to better recover the structures of objects even when they are partially occluded by shadows. Different from existing methods that rely on constraints during the training phase, we incorporate the ViT similarity during the sampling stage. Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets, removing hard, soft, and self shadows robustly. Specifically, our method outperforms the SOTA method by 16\% of the RMSE of the whole image on the LRSS dataset. Our data and code is available at: \url{https://github.com/jinyeying/DeS3_Deshadow}
comment: Accepted to AAAI2024, diffusion shadow removal, \url{https://github.com/jinyeying/DeS3_Deshadow}
♻ ☆ Allowing humans to interactively guide machines where to look does not always improve human-AI team's classification accuracy CVPR 2024
Via thousands of papers in Explainable AI (XAI), attention maps \cite{vaswani2017attention} and feature attribution maps \cite{bansal2020sam} have been established as a common means for finding how important each input feature is to an AI's decisions. It is an interesting, unexplored question whether allowing users to edit the feature importance at test time would improve a human-AI team's accuracy on downstream tasks. In this paper, we address this question by leveraging CHM-Corr, a state-of-the-art, ante-hoc explainable classifier \cite{taesiri2022visual} that first predicts patch-wise correspondences between the input and training-set images, and then base on them to make classification decisions. We build CHM-Corr++, an interactive interface for CHM-Corr, enabling users to edit the feature attribution map provided by CHM-Corr and observe updated model decisions. Via CHM-Corr++, users can gain insights into if, when, and how the model changes its outputs, improving their understanding beyond static explanations. However, our user study with 18 users who performed 1,400 decisions finds no statistical significance that our interactive approach improves user accuracy on CUB-200 bird image classification over static explanations. This challenges the hypothesis that interactivity can boost human-AI team accuracy~\cite{sokol2020one,sun2022exploring,shen2024towards,singh2024rethinking,mindlin2024beyond,lakkaraju2022rethinking,cheng2019explaining,liu2021understanding} and raises needs for future research. We open-source CHM-Corr++, an interactive tool for editing image classifier attention (see an interactive demo \href{http://137.184.82.109:7080/}{here}). % , and it lays the groundwork for future research to enable effective human-AI interaction in computer vision. We release code and data on \href{https://github.com/anguyen8/chm-corr-interactive}{github}.
comment: Accepted for presentation at the XAI4CV Workshop, part of the CVPR 2024 proceedings
♻ ☆ High-quality Image Dehazing with Diffusion Model
Image dehazing is quite challenging in dense-haze scenarios, where quite less original information remains in the hazy image. Though previous methods have made marvelous progress, they still suffer from information loss in content and color in dense-haze scenarios. The recently emerged Denoising Diffusion Probabilistic Model (DDPM) exhibits strong generation ability, showing potential for solving this problem. However, DDPM fails to consider the physics property of dehazing task, limiting its information completion capacity. In this work, we propose DehazeDDPM: A DDPM-based and physics-aware image dehazing framework that applies to complex hazy scenarios. Specifically, DehazeDDPM works in two stages. The former stage physically models the dehazing task with the Atmospheric Scattering Model (ASM), pulling the distribution closer to the clear data and endowing DehazeDDPM with fog-aware ability. The latter stage exploits the strong generation ability of DDPM to compensate for the haze-induced huge information loss, by working in conjunction with the physical modelling. Extensive experiments demonstrate that our method attains state-of-the-art performance on both synthetic and real-world hazy datasets.
♻ ☆ Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models
In this paper, we study the harmlessness alignment problem of multimodal large language models (MLLMs). We conduct a systematic empirical analysis of the harmlessness performance of representative MLLMs and reveal that the image input poses the alignment vulnerability of MLLMs. Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input, using meticulously crafted images. Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision. Our code and data will be publicly released.
comment: Work in progress
Information Retrieval 4
☆ Artificial Intelligence enhanced Security Problems in Real-Time Scenario using Blowfish Algorithm
In a nutshell, "the cloud" refers to a collection of interconnected computing resources made possible by an extensive, real-time communication network like the internet. Because of its potential to reduce processing costs, the emerging paradigm of cloud computing has recently attracted a large number of academics. The exponential expansion of cloud computing has made the rapid expansion of cloud services very remarkable. Ensuring the security of personal information in today's interconnected world is no easy task. These days, security is really crucial. Models of security that are relevant to cloud computing include confidentiality, authenticity, accessibility, data integrity, and recovery. Using the Hybrid Encryption this study, we cover all the security issues and leaks in cloud infrastructure.
☆ Competitive Retrieval: Going Beyond the Single Query
Previous work on the competitive retrieval setting focused on a single-query setting: document authors manipulate their documents so as to improve their future ranking for a given query. We study a competitive setting where authors opt to improve their document's ranking for multiple queries. We use game theoretic analysis to prove that equilibrium does not necessarily exist. We then empirically show that it is more difficult for authors to improve their documents' rankings for multiple queries with a neural ranker than with a state-of-the-art feature-based ranker. We also present an effective approach for predicting the document most highly ranked in the next induced ranking.
☆ Intelligent Message Behavioral Identification System
On social media platforms, the act of predicting reposting is seen as a challenging issue related to Short Message Services (SMS). This study examines the issue of predicting picture reposting in SMS and forecasts users' behavior in sharing photographs on Twitter. Several research vary. The paper introduces a network called Image Retweet Modeling (IRM) that models heterogeneous image retransmission. It considers the user's previous reposting of the image tweet, the next contact in the SMS, and the preferences of the reposted person. Three aspects connected to content. A text-guided multimodal neural network is developed to create a novel multi-faceted attention ranking network methodology. This allows for learning the joint image Twitter representation and user preference representation in the prediction job. Multiple experiments conducted on extensive data sets demonstrate that our approach outperforms current methods on Social Network platforms.
♻ ☆ Detection of ChatGPT Fake Science with the xFakeSci Learning Algorithm
Generative AI tools exemplified by ChatGPT are becoming a new reality. This study is motivated by the premise that ``AI generated content may exhibit a distinctive behavior that can be separated from scientific articles''. In this study, we show how articles can be generated using means of prompt engineering for various diseases and conditions. We then show how we tested this premise in two phases and prove its validity. Subsequently, we introduce xFakeSci, a novel learning algorithm, that is capable of distinguishing ChatGPT-generated articles from publications produced by scientists. The algorithm is trained using network models driven from both sources. As for the classification step, it was performed using 300 articles per condition. The actual label steps took place against an equal mix of 50 generated articles and 50 authentic PubMed abstracts. The testing also spanned publication periods from 2010 to 2024 and encompassed research on three distinct diseases: cancer, depression, and Alzheimer's. Further, we evaluated the accuracy of the xFakeSci algorithm against some of the classical data mining algorithms (e.g., Support Vector Machines, Regression, and Naive Bayes). The xFakeSci algorithm achieved F1 scores ranging from 80% to 94%, outperforming common data mining algorithms, which scored F1 values between 38% and 52%. We attribute the noticeable difference to the introduction of calibration and a proximity distance heuristic, which underscores this promising performance. Indeed, the prediction of fake science generated by ChatGPT presents a considerable challenge. Nonetheless, the introduction of the xFakeSci algorithm is a significant step on the way to combating fake science.
comment: 18 pages, 8 figures, 8 tables, 5 algorithms
Machine Learning 36
☆ Tasks People Prompt: A Taxonomy of LLM Downstream Tasks in Software Verification and Falsification Approaches
Prompting has become one of the main approaches to leverage emergent capabilities of Large Language Models [Brown et al. NeurIPS 2020, Wei et al. TMLR 2022, Wei et al. NeurIPS 2022]. During the last year, researchers and practitioners have been playing with prompts to see how to make the most of LLMs. By homogeneously dissecting 80 papers, we investigate in deep how software testing and verification research communities have been abstractly architecting their LLM-enabled solutions. More precisely, first, we want to validate whether downstream tasks are an adequate concept to convey the blueprint of prompt-based solutions. We also aim at identifying number and nature of such tasks in solutions. For such goal, we develop a novel downstream task taxonomy that enables pinpointing some engineering patterns in a rather varied spectrum of Software Engineering problems that encompasses testing, fuzzing, debugging, vulnerability detection, static analysis and program verification approaches.
☆ Hierarchical Attention Models for Multi-Relational Graphs
We present Bi-Level Attention-Based Relational Graph Convolutional Networks (BR-GCN), unique neural network architectures that utilize masked self-attentional layers with relational graph convolutions, to effectively operate on highly multi-relational data. BR-GCN models use bi-level attention to learn node embeddings through (1) node-level attention, and (2) relation-level attention. The node-level self-attentional layers use intra-relational graph interactions to learn relation-specific node embeddings using a weighted aggregation of neighborhood features in a sparse subgraph region. The relation-level self-attentional layers use inter-relational graph interactions to learn the final node embeddings using a weighted aggregation of relation-specific node embeddings. The BR-GCN bi-level attention mechanism extends Transformer-based multiplicative attention from the natural language processing (NLP) domain, and Graph Attention Networks (GAT)-based attention, to large-scale heterogeneous graphs (HGs). On node classification, BR-GCN outperforms baselines from 0.29% to 14.95% as a stand-alone model, and on link prediction, BR-GCN outperforms baselines from 0.02% to 7.40% as an auto-encoder model. We also conduct ablation studies to evaluate the quality of BR-GCN's relation-level attention and discuss how its learning of graph structure may be transferred to enrich other graph neural networks (GNNs). Through various experiments, we show that BR-GCN's attention mechanism is both scalable and more effective in learning compared to state-of-the-art GNNs.
☆ Momentum-based gradient descent methods for Lie groups
Polyak's Heavy Ball (PHB; Polyak, 1964), a.k.a. Classical Momentum, and Nesterov's Accelerated Gradient (NAG; Nesterov, 1983) are well know examples of momentum-descent methods for optimization. While the latter outperforms the former, solely generalizations of PHB-like methods to nonlinear spaces have been described in the literature. We propose here a generalization of NAG-like methods for Lie group optimization based on the variational one-to-one correspondence between classical and accelerated momentum methods (Campos et al., 2023). Numerical experiments are shown.
comment: 24 pages, 2 algorithms, 5 figures
☆ Exploring Feedback Generation in Automated Skeletal Movement Assessment: A Comprehensive Overview
The application of machine-learning solutions to movement assessment from skeleton videos has attracted significant research attention in recent years. This advancement has made rehabilitation at home more accessible, utilizing movement assessment algorithms that can operate on affordable equipment for human pose detection from 2D or 3D videos. While the primary objective of automatic assessment tasks is to score movements, the automatic generation of feedback highlighting key movement issues has the potential to significantly enhance and accelerate the rehabilitation process. In this study, we explain the types of feedback that can be generated, review existing solutions for automatic feedback generation, and discuss future research directions. To our knowledge, this is the first comprehensive review of feedback generation in skeletal movement assessment.
☆ Machine learning-based identification of Gaia astrometric exoplanet orbits
The third Gaia data release (DR3) contains $\sim$170 000 astrometric orbit solutions of two-body systems located within $\sim$500 pc of the Sun. Determining component masses in these systems, in particular of stars hosting exoplanets, usually hinges on incorporating complementary observations in addition to the astrometry, e.g. spectroscopy and radial velocities. Several DR3 two-body systems with exoplanet, brown-dwarf, stellar, and black-hole components have been confirmed in this way. We developed an alternative machine learning approach that uses only the DR3 orbital solutions with the aim of identifying the best candidates for exoplanets and brown-dwarf companions. Based on confirmed substellar companions in the literature, we use semi-supervised anomaly detection methods in combination with extreme gradient boosting and random forest classifiers to determine likely low-mass outliers in the population of non-single sources. We employ and study feature importance to investigate the method's plausibility and produced a list of 22 best candidates of which four are exoplanet candidates and another five are either very-massive brown dwarfs or very-low mass stars. Three candidates, including one initial exoplanet candidate, correspond to false-positive solutions where longer-period binary star motion was fitted with a biased shorter-period orbit. We highlight nine candidates with brown-dwarf companions for preferential follow-up. One candidate companion around the Sun-like star G 15-6 could be confirmed as a genuine brown dwarf using external radial-velocity data. This new approach is a powerful complement to the traditional identification methods for substellar companions among Gaia astrometric orbits. It is particularly relevant in the context of Gaia DR4 and its expected exoplanet discovery yield.
comment: 14 pages, 15 figures. Submitted to MNRAS. Comments are welcome
☆ Adversarial Robustness Limits via Scaling-Law and Human-Alignment Studies
This paper revisits the simple, long-studied, yet still unsolved problem of making image classifiers robust to imperceptible perturbations. Taking CIFAR10 as an example, SOTA clean accuracy is about $100$%, but SOTA robustness to $\ell_{\infty}$-norm bounded perturbations barely exceeds $70$%. To understand this gap, we analyze how model size, dataset size, and synthetic data quality affect robustness by developing the first scaling laws for adversarial training. Our scaling laws reveal inefficiencies in prior art and provide actionable feedback to advance the field. For instance, we discovered that SOTA methods diverge notably from compute-optimal setups, using excess compute for their level of robustness. Leveraging a compute-efficient setup, we surpass the prior SOTA with $20$% ($70$%) fewer training (inference) FLOPs. We trained various compute-efficient models, with our best achieving $74$% AutoAttack accuracy ($+3$% gain). However, our scaling laws also predict robustness slowly grows then plateaus at $90$%: dwarfing our new SOTA by scaling is impractical, and perfect robustness is impossible. To better understand this predicted limit, we carry out a small-scale human evaluation on the AutoAttack data that fools our top-performing model. Concerningly, we estimate that human performance also plateaus near $90$%, which we show to be attributable to $\ell_{\infty}$-constrained attacks' generation of invalid images not consistent with their original labels. Having characterized limiting roadblocks, we outline promising paths for future research.
☆ Towards Practical Tool Usage for Continually Learning LLMs
Large language models (LLMs) show an innate skill for solving language based tasks. But insights have suggested an inability to adjust for information or task-solving skills becoming outdated, as their knowledge, stored directly within their parameters, remains static in time. Tool use helps by offloading work to systems that the LLM can access through an interface, but LLMs that use them still must adapt to nonstationary environments for prolonged use, as new tools can emerge and existing tools can change. Nevertheless, tools require less specialized knowledge, therefore we hypothesize they are better suited for continual learning (CL) as they rely less on parametric memory for solving tasks and instead focus on learning when to apply pre-defined tools. To verify this, we develop a synthetic benchmark and follow this by aggregating existing NLP tasks to form a more realistic testing scenario. While we demonstrate scaling model size is not a solution, regardless of tool usage, continual learning techniques can enable tool LLMs to both adapt faster while forgetting less, highlighting their potential as continual learners.
comment: 20 pages, 11 tables, 7 figures
☆ SNN4Agents: A Framework for Developing Energy-Efficient Embodied Spiking Neural Networks for Autonomous Agents
Recent trends have shown that autonomous agents, such as Autonomous Ground Vehicles (AGVs), Unmanned Aerial Vehicles (UAVs), and mobile robots, effectively improve human productivity in solving diverse tasks. However, since these agents are typically powered by portable batteries, they require extremely low power/energy consumption to operate in a long lifespan. To solve this challenge, neuromorphic computing has emerged as a promising solution, where bio-inspired Spiking Neural Networks (SNNs) use spikes from event-based cameras or data conversion pre-processing to perform sparse computations efficiently. However, the studies of SNN deployments for autonomous agents are still at an early stage. Hence, the optimization stages for enabling efficient embodied SNN deployments for autonomous agents have not been defined systematically. Toward this, we propose a novel framework called SNN4Agents that consists of a set of optimization techniques for designing energy-efficient embodied SNNs targeting autonomous agent applications. Our SNN4Agents employs weight quantization, timestep reduction, and attention window reduction to jointly improve the energy efficiency, reduce the memory footprint, optimize the processing latency, while maintaining high accuracy. In the evaluation, we investigate use cases of event-based car recognition, and explore the trade-offs among accuracy, latency, memory, and energy consumption. The experimental results show that our proposed framework can maintain high accuracy (i.e., 84.12% accuracy) with 68.75% memory saving, 3.58x speed-up, and 4.03x energy efficiency improvement as compared to the state-of-the-art work for NCARS dataset, thereby enabling energy-efficient embodied SNN deployments for autonomous agents.
comment: 18 pages, 15 figures
☆ Weight Copy and Low-Rank Adaptation for Few-Shot Distillation of Vision Transformers
Few-shot knowledge distillation recently emerged as a viable approach to harness the knowledge of large-scale pre-trained models, using limited data and computational resources. In this paper, we propose a novel few-shot feature distillation approach for vision transformers. Our approach is based on two key steps. Leveraging the fact that vision transformers have a consistent depth-wise structure, we first copy the weights from intermittent layers of existing pre-trained vision transformers (teachers) into shallower architectures (students), where the intermittence factor controls the complexity of the student transformer with respect to its teacher. Next, we employ an enhanced version of Low-Rank Adaptation (LoRA) to distill knowledge into the student in a few-shot scenario, aiming to recover the information processing carried out by the skipped teacher layers. We present comprehensive experiments with supervised and self-supervised transformers as teachers, on five data sets from various domains, including natural, medical and satellite images. The empirical results confirm the superiority of our approach over competitive baselines. Moreover, the ablation results demonstrate the usefulness of each component of the proposed pipeline.
☆ High Significant Fault Detection in Azure Core Workload Insights
Azure Core workload insights have time-series data with different metric units. Faults or Anomalies are observed in these time-series data owing to faults observed with respect to metric name, resources region, dimensions, and its dimension value associated with the data. For Azure Core, an important task is to highlight faults or anomalies to the user on a dashboard that they can perceive easily. The number of anomalies reported should be highly significant and in a limited number, e.g., 5-20 anomalies reported per hour. The reported anomalies will have significant user perception and high reconstruction error in any time-series forecasting model. Hence, our task is to automatically identify 'high significant anomalies' and their associated information for user perception.
☆ TrafficVLM: A Controllable Visual Language Model for Traffic Video Captioning
Traffic video description and analysis have received much attention recently due to the growing demand for efficient and reliable urban surveillance systems. Most existing methods only focus on locating traffic event segments, which severely lack descriptive details related to the behaviour and context of all the subjects of interest in the events. In this paper, we present TrafficVLM, a novel multi-modal dense video captioning model for vehicle ego camera view. TrafficVLM models traffic video events at different levels of analysis, both spatially and temporally, and generates long fine-grained descriptions for the vehicle and pedestrian at different phases of the event. We also propose a conditional component for TrafficVLM to control the generation outputs and a multi-task fine-tuning paradigm to enhance TrafficVLM's learning capability. Experiments show that TrafficVLM performs well on both vehicle and overhead camera views. Our solution achieved outstanding results in Track 2 of the AI City Challenge 2024, ranking us third in the challenge standings. Our code is publicly available at https://github.com/quangminhdinh/TrafficVLM.
☆ Foundational GPT Model for MEG
Deep learning techniques can be used to first training unsupervised models on large amounts of unlabelled data, before fine-tuning the models on specific tasks. This approach has seen massive success for various kinds of data, e.g. images, language, audio, and holds the promise of improving performance in various downstream tasks (e.g. encoding or decoding brain data). However, there has been limited progress taking this approach for modelling brain signals, such as Magneto-/electroencephalography (M/EEG). Here we propose two classes of deep learning foundational models that can be trained using forecasting of unlabelled MEG. First, we consider a modified Wavenet; and second, we consider a modified Transformer-based (GPT2) model. The modified GPT2 includes a novel application of tokenisation and embedding methods, allowing a model developed initially for the discrete domain of language to be applied to continuous multichannel time series data. We also extend the forecasting framework to include condition labels as inputs, enabling better modelling (encoding) of task data. We compare the performance of these deep learning models with standard linear autoregressive (AR) modelling on MEG data. This shows that GPT2-based models provide better modelling capabilities than Wavenet and linear AR models, by better reproducing the temporal, spatial and spectral characteristics of real data and evoked activity in task data. We show how the GPT2 model scales well to multiple subjects, while adapting its model to each subject through subject embedding. Finally, we show how such a model can be useful in downstream decoding tasks through data simulation. All code is available on GitHub (https://github.com/ricsinaruto/MEG-transfer-decoding).
comment: Code available on GitHub (https://github.com/ricsinaruto/MEG-transfer-decoding). Part of PhD thesis (https://ricsinaruto.github.io/docs/thesis_final_appendix.pdf)
☆ Test Code Generation for Telecom Software Systems using Two-Stage Generative Model
In recent years, the evolution of Telecom towards achieving intelligent, autonomous, and open networks has led to an increasingly complex Telecom Software system, supporting various heterogeneous deployment scenarios, with multi-standard and multi-vendor support. As a result, it becomes a challenge for large-scale Telecom software companies to develop and test software for all deployment scenarios. To address these challenges, we propose a framework for Automated Test Generation for large-scale Telecom Software systems. We begin by generating Test Case Input data for test scenarios observed using a time-series Generative model trained on historical Telecom Network data during field trials. Additionally, the time-series Generative model helps in preserving the privacy of Telecom data. The generated time-series software performance data are then utilized with test descriptions written in natural language to generate Test Script using the Generative Large Language Model. Our comprehensive experiments on public datasets and Telecom datasets obtained from operational Telecom Networks demonstrate that the framework can effectively generate comprehensive test case data input and useful test code.
comment: 6 pages, 5 figures, Accepted at 1st Workshop on The Impact of Large Language Models on 6G Networks - IEEE International Conference on Communications (ICC) 2024
☆ Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts
Reinforcement learning (RL) trains agents to accomplish complex tasks through environmental interaction data, but its capacity is also limited by the scope of the available data. To obtain a knowledgeable agent, a promising approach is to leverage the knowledge from large language models (LLMs). Despite previous studies combining LLMs with RL, seamless integration of the two components remains challenging due to their semantic gap. This paper introduces a novel method, Knowledgeable Agents from Language Model Rollouts (KALM), which extracts knowledge from LLMs in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods. The primary challenge of KALM lies in LLM grounding, as LLMs are inherently limited to textual data, whereas environmental data often comprise numerical vectors unseen to LLMs. To address this, KALM fine-tunes the LLM to perform various tasks based on environmental data, including bidirectional translation between natural language descriptions of skills and their corresponding rollout data. This grounding process enhances the LLM's comprehension of environmental dynamics, enabling it to generate diverse and meaningful imaginary rollouts that reflect novel skills. Initial empirical evaluations on the CLEVR-Robot environment demonstrate that KALM enables agents to complete complex rephrasings of task goals and extend their capabilities to novel tasks requiring unprecedented optimal behaviors. KALM achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods. Furthermore, KALM effectively enables the LLM to comprehend environmental dynamics, resulting in the generation of meaningful imaginary rollouts that reflect novel skills and demonstrate the seamless integration of large language models and reinforcement learning.
☆ Generalization Error Bounds for Learning under Censored Feedback
Generalization error bounds from learning theory provide statistical guarantees on how well an algorithm will perform on previously unseen data. In this paper, we characterize the impacts of data non-IIDness due to censored feedback (a.k.a. selective labeling bias) on such bounds. We first derive an extension of the well-known Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, which characterizes the gap between empirical and theoretical CDFs given IID data, to problems with non-IID data due to censored feedback. We then use this CDF error bound to provide a bound on the generalization error guarantees of a classifier trained on such non-IID data. We show that existing generalization error bounds (which do not account for censored feedback) fail to correctly capture the model's generalization guarantees, verifying the need for our bounds. We further analyze the effectiveness of (pure and bounded) exploration techniques, proposed by recent literature as a way to alleviate censored feedback, on improving our error bounds. Together, our findings illustrate how a decision maker should account for the trade-off between strengthening the generalization guarantees of an algorithm and the costs incurred in data collection when future data availability is limited by censored feedback.
☆ LSROM: Learning Self-Refined Organizing Map for Fast Imbalanced Streaming Data Clustering
Streaming data clustering is a popular research topic in the fields of data mining and machine learning. Compared to static data, streaming data, which is usually analyzed in data chunks, is more susceptible to encountering the dynamic cluster imbalanced issue. That is, the imbalanced degree of clusters varies in different streaming data chunks, leading to corruption in either the accuracy or the efficiency of streaming data analysis based on existing clustering methods. Therefore, we propose an efficient approach called Learning Self-Refined Organizing Map (LSROM) to handle the imbalanced streaming data clustering problem, where we propose an advanced SOM for representing the global data distribution. The constructed SOM is first refined for guiding the partition of the dataset to form many micro-clusters to avoid the missing small clusters in imbalanced data. Then an efficient merging of the micro-clusters is conducted through quick retrieval based on the SOM, which can automatically yield a true number of imbalanced clusters. In comparison to existing imbalanced data clustering approaches, LSROM is with a lower time complexity $O(n\log n)$, while achieving very competitive clustering accuracy. Moreover, LSROM is interpretable and insensitive to hyper-parameters. Extensive experiments have verified its efficacy.
comment: 13 pages, 7 figures
☆ Fault Detection in Mobile Networks Using Diffusion Models
In today's hyper-connected world, ensuring the reliability of telecom networks becomes increasingly crucial. Telecom networks encompass numerous underlying and intertwined software and hardware components, each providing different functionalities. To ensure the stability of telecom networks, telecom software, and hardware vendors developed several methods to detect any aberrant behavior in telecom networks and enable instant feedback and alerts. These approaches, although powerful, struggle to generalize due to the unsteady nature of the software-intensive embedded system and the complexity and diversity of multi-standard mobile networks. In this paper, we present a system to detect anomalies in telecom networks using a generative AI model. We evaluate several strategies using diffusion models to train the model for anomaly detection using multivariate time-series data. The contributions of this paper are threefold: (i) A proposal of a framework for utilizing diffusion models for time-series anomaly detection in telecom networks, (ii) A proposal of a particular Diffusion model architecture that outperforms other state-of-the-art techniques, (iii) Experiments on a real-world dataset to demonstrate that our model effectively provides explainable results, exposing some of its limitations and suggesting future research avenues to enhance its capabilities further.
comment: 6 pages, 4 figures, Accepted at Sixth International Workshop on Data Driven Intelligence for Networks and Systems (DDINS) - IEEE International Conference on Communications (ICC) 2024
☆ MAP: Model Aggregation and Personalization in Federated Learning with Incomplete Classes
In some real-world applications, data samples are usually distributed on local devices, where federated learning (FL) techniques are proposed to coordinate decentralized clients without directly sharing users' private data. FL commonly follows the parameter server architecture and contains multiple personalization and aggregation procedures. The natural data heterogeneity across clients, i.e., Non-I.I.D. data, challenges both the aggregation and personalization goals in FL. In this paper, we focus on a special kind of Non-I.I.D. scene where clients own incomplete classes, i.e., each client can only access a partial set of the whole class set. The server aims to aggregate a complete classification model that could generalize to all classes, while the clients are inclined to improve the performance of distinguishing their observed classes. For better model aggregation, we point out that the standard softmax will encounter several problems caused by missing classes and propose "restricted softmax" as an alternative. For better model personalization, we point out that the hard-won personalized models are not well exploited and propose "inherited private model" to store the personalization experience. Our proposed algorithm named MAP could simultaneously achieve the aggregation and personalization goals in FL. Abundant experimental studies verify the superiorities of our algorithm.
comment: Accepted by TKDE (11-Apr-2024)
☆ Breast Cancer Image Classification Method Based on Deep Transfer Learning
To address the issues of limited samples, time-consuming feature design, and low accuracy in detection and classification of breast cancer pathological images, a breast cancer image classification model algorithm combining deep learning and transfer learning is proposed. This algorithm is based on the DenseNet structure of deep neural networks, and constructs a network model by introducing attention mechanisms, and trains the enhanced dataset using multi-level transfer learning. Experimental results demonstrate that the algorithm achieves an efficiency of over 84.0\% in the test set, with a significantly improved classification accuracy compared to previous models, making it applicable to medical breast cancer detection tasks.
☆ Towards Fast Inference: Exploring and Improving Blockwise Parallel Drafts
Despite the remarkable strides made by autoregressive language models, their potential is often hampered by the slow inference speeds inherent in sequential token generation. Blockwise parallel decoding (BPD) was proposed by Stern et al. (2018) as a way to improve inference speed of language models. In this paper, we make two contributions to understanding and improving BPD drafts. We first offer an analysis of the token distributions produced by the BPD prediction heads. Secondly, we use this analysis to inform algorithms to improve BPD inference speed by refining the BPD drafts using small n-gram or neural language models. We empirically show that these refined BPD drafts yield a higher average verified prefix length across tasks.
♻ ☆ Convex SGD: Generalization Without Early Stopping
We consider the generalization error associated with stochastic gradient descent on a smooth convex function over a compact set. We show the first bound on the generalization error that vanishes when the number of iterations $T$ and the dataset size $n$ go to zero at arbitrary rates; our bound scales as $\tilde{O}(1/\sqrt{T} + 1/\sqrt{n})$ with step-size $\alpha_t = 1/\sqrt{t}$. In particular, strong convexity is not needed for stochastic gradient descent to generalize well.
♻ ☆ Tighter Generalization Bounds on Digital Computers via Discrete Optimal Transport
Machine learning models with inputs in a Euclidean space $\mathbb{R}^d$, when implemented on digital computers, generalize, and their {\it generalization gap} converges to $0$ at a rate of $c/N^{1/2}$ concerning the sample size $N$. However, the constant $c>0$ obtained through classical methods can be large in terms of the ambient dimension $d$ and the machine precision, posing a challenge when $N$ is small to realistically large. In this paper, we derive a family of generalization bounds $\{c_m/N^{1/(2\vee m)}\}_{m=1}^{\infty}$ tailored for learning models on digital computers, which adapt to both the sample size $N$ and the so-called geometric {\it representation dimension} $m$ of the discrete learning problem. Adjusting the parameter $m$ according to $N$ results in significantly tighter generalization bounds for practical sample sizes $N$, while setting $m$ small maintains the optimal dimension-free worst-case rate of $\mathcal{O}(1/N^{1/2})$. Notably, $c_{m}\in \mathcal{O}(\sqrt{m})$ for learning models on discretized Euclidean domains. Furthermore, our adaptive generalization bounds are formulated based on our new non-asymptotic result for concentration of measure in discrete optimal transport, established via leveraging metric embedding arguments.
♻ ☆ Trajeglish: Traffic Modeling as Next-Token Prediction ICLR 2024
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs. In pursuit of this functionality, we apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios. Using a simple data-driven tokenization scheme, we discretize trajectories to centimeter-level resolution using a small vocabulary. We then model the multi-agent sequence of discrete motion tokens with a GPT-like encoder-decoder that is autoregressive in time and takes into account intra-timestep interaction between agents. Scenarios sampled from our model exhibit state-of-the-art realism; our model tops the Waymo Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%. We ablate our modeling choices in full autonomy and partial autonomy settings, and show that the representations learned by our model can quickly be adapted to improve performance on nuScenes. We additionally evaluate the scalability of our model with respect to parameter count and dataset size, and use density estimates from our model to quantify the saliency of context length and intra-timestep interaction for the traffic modeling task.
comment: ICLR 2024
♻ ☆ FiP: a Fixed-Point Approach for Causal Generative Modeling
Modeling true world data-generating processes lies at the heart of empirical science. Structural Causal Models (SCMs) and their associated Directed Acyclic Graphs (DAGs) provide an increasingly popular answer to such problems by defining the causal generative process that transforms random noise into observations. However, learning them from observational data poses an ill-posed and NP-hard inverse problem in general. In this work, we propose a new and equivalent formalism that does not require DAGs to describe them, viewed as fixed-point problems on the causally ordered variables, and we show three important cases where they can be uniquely recovered given the topological ordering (TO). To the best of our knowledge, we obtain the weakest conditions for their recovery when TO is known. Based on this, we design a two-stage causal generative model that first infers the causal order from observations in a zero-shot manner, thus by-passing the search, and then learns the generative fixed-point SCM on the ordered variables. To infer TOs from observations, we propose to amortize the learning of TOs on generated datasets by sequentially predicting the leaves of graphs seen during training. To learn fixed-point SCMs, we design a transformer-based architecture that exploits a new attention mechanism enabling the modeling of causal structures, and show that this parameterization is consistent with our formalism. Finally, we conduct an extensive evaluation of each method individually, and show that when combined, our model outperforms various baselines on generated out-of-distribution problems.
♻ ☆ MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation
A central aspect of machine learning research is experimentation, the process of designing and running experiments, analyzing the results, and iterating towards some positive outcome (e.g., improving accuracy). Could agents driven by powerful language models perform machine learning experimentation effectively? To answer this question, we introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM. For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs. We then construct an agent that can perform ML experimentation based on ReAct framework. We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate. It can build compelling ML models over many tasks in MLAgentBench with 37.5% average success rate. Our agents also display highly interpretable plans and actions. However, the success rates vary considerably; they span from 100% on well-established older datasets to as low as 0% on recent Kaggle challenges created potentially after the underlying LM was trained. Finally, we identify several key challenges for LM-based agents such as long-term planning and reducing hallucination. Our code is released at https://github.com/snap-stanford/MLAgentBench.
♻ ☆ REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback
The effectiveness of reinforcement learning (RL) agents in continuous control robotics tasks is heavily dependent on the design of the underlying reward function. However, a misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world. Current methods to mitigate this misalignment work by learning reward functions from human preferences; however, they inadvertently introduce a risk of reward overoptimization. In this work, we address this challenge by advocating for the adoption of regularized reward functions that more accurately mirror the intended behaviors. We propose a novel concept of reward regularization within the robotic RLHF (RL from Human Feedback) framework, which we refer to as \emph{agent preferences}. Our approach uniquely incorporates not just human feedback in the form of preferences but also considers the preferences of the RL agent itself during the reward function learning process. This dual consideration significantly mitigates the issue of reward function overoptimization in RL. We provide a theoretical justification for the proposed approach by formulating the robotic RLHF problem as a bilevel optimization problem. We demonstrate the efficiency of our algorithm {\ours} in several continuous control benchmarks including DeepMind Control Suite \cite{tassa2018deepmind} and MetaWorld \cite{yu2021metaworld} and high dimensional visual environments, with an improvement of more than 70\% in sample efficiency in comparison to current SOTA baselines. This showcases our approach's effectiveness in aligning reward functions with true behavioral intentions, setting a new benchmark in the field.
♻ ☆ Penalized Overdamped and Underdamped Langevin Monte Carlo Algorithms for Constrained Sampling
We consider the constrained sampling problem where the goal is to sample from a target distribution $\pi(x)\propto e^{-f(x)}$ when $x$ is constrained to lie on a convex body $\mathcal{C}$. Motivated by penalty methods from continuous optimization, we propose penalized Langevin Dynamics (PLD) and penalized underdamped Langevin Monte Carlo (PULMC) methods that convert the constrained sampling problem into an unconstrained sampling problem by introducing a penalty function for constraint violations. When $f$ is smooth and gradients are available, we get $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in the TV distance and $\tilde{\mathcal{O}}(\cdot)$ hides logarithmic factors. For PULMC, we improve the result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence results for underdamped Langevin Monte Carlo methods in the constrained sampling that handle non-convex $f$ and provide guarantees with the best dimension dependency among existing methods with deterministic gradient. If unbiased stochastic estimates of the gradient of $f$ are available, we propose PSGLD and PSGULMC methods that can handle stochastic gradients and are scaleable to large datasets without requiring Metropolis-Hasting correction steps. For PSGLD and PSGULMC, when $f$ is strongly convex and smooth, we obtain $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ iteration complexity in W2 distance. When $f$ is smooth and can be non-convex, we provide finite-time performance bounds and iteration complexity results. Finally, we illustrate the performance on Bayesian LASSO regression and Bayesian constrained deep learning problems.
♻ ☆ Exponential concentration in quantum kernel methods
Kernel methods in Quantum Machine Learning (QML) have recently gained significant attention as a potential candidate for achieving a quantum advantage in data analysis. Among other attractive properties, when training a kernel-based model one is guaranteed to find the optimal model's parameters due to the convexity of the training landscape. However, this is based on the assumption that the quantum kernel can be efficiently obtained from quantum hardware. In this work we study the performance of quantum kernel models from the perspective of the resources needed to accurately estimate kernel values. We show that, under certain conditions, values of quantum kernels over different input data can be exponentially concentrated (in the number of qubits) towards some fixed value. Thus on training with a polynomial number of measurements, one ends up with a trivial model where the predictions on unseen inputs are independent of the input data. We identify four sources that can lead to concentration including: expressivity of data embedding, global measurements, entanglement and noise. For each source, an associated concentration bound of quantum kernels is analytically derived. Lastly, we show that when dealing with classical data, training a parametrized data embedding with a kernel alignment method is also susceptible to exponential concentration. Our results are verified through numerical simulations for several QML tasks. Altogether, we provide guidelines indicating that certain features should be avoided to ensure the efficient evaluation of quantum kernels and so the performance of quantum kernel methods.
comment: 15+50 pages, 15 figures
♻ ☆ Gradient Estimation with Discrete Stein Operators NeurIPS 2022
Gradient estimation -- approximating the gradient of an expectation with respect to the parameters of a distribution -- is central to the solution of many machine learning problems. However, when the distribution is discrete, most common gradient estimators suffer from excessive variance. To improve the quality of gradient estimation, we introduce a variance reduction technique based on Stein operators for discrete distributions. We then use this technique to build flexible control variates for the REINFORCE leave-one-out estimator. Our control variates can be adapted online to minimize variance and do not require extra evaluations of the target function. In benchmark generative modeling tasks such as training binary variational autoencoders, our gradient estimator achieves substantially lower variance than state-of-the-art estimators with the same number of function evaluations.
comment: NeurIPS 2022. Source code: https://github.com/thjashin/rodeo
♻ ☆ PiSSA: Principal Singular Values and Singular Vectors Adaptation of Large Language Models
As the parameters of LLMs expand, the computational cost of fine-tuning the entire model becomes prohibitive. To address this challenge, we introduce a PEFT method, Principal Singular values and Singular vectors Adaptation (PiSSA), which optimizes a significantly reduced parameter space while achieving or surpassing the performance of full-parameter fine-tuning. PiSSA is inspired by Intrinsic SAID, which suggests that pre-trained, over-parametrized models inhabit a space of low intrinsic dimension. Consequently, PiSSA represents a matrix W within the model by the product of two trainable matrices A and B, plus a residual matrix $W^{res}$ for error correction. SVD is employed to factorize W, and the principal singular values and vectors of W are utilized to initialize A and B. The residual singular values and vectors initialize the residual matrix $W^{res}$, which keeps frozen during fine-tuning. Notably, PiSSA shares the same architecture with LoRA. However, LoRA approximates Delta W through the product of two matrices, A, initialized with Gaussian noise, and B, initialized with zeros, while PiSSA initializes A and B with principal singular values and vectors of the original matrix W. PiSSA can better approximate the outcomes of full-parameter fine-tuning at the beginning by changing the essential parts while freezing the "noisy" parts. In comparison, LoRA freezes the original matrix and updates the "noise". This distinction enables PiSSA to convergence much faster than LoRA and also achieve better performance in the end. Due to the same architecture, PiSSA inherits many of LoRA's advantages, such as parameter efficiency and compatibility with quantization. Leveraging a fast SVD method, the initialization of PiSSA takes only a few seconds, inducing negligible cost of switching LoRA to PiSSA.
♻ ☆ Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation
In recent years, precision agriculture has gradually oriented farming closer to automation processes to support all the activities related to field management. Service robotics plays a predominant role in this evolution by deploying autonomous agents that can navigate fields while performing tasks such as monitoring, spraying, and harvesting without human intervention. To execute these precise actions, mobile robots need a real-time perception system that understands their surroundings and identifies their targets in the wild. Existing methods, however, often fall short in generalizing to new crops and environmental conditions. This limit is critical for practical applications where labeled samples are rarely available. In this paper, we investigate the problem of crop segmentation and propose a novel approach to enhance domain generalization using knowledge distillation. In the proposed framework, we transfer knowledge from a standardized ensemble of models individually trained on source domains to a student model that can adapt to unseen realistic scenarios. To support the proposed method, we present a synthetic multi-domain dataset for crop segmentation containing plants of variegate species and covering different terrain styles, weather conditions, and light scenarios for more than 70,000 samples. We demonstrate significant improvements in performance over state-of-the-art methods and superior sim-to-real generalization. Our approach provides a promising solution for domain generalization in crop segmentation and has the potential to enhance a wide variety of agriculture applications.
♻ ☆ A Tractable Online Learning Algorithm for the Multinomial Logit Contextual Bandit
In this paper, we consider the contextual variant of the MNL-Bandit problem. More specifically, we consider a dynamic set optimization problem, where a decision-maker offers a subset (assortment) of products to a consumer and observes the response in every round. Consumers purchase products to maximize their utility. We assume that a set of attributes describe the products, and the mean utility of a product is linear in the values of these attributes. We model consumer choice behavior using the widely used Multinomial Logit (MNL) model and consider the decision maker problem of dynamically learning the model parameters while optimizing cumulative revenue over the selling horizon $T$. Though this problem has attracted considerable attention in recent times, many existing methods often involve solving an intractable non-convex optimization problem. Their theoretical performance guarantees depend on a problem-dependent parameter which could be prohibitively large. In particular, existing algorithms for this problem have regret bounded by $O(\sqrt{\kappa d T})$, where $\kappa$ is a problem-dependent constant that can have an exponential dependency on the number of attributes. In this paper, we propose an optimistic algorithm and show that the regret is bounded by $O(\sqrt{dT} + \kappa)$, significantly improving the performance over existing methods. Further, we propose a convex relaxation of the optimization step, which allows for tractable decision-making while retaining the favourable regret guarantee.
comment: Bug fixed
♻ ☆ On the Reduction of Variance and Overestimation of Deep Q-Learning
The breakthrough of deep Q-Learning on different types of environments revolutionized the algorithmic design of Reinforcement Learning to introduce more stable and robust algorithms, to that end many extensions to deep Q-Learning algorithm have been proposed to reduce the variance of the target values and the overestimation phenomena. In this paper, we examine new methodology to solve these issues, we propose using Dropout techniques on deep Q-Learning algorithm as a way to reduce variance and overestimation. We also present experiments conducted on benchmark environments, demonstrating the effectiveness of our methodology in enhancing stability and reducing both variance and overestimation in model performance.
♻ ☆ Interpretable Neural Networks with Random Constructive Algorithm
This paper introduces an Interpretable Neural Network (INN) incorporating spatial information to tackle the opaque parameterization process of random weighted neural networks. The INN leverages spatial information to elucidate the connection between parameters and network residuals. Furthermore, it devises a geometric relationship strategy using a pool of candidate nodes and established relationships to select node parameters conducive to network convergence. Additionally, a lightweight version of INN tailored for large-scale data modeling tasks is proposed. The paper also showcases the infinite approximation property of INN. Experimental findings on various benchmark datasets and real-world industrial cases demonstrate INN's superiority over other neural networks of the same type in terms of modeling speed, accuracy, and network structure.
♻ ☆ Adaptive Negative Evidential Deep Learning for Open-set Semi-supervised Learning AAAI2024
Semi-supervised learning (SSL) methods assume that labeled data, unlabeled data and test data are from the same distribution. Open-set semi-supervised learning (Open-set SSL) considers a more practical scenario, where unlabeled data and test data contain new categories (outliers) not observed in labeled data (inliers). Most previous works focused on outlier detection via binary classifiers, which suffer from insufficient scalability and inability to distinguish different types of uncertainty. In this paper, we propose a novel framework, Adaptive Negative Evidential Deep Learning (ANEDL) to tackle these limitations. Concretely, we first introduce evidential deep learning (EDL) as an outlier detector to quantify different types of uncertainty, and design different uncertainty metrics for self-training and inference. Furthermore, we propose a novel adaptive negative optimization strategy, making EDL more tailored to the unlabeled dataset containing both inliers and outliers. As demonstrated empirically, our proposed method outperforms existing state-of-the-art methods across four datasets.
comment: Accepted by AAAI2024
♻ ☆ Node Classification in Random Trees
We propose a method for the classification of objects that are structured as random trees. Our aim is to model a distribution over the node label assignments in settings where the tree data structure is associated with node attributes (typically high dimensional embeddings). The tree topology is not predetermined and none of the label assignments are present during inference. Other methods that produce a distribution over node label assignment in trees (or more generally in graphs) either assume conditional independence of the label assignment, operate on a fixed graph topology, or require part of the node labels to be observed. Our method defines a Markov Network with the corresponding topology of the random tree and an associated Gibbs distribution. We parameterize the Gibbs distribution with a Graph Neural Network that operates on the random tree and the node embeddings. This allows us to estimate the likelihood of node assignments for a given random tree and use MCMC to sample from the distribution of node assignments. We evaluate our method on the tasks of node classification in trees on the Stanford Sentiment Treebank dataset. Our method outperforms the baselines on this dataset, demonstrating its effectiveness for modeling joint distributions of node labels in random trees.
Multimedia 3
☆ Arena: A Patch-of-Interest ViT Inference Acceleration System for Edge-Assisted Video Analytics
The advent of edge computing has made real-time intelligent video analytics feasible. Previous works, based on traditional model architecture (e.g., CNN, RNN, etc.), employ various strategies to filter out non-region-of-interest content to minimize bandwidth and computation consumption but show inferior performance in adverse environments. Recently, visual foundation models based on transformers have shown great performance in adverse environments due to their amazing generalization capability. However, they require a large amount of computation power, which limits their applications in real-time intelligent video analytics. In this paper, we find visual foundation models like Vision Transformer (ViT) also have a dedicated acceleration mechanism for video analytics. To this end, we introduce Arena, an end-to-end edge-assisted video inference acceleration system based on ViT. We leverage the capability of ViT that can be accelerated through token pruning by only offloading and feeding Patches-of-Interest (PoIs) to the downstream models. Additionally, we employ probability-based patch sampling, which provides a simple but efficient mechanism for determining PoIs where the probable locations of objects are in subsequent frames. Through extensive evaluations on public datasets, our findings reveal that Arena can boost inference speeds by up to $1.58\times$ and $1.82\times$ on average while consuming only 54% and 34% of the bandwidth, respectively, all with high inference accuracy.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has recently emerged as a transformative technique in the realm of explicit radiance field and computer graphics. This innovative approach, characterized by the utilization of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research in this domain. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in applicable and explicit radiance field representation.
comment: Ongoing project
♻ ☆ BERT-like Pre-training for Symbolic Piano Music Classification Tasks
This article presents a benchmark study of symbolic piano music classification using the masked language modelling approach of the Bidirectional Encoder Representations from Transformers (BERT). Specifically, we consider two types of MIDI data: MIDI scores, which are musical scores rendered directly into MIDI with no dynamics and precisely aligned with the metrical grid notated by its composer and MIDI performances, which are MIDI encodings of human performances of musical scoresheets. With five public-domain datasets of single-track piano MIDI files, we pre-train two 12-layer Transformer models using the BERT approach, one for MIDI scores and the other for MIDI performances, and fine-tune them for four downstream classification tasks. These include two note-level classification tasks (melody extraction and velocity prediction) and two sequence-level classification tasks (style classification and emotion classification). Our evaluation shows that the BERT approach leads to higher classification accuracy than recurrent neural network (RNN)-based baselines.
comment: Accepted to Journal of Creative Music Systems
Computation and Language 47
☆ Semantic In-Domain Product Identification for Search Queries
Accurate explicit and implicit product identification in search queries is critical for enhancing user experiences, especially at a company like Adobe which has over 50 products and covers queries across hundreds of tools. In this work, we present a novel approach to training a product classifier from user behavioral data. Our semantic model led to >25% relative improvement in CTR (click through rate) across the deployed surfaces; a >50% decrease in null rate; a 2x increase in the app cards surfaced, which helps drive product visibility.
☆ CuriousLLM: Elevating Multi-Document QA with Reasoning-Infused Knowledge Graph Prompting
In the field of Question Answering (QA), unifying large language models (LLMs) with external databases has shown great success. However, these methods often fall short in providing the advanced reasoning needed for complex QA tasks. To address these issues, we improve over a novel approach called Knowledge Graph Prompting (KGP), which combines knowledge graphs with a LLM-based agent to improve reasoning and search accuracy. Nevertheless, the original KGP framework necessitates costly fine-tuning with large datasets yet still suffers from LLM hallucination. Therefore, we propose a reasoning-infused LLM agent to enhance this framework. This agent mimics human curiosity to ask follow-up questions to more efficiently navigate the search. This simple modification significantly boosts the LLM performance in QA tasks without the high costs and latency associated with the initial KGP framework. Our ultimate goal is to further develop this approach, leading to more accurate, faster, and cost-effective solutions in the QA domain.
☆ CodeCloak: A Method for Evaluating and Mitigating Code Leakage by LLM Code Assistants
LLM-based code assistants are becoming increasingly popular among developers. These tools help developers improve their coding efficiency and reduce errors by providing real-time suggestions based on the developer's codebase. While beneficial, these tools might inadvertently expose the developer's proprietary code to the code assistant service provider during the development process. In this work, we propose two complementary methods to mitigate the risk of code leakage when using LLM-based code assistants. The first is a technique for reconstructing a developer's original codebase from code segments sent to the code assistant service (i.e., prompts) during the development process, enabling assessment and evaluation of the extent of code leakage to third parties (or adversaries). The second is CodeCloak, a novel deep reinforcement learning agent that manipulates the prompts before sending them to the code assistant service. CodeCloak aims to achieve the following two contradictory goals: (i) minimizing code leakage, while (ii) preserving relevant and useful suggestions for the developer. Our evaluation, employing GitHub Copilot, StarCoder, and CodeLlama LLM-based code assistants models, demonstrates the effectiveness of our CodeCloak approach on a diverse set of code repositories of varying sizes, as well as its transferability across different models. In addition, we generate a realistic simulated coding environment to thoroughly analyze code leakage risks and evaluate the effectiveness of our proposed mitigation techniques under practical development scenarios.
☆ Multilingual Evaluation of Semantic Textual Relatedness
The explosive growth of online content demands robust Natural Language Processing (NLP) techniques that can capture nuanced meanings and cultural context across diverse languages. Semantic Textual Relatedness (STR) goes beyond superficial word overlap, considering linguistic elements and non-linguistic factors like topic, sentiment, and perspective. Despite its pivotal role, prior NLP research has predominantly focused on English, limiting its applicability across languages. Addressing this gap, our paper dives into capturing deeper connections between sentences beyond simple word overlap. Going beyond English-centric NLP research, we explore STR in Marathi, Hindi, Spanish, and English, unlocking the potential for information retrieval, machine translation, and more. Leveraging the SemEval-2024 shared task, we explore various language models across three learning paradigms: supervised, unsupervised, and cross-lingual. Our comprehensive methodology gains promising results, demonstrating the effectiveness of our approach. This work aims to not only showcase our achievements but also inspire further research in multilingual STR, particularly for low-resourced languages.
comment: 8 pages
☆ Adapting Mental Health Prediction Tasks for Cross-lingual Learning via Meta-Training and In-context Learning with Large Language Model
Timely identification is essential for the efficient handling of mental health illnesses such as depression. However, the current research fails to adequately address the prediction of mental health conditions from social media data in low-resource African languages like Swahili. This study introduces two distinct approaches utilising model-agnostic meta-learning and leveraging large language models (LLMs) to address this gap. Experiments are conducted on three datasets translated to low-resource language and applied to four mental health tasks, which include stress, depression, depression severity and suicidal ideation prediction. we first apply a meta-learning model with self-supervision, which results in improved model initialisation for rapid adaptation and cross-lingual transfer. The results show that our meta-trained model performs significantly better than standard fine-tuning methods, outperforming the baseline fine-tuning in macro F1 score with 18\% and 0.8\% over XLM-R and mBERT. In parallel, we use LLMs' in-context learning capabilities to assess their performance accuracy across the Swahili mental health prediction tasks by analysing different cross-lingual prompting approaches. Our analysis showed that Swahili prompts performed better than cross-lingual prompts but less than English prompts. Our findings show that in-context learning can be achieved through cross-lingual transfer through carefully crafted prompt templates with examples and instructions.
☆ Do LLMs Play Dice? Exploring Probability Distribution Sampling in Large Language Models for Behavioral Simulation
With the rapid advancement of large language models (LLMs) and their remarkable capabilities in handling complex language tasks, an increasing number of studies are employing LLMs as agents to emulate the sequential decision-making processes of humans often represented as Markov decision-making processes (MDPs). The actions within this decision-making framework adhere to specific probability distributions and require iterative sampling. This arouses our curiosity regarding the capacity of LLM agents to comprehend probability distributions, thereby guiding the agent's behavioral decision-making through probabilistic sampling and generating behavioral sequences. To answer the above question, we divide the problem into two main aspects: simulation where the exact probability distribution is known, and generation of sequences where the probability distribution is ambiguous. In the first case, the agent is required to give the type and parameters of the probability distribution through the problem description, and then give the sampling sequence. However, our analysis shows that LLM agents perform poorly in this case, but the sampling success rate can be improved through programming tools. Real-world scenarios often entail unknown probability distributions. Thus, in the second case, we ask the agents to change the activity level in online social networks and analyze the frequency of actions. Ultimately, our analysis shows that LLM agents cannot sample probability distributions even using programming tools. Therefore, careful consideration is still required before directly applying LLM agents as agents to simulate human behavior.
☆ MING-MOE: Enhancing Medical Multi-Task Learning in Large Language Models with Sparse Mixture of Low-Rank Adapter Experts
Large language models like ChatGPT have shown substantial progress in natural language understanding and generation, proving valuable across various disciplines, including the medical field. Despite advancements, challenges persist due to the complexity and diversity inherent in medical tasks which often require multi-task learning capabilities. Previous approaches, although beneficial, fall short in real-world applications because they necessitate task-specific annotations at inference time, limiting broader generalization. This paper introduces MING-MOE, a novel Mixture-of-Expert~(MOE)-based medical large language model designed to manage diverse and complex medical tasks without requiring task-specific annotations, thus enhancing its usability across extensive datasets. MING-MOE employs a Mixture of Low-Rank Adaptation (MoLoRA) technique, allowing for efficient parameter usage by maintaining base model parameters static while adapting through a minimal set of trainable parameters. We demonstrate that MING-MOE achieves state-of-the-art (SOTA) performance on over 20 medical tasks, illustrating a significant improvement over existing models. This approach not only extends the capabilities of medical language models but also improves inference efficiency.
comment: 15 pages, 3 figures
☆ Navigating the Landscape of Large Language Models: A Comprehensive Review and Analysis of Paradigms and Fine-Tuning Strategies
With the surge of ChatGPT,the use of large models has significantly increased,rapidly rising to prominence across the industry and sweeping across the internet. This article is a comprehensive review of fine-tuning methods for large models. This paper investigates the latest technological advancements and the application of advanced methods in aspects such as task-adaptive fine-tuning,domain-adaptive fine-tuning,few-shot learning,knowledge distillation,multi-task learning,parameter-efficient fine-tuning,and dynamic fine-tuning.
☆ WikiSplit++: Easy Data Refinement for Split and Rephrase LREC
The task of Split and Rephrase, which splits a complex sentence into multiple simple sentences with the same meaning, improves readability and enhances the performance of downstream tasks in natural language processing (NLP). However, while Split and Rephrase can be improved using a text-to-text generation approach that applies encoder-decoder models fine-tuned with a large-scale dataset, it still suffers from hallucinations and under-splitting. To address these issues, this paper presents a simple and strong data refinement approach. Here, we create WikiSplit++ by removing instances in WikiSplit where complex sentences do not entail at least one of the simpler sentences and reversing the order of reference simple sentences. Experimental results show that training with WikiSplit++ leads to better performance than training with WikiSplit, even with fewer training instances. In particular, our approach yields significant gains in the number of splits and the entailment ratio, a proxy for measuring hallucinations.
comment: Accepted at LREC-COLING 2024
☆ Labeled Morphological Segmentation with Semi-Markov Models CoNLL 2015
We present labeled morphological segmentation, an alternative view of morphological processing that unifies several tasks. From an annotation standpoint, we additionally introduce a new hierarchy of morphotactic tagsets. Finally, we develop \modelname, a discriminative morphological segmentation system that, contrary to previous work, explicitly models morphotactics. We show that \textsc{chipmunk} yields improved performance on three tasks for all six languages: (i) morphological segmentation, (ii) stemming and (iii) morphological tag classification. On morphological segmentation, our method shows absolute improvements of 2--6 points $F_1$ over the baseline.
comment: CoNLL 2015
☆ RoNID: New Intent Discovery with Generated-Reliable Labels and Cluster-friendly Representations DASFAA 2024
New Intent Discovery (NID) strives to identify known and reasonably deduce novel intent groups in the open-world scenario. But current methods face issues with inaccurate pseudo-labels and poor representation learning, creating a negative feedback loop that degrades overall model performance, including accuracy and the adjusted rand index. To address the aforementioned challenges, we propose a Robust New Intent Discovery (RoNID) framework optimized by an EM-style method, which focuses on constructing reliable pseudo-labels and obtaining cluster-friendly discriminative representations. RoNID comprises two main modules: reliable pseudo-label generation module and cluster-friendly representation learning module. Specifically, the pseudo-label generation module assigns reliable synthetic labels by solving an optimal transport problem in the E-step, which effectively provides high-quality supervised signals for the input of the cluster-friendly representation learning module. To learn cluster-friendly representation with strong intra-cluster compactness and large inter-cluster separation, the representation learning module combines intra-cluster and inter-cluster contrastive learning in the M-step to feed more discriminative features into the generation module. RoNID can be performed iteratively to ultimately yield a robust model with reliable pseudo-labels and cluster-friendly representations. Experimental results on multiple benchmarks demonstrate our method brings substantial improvements over previous state-of-the-art methods by a large margin of +1~+4 points.
comment: DASFAA 2024
☆ OOVs in the Spotlight: How to Inflect them? LREC
We focus on morphological inflection in out-of-vocabulary (OOV) conditions, an under-researched subtask in which state-of-the-art systems usually are less effective. We developed three systems: a retrograde model and two sequence-to-sequence (seq2seq) models based on LSTM and Transformer. For testing in OOV conditions, we automatically extracted a large dataset of nouns in the morphologically rich Czech language, with lemma-disjoint data splits, and we further manually annotated a real-world OOV dataset of neologisms. In the standard OOV conditions, Transformer achieves the best results, with increasing performance in ensemble with LSTM, the retrograde model and SIGMORPHON baselines. On the real-world OOV dataset of neologisms, the retrograde model outperforms all neural models. Finally, our seq2seq models achieve state-of-the-art results in 9 out of 16 languages from SIGMORPHON 2022 shared task data in the OOV evaluation (feature overlap) in the large data condition. We release the Czech OOV Inflection Dataset for rigorous evaluation in OOV conditions. Further, we release the inflection system with the seq2seq models as a ready-to-use Python library.
comment: To be published in LREC-COLING 2024. 12 pages, 3 figures
☆ AMU-Tuning: Effective Logit Bias for CLIP-based Few-shot Learning CVPR 2024
Recently, pre-trained vision-language models (e.g., CLIP) have shown great potential in few-shot learning and attracted a lot of research interest. Although efforts have been made to improve few-shot ability of CLIP, key factors on the effectiveness of existing methods have not been well studied, limiting further exploration of CLIP's potential in few-shot learning. In this paper, we first introduce a unified formulation to analyze CLIP-based few-shot learning methods from a perspective of logit bias, which encourages us to learn an effective logit bias for further improving performance of CLIP-based few-shot learning methods. To this end, we disassemble three key components involved in computation of logit bias (i.e., logit features, logit predictor, and logit fusion) and empirically analyze the effect on performance of few-shot classification. Based on analysis of key components, this paper proposes a novel AMU-Tuning method to learn effective logit bias for CLIP-based few-shot classification. Specifically, our AMU-Tuning predicts logit bias by exploiting the appropriate $\underline{\textbf{A}}$uxiliary features, which are fed into an efficient feature-initialized linear classifier with $\underline{\textbf{M}}$ulti-branch training. Finally, an $\underline{\textbf{U}}$ncertainty-based fusion is developed to incorporate logit bias into CLIP for few-shot classification. The experiments are conducted on several widely used benchmarks, and the results show AMU-Tuning clearly outperforms its counterparts while achieving state-of-the-art performance of CLIP-based few-shot learning without bells and whistles.
comment: Accepted by CVPR 2024
☆ Multimodal Cross-Document Event Coreference Resolution Using Linear Semantic Transfer and Mixed-Modality Ensembles LREC
Event coreference resolution (ECR) is the task of determining whether distinct mentions of events within a multi-document corpus are actually linked to the same underlying occurrence. Images of the events can help facilitate resolution when language is ambiguous. Here, we propose a multimodal cross-document event coreference resolution method that integrates visual and textual cues with a simple linear map between vision and language models. As existing ECR benchmark datasets rarely provide images for all event mentions, we augment the popular ECB+ dataset with event-centric images scraped from the internet and generated using image diffusion models. We establish three methods that incorporate images and text for coreference: 1) a standard fused model with finetuning, 2) a novel linear mapping method without finetuning and 3) an ensembling approach based on splitting mention pairs by semantic and discourse-level difficulty. We evaluate on 2 datasets: the augmented ECB+, and AIDA Phase 1. Our ensemble systems using cross-modal linear mapping establish an upper limit (91.9 CoNLL F1) on ECB+ ECR performance given the preprocessing assumptions used, and establish a novel baseline on AIDA Phase 1. Our results demonstrate the utility of multimodal information in ECR for certain challenging coreference problems, and highlight a need for more multimodal resources in the coreference resolution space.
comment: To appear at LREC-COLING 2024
☆ Introducing Super RAGs in Mistral 8x7B-v1
The relentless pursuit of enhancing Large Language Models (LLMs) has led to the advent of Super Retrieval-Augmented Generation (Super RAGs), a novel approach designed to elevate the performance of LLMs by integrating external knowledge sources with minimal structural modifications. This paper presents the integration of Super RAGs into the Mistral 8x7B v1, a state-of-the-art LLM, and examines the resultant improvements in accuracy, speed, and user satisfaction. Our methodology uses a fine-tuned instruct model setup and a cache tuning fork system, ensuring efficient and relevant data retrieval. The evaluation, conducted over several epochs, demonstrates significant enhancements across all metrics. The findings suggest that Super RAGs can effectively augment LLMs, paving the way for more sophisticated and reliable AI systems. This research contributes to the field by providing empirical evidence of the benefits of Super RAGs and offering insights into their potential applications.
☆ Enforcing Paraphrase Generation via Controllable Latent Diffusion
Paraphrase generation aims to produce high-quality and diverse utterances of a given text. Though state-of-the-art generation via the diffusion model reconciles generation quality and diversity, textual diffusion suffers from a truncation issue that hinders efficiency and quality control. In this work, we propose \textit{L}atent \textit{D}iffusion \textit{P}araphraser~(LDP), a novel paraphrase generation by modeling a controllable diffusion process given a learned latent space. LDP achieves superior generation efficiency compared to its diffusion counterparts. It facilitates only input segments to enforce paraphrase semantics, which further improves the results without external features. Experiments show that LDP achieves improved and diverse paraphrase generation compared to baselines. Further analysis shows that our method is also helpful to other similar text generations and domain adaptations. Our code and data are available at https://github.com/NIL-zhuang/ld4pg.
☆ Towards Enhancing Health Coaching Dialogue in Low-Resource Settings COLING 2022
Health coaching helps patients identify and accomplish lifestyle-related goals, effectively improving the control of chronic diseases and mitigating mental health conditions. However, health coaching is cost-prohibitive due to its highly personalized and labor-intensive nature. In this paper, we propose to build a dialogue system that converses with the patients, helps them create and accomplish specific goals, and can address their emotions with empathy. However, building such a system is challenging since real-world health coaching datasets are limited and empathy is subtle. Thus, we propose a modularized health coaching dialogue system with simplified NLU and NLG frameworks combined with mechanism-conditioned empathetic response generation. Through automatic and human evaluation, we show that our system generates more empathetic, fluent, and coherent responses and outperforms the state-of-the-art in NLU tasks while requiring less annotation. We view our approach as a key step towards building automated and more accessible health coaching systems.
comment: Accepted to the main conference of COLING 2022
☆ EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM NAACL 2024
In e-commerce, accurately extracting product attribute values from multimodal data is crucial for improving user experience and operational efficiency of retailers. However, previous approaches to multimodal attribute value extraction often struggle with implicit attribute values embedded in images or text, rely heavily on extensive labeled data, and can easily confuse similar attribute values. To address these issues, we introduce EIVEN, a data- and parameter-efficient generative framework that pioneers the use of multimodal LLM for implicit attribute value extraction. EIVEN leverages the rich inherent knowledge of a pre-trained LLM and vision encoder to reduce reliance on labeled data. We also introduce a novel Learning-by-Comparison technique to reduce model confusion by enforcing attribute value comparison and difference identification. Additionally, we construct initial open-source datasets for multimodal implicit attribute value extraction. Our extensive experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values while requiring less labeled data.
comment: Accepted by NAACL 2024 Industry Track
☆ Is Next Token Prediction Sufficient for GPT? Exploration on Code Logic Comprehension
Large language models (LLMs) has experienced exponential growth, they demonstrate remarkable performance across various tasks. Notwithstanding, contemporary research primarily centers on enhancing the size and quality of pretraining data, still utilizing the next token prediction task on autoregressive transformer model structure. The efficacy of this task in truly facilitating the model's comprehension of code logic remains questionable, we speculate that it still interprets code as mere text, while human emphasizes the underlying logical knowledge. In order to prove it, we introduce a new task, "Logically Equivalent Code Selection," which necessitates the selection of logically equivalent code from a candidate set, given a query code. Our experimental findings indicate that current LLMs underperform in this task, since they understand code by unordered bag of keywords. To ameliorate their performance, we propose an advanced pretraining task, "Next Token Prediction+". This task aims to modify the sentence embedding distribution of the LLM without sacrificing its generative capabilities. Our experimental results reveal that following this pretraining, both Code Llama and StarCoder, the prevalent code domain pretraining models, display significant improvements on our logically equivalent code selection task and the code completion task.
☆ Aligning LLMs for FL-free Program Repair
Large language models (LLMs) have achieved decent results on automated program repair (APR). However, the next token prediction training objective of decoder-only LLMs (e.g., GPT-4) is misaligned with the masked span prediction objective of current infilling-style methods, which impedes LLMs from fully leveraging pre-trained knowledge for program repair. In addition, while some LLMs are capable of locating and repairing bugs end-to-end when using the related artifacts (e.g., test cases) as input, existing methods regard them as separate tasks and ask LLMs to generate patches at fixed locations. This restriction hinders LLMs from exploring potential patches beyond the given locations. In this paper, we investigate a new approach to adapt LLMs to program repair. Our core insight is that LLM's APR capability can be greatly improved by simply aligning the output to their training objective and allowing them to refine the whole program without first performing fault localization. Based on this insight, we designed D4C, a straightforward prompting framework for APR. D4C can repair 180 bugs correctly in Defects4J, with each patch being sampled only 10 times. This surpasses the SOTA APR methods with perfect fault localization by 10% and reduces the patch sampling number by 90%. Our findings reveal that (1) objective alignment is crucial for fully exploiting LLM's pre-trained capability, and (2) replacing the traditional localize-then-repair workflow with direct debugging is more effective for LLM-based APR methods. Thus, we believe this paper introduces a new mindset for harnessing LLMs in APR.
☆ LLM In-Context Recall is Prompt Dependent
The proliferation of Large Language Models (LLMs) highlights the critical importance of conducting thorough evaluations to discern their comparative advantages, limitations, and optimal use cases. Particularly important is assessing their capacity to accurately retrieve information included in a given prompt. A model's ability to do this significantly influences how effectively it can utilize contextual details, thus impacting its practical efficacy and dependability in real-world applications. Our research analyzes the in-context recall performance of various LLMs using the needle-in-a-haystack method. In this approach, a factoid (the "needle") is embedded within a block of filler text (the "haystack"), which the model is asked to retrieve. We assess the recall performance of each model across various haystack lengths and with varying needle placements to identify performance patterns. This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data. Conversely, adjustments to model architecture, training strategy, or fine-tuning can improve performance. Our analysis provides insight into LLM behavior, offering direction for the development of more effective applications of LLMs.
☆ On Speculative Decoding for Multimodal Large Language Models CVPR 2024
Inference with Multimodal Large Language Models (MLLMs) is slow due to their large-language-model backbone which suffers from memory bandwidth bottleneck and generates tokens auto-regressively. In this paper, we explore the application of speculative decoding to enhance the inference efficiency of MLLMs, specifically the LLaVA 7B model. We show that a language-only model can serve as a good draft model for speculative decoding with LLaVA 7B, bypassing the need for image tokens and their associated processing components from the draft model. Our experiments across three different tasks show that speculative decoding can achieve a memory-bound speedup of up to 2.37$\times$ using a 115M parameter language model that we trained from scratch. Additionally, we introduce a compact LLaVA draft model incorporating an image adapter, which shows marginal performance gains in image captioning while maintaining comparable results in other tasks.
comment: Accepted as a spotlight paper to ELVM workshop at CVPR 2024
♻ ☆ BooookScore: A systematic exploration of book-length summarization in the era of LLMs ICLR 2024
Summarizing book-length documents (>100K tokens) that exceed the context window size of large language models (LLMs) requires first breaking the input document into smaller chunks and then prompting an LLM to merge, update, and compress chunk-level summaries. Despite the complexity and importance of this task, it has yet to be meaningfully studied due to the challenges of evaluation: existing book-length summarization datasets (e.g., BookSum) are in the pretraining data of most public LLMs, and existing evaluation methods struggle to capture errors made by modern LLM summarizers. In this paper, we present the first study of the coherence of LLM-based book-length summarizers implemented via two prompting workflows: (1) hierarchically merging chunk-level summaries, and (2) incrementally updating a running summary. We obtain 1193 fine-grained human annotations on GPT-4 generated summaries of 100 recently-published books and identify eight common types of coherence errors made by LLMs. Because human evaluation is expensive and time-consuming, we develop an automatic metric, BooookScore, that measures the proportion of sentences in a summary that do not contain any of the identified error types. BooookScore has high agreement with human annotations and allows us to systematically evaluate the impact of many other critical parameters (e.g., chunk size, base LLM) while saving $15K USD and 500 hours in human evaluation costs. We find that closed-source LLMs such as GPT-4 and Claude 2 produce summaries with higher BooookScore than those generated by open-source models. While LLaMA 2 falls behind other models, Mixtral achieves performance on par with GPT-3.5-Turbo. Incremental updating yields lower BooookScore but higher level of detail than hierarchical merging, a trade-off sometimes preferred by annotators.
comment: ICLR 2024 camera-ready (updated figure1 and table2; corrected minor details in the explanation of hierarchical merging)
♻ ☆ MAPO: Advancing Multilingual Reasoning through Multilingual Alignment-as-Preference Optimization
Though reasoning abilities are considered language-agnostic, existing LLMs exhibit inconsistent reasoning abilities across different languages, e.g., reasoning in the dominant language like English is superior to other languages due to the imbalance of multilingual training data. To enhance reasoning abilities in non-dominant languages, we propose a Multilingual-Alignment-as-Preference Optimization framework (MAPO), aiming to align the reasoning processes in other languages with the dominant language. Specifically, we harness an off-the-shelf translation model for the consistency between answers in non-dominant and dominant languages, which we adopt as the preference for optimization, e.g., Direct Preference Optimization (DPO) or Proximal Policy Optimization (PPO). Experiments show that MAPO stably achieves significant improvements in the multilingual reasoning of various models on all three benchmarks (MSVAMP +16.2%, MGSM +6.1%, and MNumGLUESub +13.3%), with improved reasoning consistency across languages.
comment: The project is available at https://github.com/NJUNLP/MAPO
♻ ☆ Dynamic Clue Bottlenecks: Towards Interpretable-by-Design Visual Question Answering
Recent advances in multimodal large language models (LLMs) have shown extreme effectiveness in visual question answering (VQA). However, the design nature of these end-to-end models prevents them from being interpretable to humans, undermining trust and applicability in critical domains. While post-hoc rationales offer certain insight into understanding model behavior, these explanations are not guaranteed to be faithful to the model. In this paper, we address these shortcomings by introducing an interpretable by design model that factors model decisions into intermediate human-legible explanations, and allows people to easily understand why a model fails or succeeds. We propose the Dynamic Clue Bottleneck Model ( (DCLUB), a method that is designed towards an inherently interpretable VQA system. DCLUB provides an explainable intermediate space before the VQA decision and is faithful from the beginning, while maintaining comparable performance to black-box systems. Given a question, DCLUB first returns a set of visual clues: natural language statements of visually salient evidence from the image, and then generates the output based solely on the visual clues. To supervise and evaluate the generation of VQA explanations within DCLUB, we collect a dataset of 1.7k reasoning-focused questions with visual clues. Evaluations show that our inherently interpretable system can improve 4.64% over a comparable black-box system in reasoning-focused questions while preserving 99.43% of performance on VQA-v2.
comment: Multimodal, Visual Question Answering, Vision and Language
♻ ☆ GeoGalactica: A Scientific Large Language Model in Geoscience
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP). Due to their impressive abilities, LLMs have shed light on potential inter-discipline applications to foster scientific discoveries of a specific domain by using artificial intelligence (AI for science, AI4S). In the meantime, utilizing NLP techniques in geoscience research and practice is wide and convoluted, contributing from knowledge extraction and document classification to question answering and knowledge discovery. In this work, we take the initial step to leverage LLM for science, through a rather straightforward approach. We try to specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset. These efforts result in a model GeoGalactica consisting of 30 billion parameters. To our best knowledge, it is the largest language model for the geoscience domain. More specifically, GeoGalactica is from further pre-training of Galactica. We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus. Then we fine-tune the model with 1 million pairs of instruction-tuning data consisting of questions that demand professional geoscience knowledge to answer. In this technical report, we will illustrate in detail all aspects of GeoGalactica, including data collection, data cleaning, base model selection, pre-training, SFT, and evaluation. We open-source our data curation tools and the checkpoints of GeoGalactica during the first 3/4 of pre-training.
♻ ☆ When are Lemons Purple? The Concept Association Bias of Vision-Language Models EMNLP 2023
Large-scale vision-language models such as CLIP have shown impressive performance on zero-shot image classification and image-to-text retrieval. However, such performance does not realize in tasks that require a finer-grained correspondence between vision and language, such as Visual Question Answering (VQA). As a potential cause of the difficulty of applying these models to VQA and similar tasks, we report an interesting phenomenon of vision-language models, which we call the Concept Association Bias (CAB). We find that models with CAB tend to treat input as a bag of concepts and attempt to fill in the other missing concept crossmodally, leading to an unexpected zero-shot prediction. We demonstrate CAB by showing that CLIP's zero-shot classification performance greatly suffers when there is a strong concept association between an object (e.g. eggplant) and an attribute (e.g. color purple). We also show that the strength of CAB predicts the performance on VQA. We observe that CAB is prevalent in vision-language models trained with contrastive losses, even when autoregressive losses are jointly employed. However, a model that solely relies on autoregressive loss seems to exhibit minimal or no signs of CAB.
comment: EMNLP 2023 main
♻ ☆ Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling
Recommender systems are indispensable in the realm of online applications, and sequential recommendation has enjoyed considerable prevalence due to its capacity to encapsulate the dynamic shifts in user interests. However, previous sequential modeling methods still have limitations in capturing contextual information. The primary reason is the lack of understanding of domain-specific knowledge and item-related textual content. Fortunately, the emergence of powerful language models has unlocked the potential to incorporate extensive world knowledge into recommendation algorithms, enabling them to go beyond simple item attributes and truly understand the world surrounding user preferences. To achieve this, we propose LANCER, which leverages the semantic understanding capabilities of pre-trained language models to generate personalized recommendations. Our approach bridges the gap between language models and recommender systems, resulting in more human-like recommendations. We demonstrate the effectiveness of our approach through a series of experiments conducted on multiple benchmark datasets, showing promising results and providing valuable insights into the influence of our model on sequential recommendation tasks. Furthermore, our experimental codes are publicly available at https://github.com/Gnimixy/lancer.
♻ ☆ Merging by Matching Models in Task Parameter Subspaces
Model merging aims to cheaply combine individual task-specific models into a single multitask model. In this work, we view past merging methods as leveraging different notions of a ''task parameter subspace'' in which models are matched before being merged. We connect the task parameter subspace of a given model to its loss landscape and formalize how this approach to model merging can be seen as solving a linear system of equations. While past work has generally been limited to linear systems that have a closed-form solution, we consider using the conjugate gradient method to find a solution. We show that using the conjugate gradient method can outperform closed-form solutions, enables merging via linear systems that are otherwise intractable to solve, and flexibly allows choosing from a wide variety of initializations and estimates for the ''task parameter subspace''. We ultimately demonstrate that our merging framework called ''Matching Models in their Task Parameter Subspace'' (MaTS) achieves state-of-the-art results in multitask and intermediate-task model merging. We release all of the code and checkpoints used in our work at https://github.com/r-three/mats.
comment: TMLR
♻ ☆ Probing Large Language Models from A Human Behavioral Perspective LREC
Large Language Models (LLMs) have emerged as dominant foundational models in modern NLP. However, the understanding of their prediction processes and internal mechanisms, such as feed-forward networks (FFN) and multi-head self-attention (MHSA), remains largely unexplored. In this work, we probe LLMs from a human behavioral perspective, correlating values from LLMs with eye-tracking measures, which are widely recognized as meaningful indicators of human reading patterns. Our findings reveal that LLMs exhibit a similar prediction pattern with humans but distinct from that of Shallow Language Models (SLMs). Moreover, with the escalation of LLM layers from the middle layers, the correlation coefficients also increase in FFN and MHSA, indicating that the logits within FFN increasingly encapsulate word semantics suitable for predicting tokens from the vocabulary.
comment: Accepted by LREC-COLING NeusymBridge 2024
♻ ☆ HyperCLOVA X Technical Report
We introduce HyperCLOVA X, a family of large language models (LLMs) tailored to the Korean language and culture, along with competitive capabilities in English, math, and coding. HyperCLOVA X was trained on a balanced mix of Korean, English, and code data, followed by instruction-tuning with high-quality human-annotated datasets while abiding by strict safety guidelines reflecting our commitment to responsible AI. The model is evaluated across various benchmarks, including comprehensive reasoning, knowledge, commonsense, factuality, coding, math, chatting, instruction-following, and harmlessness, in both Korean and English. HyperCLOVA X exhibits strong reasoning capabilities in Korean backed by a deep understanding of the language and cultural nuances. Further analysis of the inherent bilingual nature and its extension to multilingualism highlights the model's cross-lingual proficiency and strong generalization ability to untargeted languages, including machine translation between several language pairs and cross-lingual inference tasks. We believe that HyperCLOVA X can provide helpful guidance for regions or countries in developing their sovereign LLMs.
comment: 44 pages; updated authors list and fixed author names
♻ ☆ X-Eval: Generalizable Multi-aspect Text Evaluation via Augmented Instruction Tuning with Auxiliary Evaluation Aspects NAACL 2024
Natural Language Generation (NLG) typically involves evaluating the generated text in various aspects (e.g., consistency and naturalness) to obtain a comprehensive assessment. However, multi-aspect evaluation remains challenging as it may require the evaluator to generalize to any given evaluation aspect even if it's absent during training. In this paper, we introduce X-Eval, a two-stage instruction tuning framework to evaluate the text in both seen and unseen aspects customized by end users. X-Eval consists of two learning stages: the vanilla instruction tuning stage that improves the model's ability to follow evaluation instructions, and an enhanced instruction tuning stage that exploits the connections between fine-grained evaluation aspects to better assess text quality. To support the training of X-Eval, we collect AspectInstruct, the first instruction tuning dataset tailored for multi-aspect NLG evaluation spanning 27 diverse evaluation aspects with 65 tasks. To enhance task diversity, we devise an augmentation strategy that converts human rating annotations into diverse forms of NLG evaluation tasks, including scoring, comparison, ranking, and Boolean question answering. Extensive experiments across three essential categories of NLG tasks: dialogue generation, summarization, and data-to-text coupled with 21 aspects in meta-evaluation, demonstrate that our X-Eval enables even a lightweight language model to achieve a comparable if not higher correlation with human judgments compared to the state-of-the-art NLG evaluators, such as GPT-4.
comment: NAACL 2024 Main Conference. 20 pages, 6 figures, 17 tables
♻ ☆ Event Grounded Criminal Court View Generation with Cooperative (Large) Language Models SIGIR2024
With the development of legal intelligence, Criminal Court View Generation has attracted much attention as a crucial task of legal intelligence, which aims to generate concise and coherent texts that summarize case facts and provide explanations for verdicts. Existing researches explore the key information in case facts to yield the court views. Most of them employ a coarse-grained approach that partitions the facts into broad segments (e.g., verdict-related sentences) to make predictions. However, this approach fails to capture the complex details present in the case facts, such as various criminal elements and legal events. To this end, in this paper, we propose an Event Grounded Generation (EGG) method for criminal court view generation with cooperative (Large) Language Models, which introduces the fine-grained event information into the generation. Specifically, we first design a LLMs-based extraction method that can extract events in case facts without massive annotated events. Then, we incorporate the extracted events into court view generation by merging case facts and events. Besides, considering the computational burden posed by the use of LLMs in the extraction phase of EGG, we propose a LLMs-free EGG method that can eliminate the requirement for event extraction using LLMs in the inference phase. Extensive experimental results on a real-world dataset clearly validate the effectiveness of our proposed method.
comment: Accepted to SIGIR2024
♻ ☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. All code and model weights are public at https://github.com/baochi0212/LaVy
comment: 4 pages
♻ ☆ Adapting Fake News Detection to the Era of Large Language Models NAACL 2024
In the age of large language models (LLMs) and the widespread adoption of AI-driven content creation, the landscape of information dissemination has witnessed a paradigm shift. With the proliferation of both human-written and machine-generated real and fake news, robustly and effectively discerning the veracity of news articles has become an intricate challenge. While substantial research has been dedicated to fake news detection, this either assumes that all news articles are human-written or abruptly assumes that all machine-generated news are fake. Thus, a significant gap exists in understanding the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news. In this paper, we study this gap by conducting a comprehensive evaluation of fake news detectors trained in various scenarios. Our primary objectives revolve around the following pivotal question: How to adapt fake news detectors to the era of LLMs? Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa. Moreover, due to the bias of detectors against machine-generated texts \cite{su2023fake}, they should be trained on datasets with a lower machine-generated news ratio than the test set. Building on our findings, we provide a practical strategy for the development of robust fake news detectors.
comment: Accept to NAACL 2024 Findings
♻ ☆ Detoxifying Large Language Models via Knowledge Editing
This paper investigates using knowledge editing techniques to detoxify Large Language Models (LLMs). We construct a benchmark, SafeEdit, which covers nine unsafe categories with various powerful attack prompts and equips comprehensive metrics for systematic evaluation. We conduct experiments with several knowledge editing approaches, indicating that knowledge editing has the potential to efficiently detoxify LLMs with limited impact on general performance. Then, we propose a simple yet effective baseline, dubbed Detoxifying with Intraoperative Neural Monitoring (DINM), to diminish the toxicity of LLMs within a few tuning steps via only one instance. We further provide an in-depth analysis of the internal mechanism for various detoxifying approaches, demonstrating that previous methods like SFT and DPO may merely suppress the activations of toxic parameters, while DINM mitigates the toxicity of the toxic parameters to a certain extent, making permanent adjustments. We hope that these insights could shed light on future work of developing detoxifying approaches and the underlying knowledge mechanisms of LLMs. Code and benchmark are available at https://github.com/zjunlp/EasyEdit.
comment: Ongoing work. Project website: https://zjunlp.github.io/project/SafeEdit Add and update experimental results in Tables 1 and 3
♻ ☆ Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment
Learning to ground natural language queries to target objects or regions in 3D point clouds is quite essential for 3D scene understanding. Nevertheless, existing 3D visual grounding approaches require a substantial number of bounding box annotations for text queries, which is time-consuming and labor-intensive to obtain. In this paper, we propose \textbf{3D-VLA}, a weakly supervised approach for \textbf{3D} visual grounding based on \textbf{V}isual \textbf{L}inguistic \textbf{A}lignment. Our 3D-VLA exploits the superior ability of current large-scale vision-language models (VLMs) on aligning the semantics between texts and 2D images, as well as the naturally existing correspondences between 2D images and 3D point clouds, and thus implicitly constructs correspondences between texts and 3D point clouds with no need for fine-grained box annotations in the training procedure. During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images. To the best of our knowledge, this is the first work to investigate 3D visual grounding in a weakly supervised manner by involving large scale vision-language models, and extensive experiments on ReferIt3D and ScanRefer datasets demonstrate that our 3D-VLA achieves comparable and even superior results over the fully supervised methods.
♻ ☆ On the Relation between Internal Language Model and Sequence Discriminative Training for Neural Transducers ICASSP 2024
Internal language model (ILM) subtraction has been widely applied to improve the performance of the RNN-Transducer with external language model (LM) fusion for speech recognition. In this work, we show that sequence discriminative training has a strong correlation with ILM subtraction from both theoretical and empirical points of view. Theoretically, we derive that the global optimum of maximum mutual information (MMI) training shares a similar formula as ILM subtraction. Empirically, we show that ILM subtraction and sequence discriminative training achieve similar effects across a wide range of experiments on Librispeech, including both MMI and minimum Bayes risk (MBR) criteria, as well as neural transducers and LMs of both full and limited context. The benefit of ILM subtraction also becomes much smaller after sequence discriminative training. We also provide an in-depth study to show that sequence discriminative training has a minimal effect on the commonly used zero-encoder ILM estimation, but a joint effect on both encoder and prediction + joint network for posterior probability reshaping including both ILM and blank suppression.
comment: accepted at ICASSP 2024
♻ ☆ A Mathematical Theory for Learning Semantic Languages by Abstract Learners
Recent advances in Large Language Models (LLMs) have demonstrated the emergence of capabilities (learned skills) when the number of system parameters and the size of training data surpass certain thresholds. The exact mechanisms behind such phenomena are not fully understood and remain a topic of active research. Inspired by the skill-text bipartite graph model presented in [1] for modeling semantic language, we develop a mathematical theory to explain the emergence of learned skills, taking the learning (or training) process into account. Our approach models the learning process for skills in the skill-text bipartite graph as an iterative decoding process in Low-Density Parity Check (LDPC) codes and Irregular Repetition Slotted ALOHA (IRSA). Using density evolution analysis, we demonstrate the emergence of learned skills when the ratio of the size of training texts to the number of skills exceeds a certain threshold. Our analysis also yields a scaling law for testing errors relative to the size of training texts. Upon completion of the training, we propose a method for semantic compression and discuss its application in semantic communication.
comment: V1 was submitted to ISIT 2024 on Jan. 28, 2024. V2 was uploaded to ArXiv on April 13, 2024
♻ ☆ Latent Distance Guided Alignment Training for Large Language Models
Ensuring alignment with human preferences is a crucial characteristic of large language models (LLMs). Presently, the primary alignment methods, RLHF and DPO, require extensive human annotation, which is expensive despite their efficacy. The significant expenses associated with current alignment techniques motivate researchers to investigate the development of annotation-free alignment training methods. In pursuit of improved alignment without relying on external annotation, we introduce Latent Distance Guided Alignment Training (LD-Align). This approach seeks to align the model with a high-quality supervised fine-tune dataset using guidance from a latent space. The latent space is generated through sample reconstruction, akin to auto-encoding. Consequently, we utilize the distance between sample pairs in the latent space to guide DPO-based alignment training. Extensive experimentation and evaluation show the efficacy of our proposed method in achieving notable alignment.
♻ ☆ Toward Informal Language Processing: Knowledge of Slang in Large Language Models NAACL 2024
Recent advancement in large language models (LLMs) has offered a strong potential for natural language systems to process informal language. A representative form of informal language is slang, used commonly in daily conversations and online social media. To date, slang has not been comprehensively evaluated in LLMs due partly to the absence of a carefully designed and publicly accessible benchmark. Using movie subtitles, we construct a dataset that supports evaluation on a diverse set of tasks pertaining to automatic processing of slang. For both evaluation and finetuning, we show the effectiveness of our dataset on two core applications: 1) slang detection, and 2) identification of regional and historical sources of slang from natural sentences. We also show how our dataset can be used to probe the output distributions of LLMs for interpretive insights. We find that while LLMs such as GPT-4 achieve good performance in a zero-shot setting, smaller BERT-like models finetuned on our dataset achieve comparable performance. Furthermore, we show that our dataset enables finetuning of LLMs such as GPT-3.5 that achieve substantially better performance than strong zero-shot baselines. Our work offers a comprehensive evaluation and a high-quality benchmark on English slang based on the OpenSubtitles corpus, serving both as a publicly accessible resource and a platform for applying tools for informal language processing.
comment: Accepted to NAACL 2024 main conference
♻ ☆ PILOT: Legal Case Outcome Prediction with Case Law
Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new framework named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.
♻ ☆ Evaluating Spatial Understanding of Large Language Models
Large language models (LLMs) show remarkable capabilities across a variety of tasks. Despite the models only seeing text in training, several recent studies suggest that LLM representations implicitly capture aspects of the underlying grounded concepts. Here, we explore LLM representations of a particularly salient kind of grounded knowledge -- spatial relationships. We design natural-language navigation tasks and evaluate the ability of LLMs, in particular GPT-3.5-turbo, GPT-4, and Llama2 series models, to represent and reason about spatial structures. These tasks reveal substantial variability in LLM performance across different spatial structures, including square, hexagonal, and triangular grids, rings, and trees. In extensive error analysis, we find that LLMs' mistakes reflect both spatial and non-spatial factors. These findings suggest that LLMs appear to capture certain aspects of spatial structure implicitly, but room for improvement remains.
comment: Accepted to TMLR 2024. Our code and data are available at https://github.com/runopti/SpatialEvalLLM, https://huggingface.co/datasets/yyamada/SpatialEvalLLM
♻ ☆ CFN-ESA: A Cross-Modal Fusion Network with Emotion-Shift Awareness for Dialogue Emotion Recognition
Multimodal emotion recognition in conversation (ERC) has garnered growing attention from research communities in various fields. In this paper, we propose a Cross-modal Fusion Network with Emotion-Shift Awareness (CFN-ESA) for ERC. Extant approaches employ each modality equally without distinguishing the amount of emotional information in these modalities, rendering it hard to adequately extract complementary information from multimodal data. To cope with this problem, in CFN-ESA, we treat textual modality as the primary source of emotional information, while visual and acoustic modalities are taken as the secondary sources. Besides, most multimodal ERC models ignore emotion-shift information and overfocus on contextual information, leading to the failure of emotion recognition under emotion-shift scenario. We elaborate an emotion-shift module to address this challenge. CFN-ESA mainly consists of unimodal encoder (RUME), cross-modal encoder (ACME), and emotion-shift module (LESM). RUME is applied to extract conversation-level contextual emotional cues while pulling together data distributions between modalities; ACME is utilized to perform multimodal interaction centered on textual modality; LESM is used to model emotion shift and capture emotion-shift information, thereby guiding the learning of the main task. Experimental results demonstrate that CFN-ESA can effectively promote performance for ERC and remarkably outperform state-of-the-art models.
comment: Accepted by IEEE Transactions on Affective Computing (TAFFC)
♻ ☆ L-TUNING: Synchronized Label Tuning for Prompt and Prefix in LLMs ICLR
Efficiently fine-tuning Large Language Models (LLMs) for specific tasks presents a considerable challenge in natural language processing. Traditional methods, like prompt or prefix tuning, typically rely on arbitrary tokens for training, leading to prolonged training times and generalized token use across various class labels. To address these issues, this paper introduces L-Tuning, an efficient fine-tuning approach designed for classification tasks within the Natural Language Inference (NLI) framework. Diverging from conventional methods, L-Tuning focuses on the fine-tuning of label tokens processed through a pre-trained LLM, thereby harnessing its pre-existing semantic knowledge. This technique not only improves the fine-tuning accuracy and efficiency but also facilitates the generation of distinct label embeddings for each class, enhancing the model's training nuance. Our experimental results indicate a significant improvement in training efficiency and classification accuracy with L-Tuning compared to traditional approaches, marking a promising advancement in fine-tuning LLMs for complex language tasks.
comment: Published in the ICLR TinyPaper track
♻ ☆ ComCLIP: Training-Free Compositional Image and Text Matching
Contrastive Language-Image Pretraining (CLIP) has demonstrated great zero-shot performance for matching images and text. However, it is still challenging to adapt vision-lanaguage pretrained models like CLIP to compositional image and text matching -- a more challenging image and text matching task requiring the model understanding of compositional word concepts and visual components. Towards better compositional generalization in zero-shot image and text matching, in this paper, we study the problem from a causal perspective: the erroneous semantics of individual entities are essentially confounders that cause the matching failure. Therefore, we propose a novel \textbf{\textit{training-free}} compositional CLIP model (ComCLIP). ComCLIP disentangles input images into subjects, objects, and action sub-images and composes CLIP's vision encoder and text encoder to perform evolving matching over compositional text embedding and sub-image embeddings. In this way, ComCLIP can mitigate spurious correlations introduced by the pretrained CLIP models and dynamically evaluate the importance of each component. Experiments on four compositional image-text matching datasets: SVO, ComVG, Winoground, and VL-checklist, and two general image-text retrieval datasets: Flick30K, and MSCOCO demonstrate the effectiveness of our plug-and-play method, which boosts the \textbf{\textit{zero-shot}} inference ability of CLIP, SLIP, and BLIP2 even without further training or fine-tuning. Our codes can be found at https://github.com/eric-ai-lab/ComCLIP.
♻ ☆ Using Letter Positional Probabilities to Assess Word Complexity
Word complexity is defined in a number of different ways. Psycholinguistic, morphological and lexical proxies are often used. Human ratings are also used. The problem here is that these proxies do not measure complexity directly, and human ratings are susceptible to subjective bias. In this study we contend that some form of 'latent complexity' can be approximated by using samples of simple and complex words. We use a sample of 'simple' words from primary school picture books and a sample of 'complex' words from high school and academic settings. In order to analyse the differences between these classes, we look at the letter positional probabilities (LPPs). We find strong statistical associations between several LPPs and complexity. For example, simple words are significantly (p<.001) more likely to start with w, b, s, h, g, k, j, t, y or f, while complex words are significantly (p<.001) more likely to start with i, a, e, r, v, u or d. We find similar strong associations for subsequent letter positions, with 84 letter-position variables in the first 6 positions being significant at the p<.001 level. We then use LPPs as variables in creating a classifier which can classify the two classes with an 83% accuracy. We test these findings using a second data set, with 66 LPPs significant (p<.001) in the first 6 positions common to both datasets. We use these 66 variables to create a classifier that is able to classify a third dataset with an accuracy of 70%. Finally, we create a fourth sample by combining the extreme high and low scoring words generated by three classifiers built on the first three separate datasets and use this sample to build a classifier which has an accuracy of 97%. We use this to score the four levels of English word groups from an ESL program.
comment: 25 Pages, 15 Tables
Information Retrieval 12
☆ Semantic In-Domain Product Identification for Search Queries
Accurate explicit and implicit product identification in search queries is critical for enhancing user experiences, especially at a company like Adobe which has over 50 products and covers queries across hundreds of tools. In this work, we present a novel approach to training a product classifier from user behavioral data. Our semantic model led to >25% relative improvement in CTR (click through rate) across the deployed surfaces; a >50% decrease in null rate; a 2x increase in the app cards surfaced, which helps drive product visibility.
☆ CuriousLLM: Elevating Multi-Document QA with Reasoning-Infused Knowledge Graph Prompting
In the field of Question Answering (QA), unifying large language models (LLMs) with external databases has shown great success. However, these methods often fall short in providing the advanced reasoning needed for complex QA tasks. To address these issues, we improve over a novel approach called Knowledge Graph Prompting (KGP), which combines knowledge graphs with a LLM-based agent to improve reasoning and search accuracy. Nevertheless, the original KGP framework necessitates costly fine-tuning with large datasets yet still suffers from LLM hallucination. Therefore, we propose a reasoning-infused LLM agent to enhance this framework. This agent mimics human curiosity to ask follow-up questions to more efficiently navigate the search. This simple modification significantly boosts the LLM performance in QA tasks without the high costs and latency associated with the initial KGP framework. Our ultimate goal is to further develop this approach, leading to more accurate, faster, and cost-effective solutions in the QA domain.
☆ Introducing Super RAGs in Mistral 8x7B-v1
The relentless pursuit of enhancing Large Language Models (LLMs) has led to the advent of Super Retrieval-Augmented Generation (Super RAGs), a novel approach designed to elevate the performance of LLMs by integrating external knowledge sources with minimal structural modifications. This paper presents the integration of Super RAGs into the Mistral 8x7B v1, a state-of-the-art LLM, and examines the resultant improvements in accuracy, speed, and user satisfaction. Our methodology uses a fine-tuned instruct model setup and a cache tuning fork system, ensuring efficient and relevant data retrieval. The evaluation, conducted over several epochs, demonstrates significant enhancements across all metrics. The findings suggest that Super RAGs can effectively augment LLMs, paving the way for more sophisticated and reliable AI systems. This research contributes to the field by providing empirical evidence of the benefits of Super RAGs and offering insights into their potential applications.
☆ Approximate Cluster-Based Sparse Document Retrieval with Segmented Maximum Term Weights
This paper revisits cluster-based retrieval that partitions the inverted index into multiple groups and skips the index partially at cluster and document levels during online inference using a learned sparse representation. It proposes an approximate search scheme with two parameters to control the rank-safeness competitiveness of pruning with segmented maximum term weights within each cluster. Cluster-level maximum weight segmentation allows an improvement in the rank score bound estimation and threshold-based pruning to be approximately adaptive to bound estimation tightness, resulting in better relevance and efficiency. The experiments with MS MARCO passage ranking and BEIR datasets demonstrate the usefulness of the proposed scheme with a comparison to the baselines. This paper presents the design of this approximate retrieval scheme with rank-safeness analysis, compares clustering and segmentation options, and reports evaluation results.
☆ Countering Mainstream Bias via End-to-End Adaptive Local Learning ECIR 2024
Collaborative filtering (CF) based recommendations suffer from mainstream bias -- where mainstream users are favored over niche users, leading to poor recommendation quality for many long-tail users. In this paper, we identify two root causes of this mainstream bias: (i) discrepancy modeling, whereby CF algorithms focus on modeling mainstream users while neglecting niche users with unique preferences; and (ii) unsynchronized learning, where niche users require more training epochs than mainstream users to reach peak performance. Targeting these causes, we propose a novel end-To-end Adaptive Local Learning (TALL) framework to provide high-quality recommendations to both mainstream and niche users. TALL uses a loss-driven Mixture-of-Experts module to adaptively ensemble experts to provide customized local models for different users. Further, it contains an adaptive weight module to synchronize the learning paces of different users by dynamically adjusting weights in the loss. Extensive experiments demonstrate the state-of-the-art performance of the proposed model. Code and data are provided at \url{https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL-}
comment: ECIR 2024
☆ EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM NAACL 2024
In e-commerce, accurately extracting product attribute values from multimodal data is crucial for improving user experience and operational efficiency of retailers. However, previous approaches to multimodal attribute value extraction often struggle with implicit attribute values embedded in images or text, rely heavily on extensive labeled data, and can easily confuse similar attribute values. To address these issues, we introduce EIVEN, a data- and parameter-efficient generative framework that pioneers the use of multimodal LLM for implicit attribute value extraction. EIVEN leverages the rich inherent knowledge of a pre-trained LLM and vision encoder to reduce reliance on labeled data. We also introduce a novel Learning-by-Comparison technique to reduce model confusion by enforcing attribute value comparison and difference identification. Additionally, we construct initial open-source datasets for multimodal implicit attribute value extraction. Our extensive experiments reveal that EIVEN significantly outperforms existing methods in extracting implicit attribute values while requiring less labeled data.
comment: Accepted by NAACL 2024 Industry Track
☆ Misinformation Resilient Search Rankings with Webgraph-based Interventions
The proliferation of unreliable news domains on the internet has had wide-reaching negative impacts on society. We introduce and evaluate interventions aimed at reducing traffic to unreliable news domains from search engines while maintaining traffic to reliable domains. We build these interventions on the principles of fairness (penalize sites for what is in their control), generality (label/fact-check agnostic), targeted (increase the cost of adversarial behavior), and scalability (works at webscale). We refine our methods on small-scale webdata as a testbed and then generalize the interventions to a large-scale webgraph containing 93.9M domains and 1.6B edges. We demonstrate that our methods penalize unreliable domains far more than reliable domains in both settings and we explore multiple avenues to mitigate unintended effects on both the small-scale and large-scale webgraph experiments. These results indicate the potential of our approach to reduce the spread of misinformation and foster a more reliable online information ecosystem. This research contributes to the development of targeted strategies to enhance the trustworthiness and quality of search engine results, ultimately benefiting users and the broader digital community.
☆ Improving Technical "How-to" Query Accuracy with Automated Search Results Verification and Reranking
Many people use search engines to find online guidance to solve computer or mobile device problems. Users frequently encounter challenges in identifying effective solutions from search results, often wasting time trying ineffective solutions that seem relevant yet fail to solve the real problems. This paper introduces a novel approach to improving the accuracy and relevance of online technical support search results through automated search results verification and reranking. Taking "How-to" queries specific to on-device execution as a starting point, we first developed a solution that allows an AI agent to interpret and execute step-by-step instructions in the search results in a controlled Android environment. We further integrated the agent's findings into a reranking mechanism that orders search results based on the success indicators of the tested solutions. The paper details the architecture of our solution and a comprehensive evaluation of the system through a series of tests across various application domains. The results demonstrate a significant improvement in the quality and reliability of the top-ranked results. Our findings suggest a paradigm shift in how search engine ranking for online technical support help can be optimized, offering a scalable and automated solution to the pervasive challenge of finding effective and reliable online help.
comment: 12 pages, 2 columns, 3 figures
♻ ☆ A Multi-Modal Latent-Features based Service Recommendation System for the Social Internet of Things
The Social Internet of Things (SIoT), is revolutionizing how we interact with our everyday lives. By adding the social dimension to connecting devices, the SIoT has the potential to drastically change the way we interact with smart devices. This connected infrastructure allows for unprecedented levels of convenience, automation, and access to information, allowing us to do more with less effort. However, this revolutionary new technology also brings an eager need for service recommendation systems. As the SIoT grows in scope and complexity, it becomes increasingly important for businesses and individuals, and SIoT objects alike to have reliable sources for products, services, and information that are tailored to their specific needs. Few works have been proposed to provide service recommendations for SIoT environments. However, these efforts have been confined to only focusing on modeling user-item interactions using contextual information, devices' SIoT relationships, and correlation social groups but these schemes do not account for latent semantic item-item structures underlying the sparse multi-modal contents in SIoT environment. In this paper, we propose a latent-based SIoT recommendation system that learns item-item structures and aggregates multiple modalities to obtain latent item graphs which are then used in graph convolutions to inject high-order affinities into item representations. Experiments showed that the proposed recommendation system outperformed state-of-the-art SIoT recommendation methods and validated its efficacy at mining latent relationships from multi-modal features.
comment: Published in IEEE Transactions on Computational Social Systems
♻ ☆ Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling
Recommender systems are indispensable in the realm of online applications, and sequential recommendation has enjoyed considerable prevalence due to its capacity to encapsulate the dynamic shifts in user interests. However, previous sequential modeling methods still have limitations in capturing contextual information. The primary reason is the lack of understanding of domain-specific knowledge and item-related textual content. Fortunately, the emergence of powerful language models has unlocked the potential to incorporate extensive world knowledge into recommendation algorithms, enabling them to go beyond simple item attributes and truly understand the world surrounding user preferences. To achieve this, we propose LANCER, which leverages the semantic understanding capabilities of pre-trained language models to generate personalized recommendations. Our approach bridges the gap between language models and recommender systems, resulting in more human-like recommendations. We demonstrate the effectiveness of our approach through a series of experiments conducted on multiple benchmark datasets, showing promising results and providing valuable insights into the influence of our model on sequential recommendation tasks. Furthermore, our experimental codes are publicly available at https://github.com/Gnimixy/lancer.
♻ ☆ Logic Query of Thoughts: Guiding Large Language Models to Answer Complex Logic Queries with Knowledge Graphs
Despite the superb performance in many tasks, large language models (LLMs) bear the risk of generating hallucination or even wrong answers when confronted with tasks that demand the accuracy of knowledge. The issue becomes even more noticeable when addressing logic queries that require multiple logic reasoning steps. On the other hand, knowledge graph (KG) based question answering methods are capable of accurately identifying the correct answers with the help of knowledge graph, yet its accuracy could quickly deteriorate when the knowledge graph itself is sparse and incomplete. It remains a critical challenge on how to integrate knowledge graph reasoning with LLMs in a mutually beneficial way so as to mitigate both the hallucination problem of LLMs as well as the incompleteness issue of knowledge graphs. In this paper, we propose 'Logic-Query-of-Thoughts' (LGOT) which is the first of its kind to combine LLMs with knowledge graph based logic query reasoning. LGOT seamlessly combines knowledge graph reasoning and LLMs, effectively breaking down complex logic queries into easy to answer subquestions. Through the utilization of both knowledge graph reasoning and LLMs, it successfully derives answers for each subquestion. By aggregating these results and selecting the highest quality candidate answers for each step, LGOT achieves accurate results to complex questions. Our experimental findings demonstrate substantial performance enhancements, with up to 20% improvement over ChatGPT.
♻ ☆ Adaptive Fair Representation Learning for Personalized Fairness in Recommendations via Information Alignment SIGIR '24
Personalized fairness in recommendations has been attracting increasing attention from researchers. The existing works often treat a fairness requirement, represented as a collection of sensitive attributes, as a hyper-parameter, and pursue extreme fairness by completely removing information of sensitive attributes from the learned fair embedding, which suffer from two challenges: huge training cost incurred by the explosion of attribute combinations, and the suboptimal trade-off between fairness and accuracy. In this paper, we propose a novel Adaptive Fair Representation Learning (AFRL) model, which achieves a real personalized fairness due to its advantage of training only one model to adaptively serve different fairness requirements during inference phase. Particularly, AFRL treats fairness requirements as inputs and can learn an attribute-specific embedding for each attribute from the unfair user embedding, which endows AFRL with the adaptability during inference phase to determine the non-sensitive attributes under the guidance of the user's unique fairness requirement. To achieve a better trade-off between fairness and accuracy in recommendations, AFRL conducts a novel Information Alignment to exactly preserve discriminative information of non-sensitive attributes and incorporate a debiased collaborative embedding into the fair embedding to capture attribute-independent collaborative signals, without loss of fairness. Finally, the extensive experiments conducted on real datasets together with the sound theoretical analysis demonstrate the superiority of AFRL.
comment: This paper has been accepted by SIGIR '24
Multimedia 3
☆ A Parametric Rate-Distortion Model for Video Transcoding
Over the past two decades, the surge in video streaming applications has been fueled by the increasing accessibility of the internet and the growing demand for network video. As users with varying internet speeds and devices seek high-quality video, transcoding becomes essential for service providers. In this paper, we introduce a parametric rate-distortion (R-D) transcoding model. Our model excels at predicting transcoding distortion at various rates without the need for encoding the video. This model serves as a versatile tool that can be used to achieve visual quality improvement (in terms of PSNR) via trans-sizing. Moreover, we use our model to identify visually lossless and near-zero-slope bitrate ranges for an ingest video. Having this information allows us to adjust the transcoding target bitrate while introducing visually negligible quality degradations. By utilizing our model in this manner, quality improvements up to 2 dB and bitrate savings of up to 46% of the original target bitrate are possible. Experimental results demonstrate the efficacy of our model in video transcoding rate distortion prediction.
☆ Seeing Text in the Dark: Algorithm and Benchmark
Localizing text in low-light environments is challenging due to visual degradations. Although a straightforward solution involves a two-stage pipeline with low-light image enhancement (LLE) as the initial step followed by detector, LLE is primarily designed for human vision instead of machine and can accumulate errors. In this work, we propose an efficient and effective single-stage approach for localizing text in dark that circumvents the need for LLE. We introduce a constrained learning module as an auxiliary mechanism during the training stage of the text detector. This module is designed to guide the text detector in preserving textual spatial features amidst feature map resizing, thus minimizing the loss of spatial information in texts under low-light visual degradations. Specifically, we incorporate spatial reconstruction and spatial semantic constraints within this module to ensure the text detector acquires essential positional and contextual range knowledge. Our approach enhances the original text detector's ability to identify text's local topological features using a dynamic snake feature pyramid network and adopts a bottom-up contour shaping strategy with a novel rectangular accumulation technique for accurate delineation of streamlined text features. In addition, we present a comprehensive low-light dataset for arbitrary-shaped text, encompassing diverse scenes and languages. Notably, our method achieves state-of-the-art results on this low-light dataset and exhibits comparable performance on standard normal light datasets. The code and dataset will be released.
♻ ☆ Audio is all in one: speech-driven gesture synthetics using WavLM pre-trained model
The generation of co-speech gestures for digital humans is an emerging area in the field of virtual human creation. Prior research has made progress by using acoustic and semantic information as input and adopting classify method to identify the person's ID and emotion for driving co-speech gesture generation. However, this endeavour still faces significant challenges. These challenges go beyond the intricate interplay between co-speech gestures, speech acoustic, and semantics; they also encompass the complexities associated with personality, emotion, and other obscure but important factors. This paper introduces "diffmotion-v2," a speech-conditional diffusion-based and non-autoregressive transformer-based generative model with WavLM pre-trained model. It can produce individual and stylized full-body co-speech gestures only using raw speech audio, eliminating the need for complex multimodal processing and manually annotated. Firstly, considering that speech audio not only contains acoustic and semantic features but also conveys personality traits, emotions, and more subtle information related to accompanying gestures, we pioneer the adaptation of WavLM, a large-scale pre-trained model, to extract low-level and high-level audio information. Secondly, we introduce an adaptive layer norm architecture in the transformer-based layer to learn the relationship between speech information and accompanying gestures. Extensive subjective evaluation experiments are conducted on the Trinity, ZEGGS, and BEAT datasets to confirm the WavLM and the model's ability to synthesize natural co-speech gestures with various styles.
comment: This article needs major revision
Computation and Language 70
Pre-training Small Base LMs with Fewer Tokens
We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
comment: 15 pages, 6 figures, 10 tables
☆ Is ChatGPT Transforming Academics' Writing Style?
Based on one million arXiv papers submitted from May 2018 to January 2024, we assess the textual density of ChatGPT's writing style in their abstracts by means of a statistical analysis of word frequency changes. Our model is calibrated and validated on a mixture of real abstracts and ChatGPT-modified abstracts (simulated data) after a careful noise analysis. We find that ChatGPT is having an increasing impact on arXiv abstracts, especially in the field of computer science, where the fraction of ChatGPT-revised abstracts is estimated to be approximately 35%, if we take the output of one of the simplest prompts, "revise the following sentences", as a baseline. We conclude with an analysis of both positive and negative aspects of the penetration of ChatGPT into academics' writing style.
comment: 15 pages, 19 figures
☆ Synthetic Dataset Creation and Fine-Tuning of Transformer Models for Question Answering in Serbian
In this paper, we focus on generating a synthetic question answering (QA) dataset using an adapted Translate-Align-Retrieve method. Using this method, we created the largest Serbian QA dataset of more than 87K samples, which we name SQuAD-sr. To acknowledge the script duality in Serbian, we generated both Cyrillic and Latin versions of the dataset. We investigate the dataset quality and use it to fine-tune several pre-trained QA models. Best results were obtained by fine-tuning the BERTi\'c model on our Latin SQuAD-sr dataset, achieving 73.91% Exact Match and 82.97% F1 score on the benchmark XQuAD dataset, which we translated into Serbian for the purpose of evaluation. The results show that our model exceeds zero-shot baselines, but fails to go beyond human performance. We note the advantage of using a monolingual pre-trained model over multilingual, as well as the performance increase gained by using Latin over Cyrillic. By performing additional analysis, we show that questions about numeric values or dates are more likely to be answered correctly than other types of questions. Finally, we conclude that SQuAD-sr is of sufficient quality for fine-tuning a Serbian QA model, in the absence of a manually crafted and annotated dataset.
☆ Small Models Are (Still) Effective Cross-Domain Argument Extractors ACL
Effective ontology transfer has been a major goal of recent work on event argument extraction (EAE). Two methods in particular -- question answering (QA) and template infilling (TI) -- have emerged as promising approaches to this problem. However, detailed explorations of these techniques' ability to actually enable this transfer are lacking. In this work, we provide such a study, exploring zero-shot transfer using both techniques on six major EAE datasets at both the sentence and document levels. Further, we challenge the growing reliance on LLMs for zero-shot extraction, showing that vastly smaller models trained on an appropriate source ontology can yield zero-shot performance superior to that of GPT-3.5 or GPT-4.
comment: ACL Rolling Review Short Paper
☆ MoPE: Mixture of Prefix Experts for Zero-Shot Dialogue State Tracking LREC
Zero-shot dialogue state tracking (DST) transfers knowledge to unseen domains, reducing the cost of annotating new datasets. Previous zero-shot DST models mainly suffer from domain transferring and partial prediction problems. To address these challenges, we propose Mixture of Prefix Experts (MoPE) to establish connections between similar slots in different domains, which strengthens the model transfer performance in unseen domains. Empirical results demonstrate that MoPE-DST achieves the joint goal accuracy of 57.13% on MultiWOZ2.1 and 55.40% on SGD.
comment: Accepted to LREC-COLING 2024
☆ RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs
State-of-the-art large language models (LLMs) have become indispensable tools for various tasks. However, training LLMs to serve as effective assistants for humans requires careful consideration. A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences and mitigate issues like toxicity and hallucinations. Yet, an understanding of RLHF for LLMs is largely entangled with initial design choices that popularized the method and current research focuses on augmenting those choices rather than fundamentally improving the framework. In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals, dedicating substantial focus to the core component of RLHF -- the reward model. Our study investigates modeling choices, caveats of function approximation, and their implications on RLHF training algorithms, highlighting the underlying assumptions made about the expressivity of reward. Our analysis improves the understanding of the role of reward models and methods for their training, concurrently revealing limitations of the current methodology. We characterize these limitations, including incorrect generalization, model misspecification, and the sparsity of feedback, along with their impact on the performance of a language model. The discussion and analysis are substantiated by a categorical review of current literature, serving as a reference for researchers and practitioners to understand the challenges of RLHF and build upon existing efforts.
☆ VertAttack: Taking advantage of Text Classifiers' horizontal vision NAACL 2024
Text classification systems have continuously improved in performance over the years. However, nearly all current SOTA classifiers have a similar shortcoming, they process text in a horizontal manner. Vertically written words will not be recognized by a classifier. In contrast, humans are easily able to recognize and read words written both horizontally and vertically. Hence, a human adversary could write problematic words vertically and the meaning would still be preserved to other humans. We simulate such an attack, VertAttack. VertAttack identifies which words a classifier is reliant on and then rewrites those words vertically. We find that VertAttack is able to greatly drop the accuracy of 4 different transformer models on 5 datasets. For example, on the SST2 dataset, VertAttack is able to drop RoBERTa's accuracy from 94 to 13%. Furthermore, since VertAttack does not replace the word, meaning is easily preserved. We verify this via a human study and find that crowdworkers are able to correctly label 77% perturbed texts perturbed, compared to 81% of the original texts. We believe VertAttack offers a look into how humans might circumvent classifiers in the future and thus inspire a look into more robust algorithms.
comment: 14 pages, 4 figures, accepted to NAACL 2024
☆ Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward
While Large Language Models (LLMs) have seen widespread applications across numerous fields, their limited interpretability poses concerns regarding their safe operations from multiple aspects, e.g., truthfulness, robustness, and fairness. Recent research has started developing quality assurance methods for LLMs, introducing techniques such as offline detector-based or uncertainty estimation methods. However, these approaches predominantly concentrate on post-generation analysis, leaving the online safety analysis for LLMs during the generation phase an unexplored area. To bridge this gap, we conduct in this work a comprehensive evaluation of the effectiveness of existing online safety analysis methods on LLMs. We begin with a pilot study that validates the feasibility of detecting unsafe outputs in the early generation process. Following this, we establish the first publicly available benchmark of online safety analysis for LLMs, including a broad spectrum of methods, models, tasks, datasets, and evaluation metrics. Utilizing this benchmark, we extensively analyze the performance of state-of-the-art online safety analysis methods on both open-source and closed-source LLMs. This analysis reveals the strengths and weaknesses of individual methods and offers valuable insights into selecting the most appropriate method based on specific application scenarios and task requirements. Furthermore, we also explore the potential of using hybridization methods, i.e., combining multiple methods to derive a collective safety conclusion, to enhance the efficacy of online safety analysis for LLMs. Our findings indicate a promising direction for the development of innovative and trustworthy quality assurance methodologies for LLMs, facilitating their reliable deployments across diverse domains.
☆ Leveraging Multi-AI Agents for Cross-Domain Knowledge Discovery
In the rapidly evolving field of artificial intelligence, the ability to harness and integrate knowledge across various domains stands as a paramount challenge and opportunity. This study introduces a novel approach to cross-domain knowledge discovery through the deployment of multi-AI agents, each specialized in distinct knowledge domains. These AI agents, designed to function as domain-specific experts, collaborate in a unified framework to synthesize and provide comprehensive insights that transcend the limitations of single-domain expertise. By facilitating seamless interaction among these agents, our platform aims to leverage the unique strengths and perspectives of each, thereby enhancing the process of knowledge discovery and decision-making. We present a comparative analysis of the different multi-agent workflow scenarios evaluating their performance in terms of efficiency, accuracy, and the breadth of knowledge integration. Through a series of experiments involving complex, interdisciplinary queries, our findings demonstrate the superior capability of domain specific multi-AI agent system in identifying and bridging knowledge gaps. This research not only underscores the significance of collaborative AI in driving innovation but also sets the stage for future advancements in AI-driven, cross-disciplinary research and application. Our methods were evaluated on a small pilot data and it showed a trend we expected, if we increase the amount of data we custom train the agents, the trend is expected to be more smooth.
☆ Efficient Interactive LLM Serving with Proxy Model-based Sequence Length Prediction
Large language models (LLMs) have been driving a new wave of interactive AI applications across numerous domains. However, efficiently serving LLM inference requests is challenging due to their unpredictable execution times originating from the autoregressive nature of generative models. Existing LLM serving systems exploit first-come-first-serve (FCFS) scheduling, suffering from head-of-line blocking issues. To address the non-deterministic nature of LLMs and enable efficient interactive LLM serving, we present a speculative shortest-job-first (SSJF) scheduler that uses a light proxy model to predict LLM output sequence lengths. Our open-source SSJF implementation does not require changes to memory management or batching strategies. Evaluations on real-world datasets and production workload traces show that SSJF reduces average job completion times by 30.5-39.6% and increases throughput by 2.2-3.6x compared to FCFS schedulers, across no batching, dynamic batching, and continuous batching settings.
comment: Accepted at AIOps'24
Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
☆ Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation NAACL 2024
Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data. However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data. Therefore, we introduce ALSACE to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE.
comment: NAACL 2024
☆ Thematic Analysis with Large Language Models: does it work with languages other than English? A targeted test in Italian
This paper proposes a test to perform Thematic Analysis (TA) with Large Language Model (LLM) on data which is in a different language than English. While there has been initial promising work on using pre-trained LLMs for TA on data in English, we lack any tests on whether these models can reasonably perform the same analysis with good quality in other language. In this paper a test will be proposed using an open access dataset of semi-structured interviews in Italian. The test shows that a pre-trained model can perform such a TA on the data, also using prompts in Italian. A comparative test shows the model capacity to produce themes which have a good resemblance with those produced independently by human researchers. The main implication of this study is that pre-trained LLMs may thus be suitable to support analysis in multilingual situations, so long as the language is supported by the model used.
☆ Decoding AI: The inside story of data analysis in ChatGPT
As a result of recent advancements in generative AI, the field of Data Science is prone to various changes. This review critically examines the Data Analysis (DA) capabilities of ChatGPT assessing its performance across a wide range of tasks. While DA provides researchers and practitioners with unprecedented analytical capabilities, it is far from being perfect, and it is important to recognize and address its limitations.
comment: 15 pages with figures and appendix
☆ AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
Large language models (LLMs) are increasingly capable of completing knowledge intensive tasks by recalling information from a static pretraining corpus. Here we are concerned with LLMs in the context of evolving data requirements. For instance: batches of new data that are introduced periodically; subsets of data with user-based access controls; or requirements on dynamic removal of documents with guarantees that associated knowledge cannot be recalled. We wish to satisfy these requirements while at the same time ensuring a model does not forget old information when new data becomes available. To address these issues, we introduce AdapterSwap, a training and inference scheme that organizes knowledge from a data collection into a set of low-rank adapters, which are dynamically composed during inference. Our experiments demonstrate AdapterSwap's ability to support efficient continual learning, while also enabling organizations to have fine-grained control over data access and deletion.
☆ Learning representations of learning representations
The ICLR conference is unique among the top machine learning conferences in that all submitted papers are openly available. Here we present the ICLR dataset consisting of abstracts of all 24 thousand ICLR submissions from 2017-2024 with meta-data, decision scores, and custom keyword-based labels. We find that on this dataset, bag-of-words representation outperforms most dedicated sentence transformer models in terms of $k$NN classification accuracy, and the top performing language models barely outperform TF-IDF. We see this as a challenge for the NLP community. Furthermore, we use the ICLR dataset to study how the field of machine learning has changed over the last seven years, finding some improvement in gender balance. Using a 2D embedding of the abstracts' texts, we describe a shift in research topics from 2017 to 2024 and identify hedgehogs and foxes among the authors with the highest number of ICLR submissions.
☆ Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think
Multiple choice questions (MCQs) are commonly used to evaluate the capabilities of large language models (LLMs). One common way to evaluate the model response is to rank the candidate answers based on the log probability of the first token prediction. An alternative way is to examine the text output. Prior work has shown that first token probabilities lack robustness to changes in MCQ phrasing, and that first token probabilities do not match text answers for instruction-tuned models. Therefore, in this paper, we investigate the robustness of text answers. We show that the text answers are more robust to question perturbations than the first token probabilities, when the first token answers mismatch the text answers. The difference in robustness increases as the mismatch rate becomes greater. As the mismatch reaches over 50\%, the text answer is more robust to option order changes than the debiased first token probabilities using state-of-the-art debiasing methods such as PriDe. Our findings provide further evidence for the benefits of text answer evaluation over first token probability evaluation.
☆ ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana
Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities of America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed developing automatic speech recognition (ASR) systems for five indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we propose a reliable ASR model for each target language by crawling speech corpora spanning diverse sources and applying data augmentation methods that resulted in the winning approach in this competition. To achieve this, we systematically investigated the impact of different hyperparameters by a Bayesian search on the performance of the language models, specifically focusing on the variants of the Wav2vec2.0 XLS-R model: 300M and 1B parameters. Moreover, we performed a global sensitivity analysis to assess the contribution of various hyperparametric configurations to the performances of our best models. Importantly, our results show that freeze fine-tuning updates and dropout rate are more vital parameters than the total number of epochs of lr. Additionally, we liberate our best models -- with no other ASR model reported until now for two Wa'ikhana and Kotiria -- and the many experiments performed to pave the way to other researchers to continue improving ASR in minority languages. This insight opens up interesting avenues for future work, allowing for the advancement of ASR techniques in the preservation of minority indigenous and acknowledging the complexities involved in this important endeavour.
☆ Improving Health Question Answering with Reliable and Time-Aware Evidence Retrieval NAACL 2024
In today's digital world, seeking answers to health questions on the Internet is a common practice. However, existing question answering (QA) systems often rely on using pre-selected and annotated evidence documents, thus making them inadequate for addressing novel questions. Our study focuses on the open-domain QA setting, where the key challenge is to first uncover relevant evidence in large knowledge bases. By utilizing the common retrieve-then-read QA pipeline and PubMed as a trustworthy collection of medical research documents, we answer health questions from three diverse datasets. We modify different retrieval settings to observe their influence on the QA pipeline's performance, including the number of retrieved documents, sentence selection process, the publication year of articles, and their number of citations. Our results reveal that cutting down on the amount of retrieved documents and favoring more recent and highly cited documents can improve the final macro F1 score up to 10%. We discuss the results, highlight interesting examples, and outline challenges for future research, like managing evidence disagreement and crafting user-friendly explanations.
comment: Accepted to NAACL 2024 (Findings)
☆ Gaining More Insight into Neural Semantic Parsing with Challenging Benchmarks
The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation. Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the limitations of neural models when confronting such challenges.
☆ FastSpell: the LangId Magic Spell
Language identification is a crucial component in the automated production of language resources, particularly in multilingual and big data contexts. However, commonly used language identifiers struggle to differentiate between similar or closely-related languages. This paper introduces FastSpell, a language identifier that combines fastText (a pre-trained language identifier tool) and Hunspell (a spell checker) with the aim of having a refined second-opinion before deciding which language should be assigned to a text. We provide a description of the FastSpell algorithm along with an explanation on how to use and configure it. To that end, we motivate the need of such a tool and present a benchmark including some popular language identifiers evaluated during the development of FastSpell. We show how FastSpell is useful not only to improve identification of similar languages, but also to identify new ones ignored by other tools.
☆ Toward a Theory of Tokenization in LLMs
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple $k^{\text{th}}$-order Markov processes for $k > 1$, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from $k^{\text{th}}$-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
comment: 58 pages, 10 figures
☆ The Integration of Semantic and Structural Knowledge in Knowledge Graph Entity Typing NAACL2024
The Knowledge Graph Entity Typing (KGET) task aims to predict missing type annotations for entities in knowledge graphs. Recent works only utilize the \textit{\textbf{structural knowledge}} in the local neighborhood of entities, disregarding \textit{\textbf{semantic knowledge}} in the textual representations of entities, relations, and types that are also crucial for type inference. Additionally, we observe that the interaction between semantic and structural knowledge can be utilized to address the false-negative problem. In this paper, we propose a novel \textbf{\underline{S}}emantic and \textbf{\underline{S}}tructure-aware KG \textbf{\underline{E}}ntity \textbf{\underline{T}}yping~{(SSET)} framework, which is composed of three modules. First, the \textit{Semantic Knowledge Encoding} module encodes factual knowledge in the KG with a Masked Entity Typing task. Then, the \textit{Structural Knowledge Aggregation} module aggregates knowledge from the multi-hop neighborhood of entities to infer missing types. Finally, the \textit{Unsupervised Type Re-ranking} module utilizes the inference results from the two models above to generate type predictions that are robust to false-negative samples. Extensive experiments show that SSET significantly outperforms existing state-of-the-art methods.
comment: Accepted in NAACL2024 main
☆ Subtoxic Questions: Dive Into Attitude Change of LLM's Response in Jailbreak Attempts SP 2024
As Large Language Models (LLMs) of Prompt Jailbreaking are getting more and more attention, it is of great significance to raise a generalized research paradigm to evaluate attack strengths and a basic model to conduct subtler experiments. In this paper, we propose a novel approach by focusing on a set of target questions that are inherently more sensitive to jailbreak prompts, aiming to circumvent the limitations posed by enhanced LLM security. Through designing and analyzing these sensitive questions, this paper reveals a more effective method of identifying vulnerabilities in LLMs, thereby contributing to the advancement of LLM security. This research not only challenges existing jailbreaking methodologies but also fortifies LLMs against potential exploits.
comment: 4 pages, 2 figures. This paper was submitted to The 7th Deep Learning Security and Privacy Workshop (DLSP 2024) and was accepted as extended abstract, see https://dlsp2024.ieee-security.org/
☆ Relational Prompt-based Pre-trained Language Models for Social Event Detection
Social Event Detection (SED) aims to identify significant events from social streams, and has a wide application ranging from public opinion analysis to risk management. In recent years, Graph Neural Network (GNN) based solutions have achieved state-of-the-art performance. However, GNN-based methods often struggle with noisy and missing edges between messages, affecting the quality of learned message embedding. Moreover, these methods statically initialize node embedding before training, which, in turn, limits the ability to learn from message texts and relations simultaneously. In this paper, we approach social event detection from a new perspective based on Pre-trained Language Models (PLMs), and present RPLM_SED (Relational prompt-based Pre-trained Language Models for Social Event Detection). We first propose a new pairwise message modeling strategy to construct social messages into message pairs with multi-relational sequences. Secondly, a new multi-relational prompt-based pairwise message learning mechanism is proposed to learn more comprehensive message representation from message pairs with multi-relational prompts using PLMs. Thirdly, we design a new clustering constraint to optimize the encoding process by enhancing intra-cluster compactness and inter-cluster dispersion, making the message representation more distinguishable. We evaluate the RPLM_SED on three real-world datasets, demonstrating that the RPLM_SED model achieves state-of-the-art performance in offline, online, low-resource, and long-tail distribution scenarios for social event detection tasks.
comment: ACM TOIS Under Review
Pretraining and Updating Language- and Domain-specific Large Language Model: A Case Study in Japanese Business Domain
Several previous studies have considered language- and domain-specific large language models (LLMs) as separate topics. This study explores the combination of a non-English language and a high-demand industry domain, focusing on a Japanese business-specific LLM. This type of a model requires expertise in the business domain, strong language skills, and regular updates of its knowledge. We trained a 13-billion-parameter LLM from scratch using a new dataset of business texts and patents, and continually pretrained it with the latest business documents. Further we propose a new benchmark for Japanese business domain question answering (QA) and evaluate our models on it. The results show that our pretrained model improves QA accuracy without losing general knowledge, and that continual pretraining enhances adaptation to new information. Our pretrained model and business domain benchmark are publicly available.
comment: 9 pages. preprint of COLM2024
☆ Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study
Machine Translation has made impressive progress in recent years offering close to human-level performance on many languages, but studies have primarily focused on high-resource languages with broad online presence and resources. With the help of growing Large Language Models, more and more low-resource languages achieve better results through the presence of other languages. However, studies have shown that not all low-resource languages can benefit from multilingual systems, especially those with insufficient training and evaluation data. In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian. We investigate conditions of low-resource languages such as data scarcity and parameter sensitivity and focus on refined solutions that combat low-resource difficulties and creative solutions such as harnessing language similarity. Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance. We demonstrate noisiness in the data and present our approach to carry out text preprocessing extensively. Evaluation was conducted using combined metrics: BLEU, chrF and TER. Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement. Furthermore, we present a qualitative analysis of translation errors and system limitations.
comment: Preprint accepted at the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages (SIGUL 2024)
☆ Measuring Cross-lingual Transfer in Bytes NAACL 2024
Multilingual pretraining has been a successful solution to the challenges posed by the lack of resources for languages. These models can transfer knowledge to target languages with minimal or no examples. Recent research suggests that monolingual models also have a similar capability, but the mechanisms behind this transfer remain unclear. Some studies have explored factors like language contamination and syntactic similarity. An emerging line of research suggests that the representations learned by language models contain two components: a language-specific and a language-agnostic component. The latter is responsible for transferring a more universal knowledge. However, there is a lack of comprehensive exploration of these properties across diverse target languages. To investigate this hypothesis, we conducted an experiment inspired by the work on the Scaling Laws for Transfer. We measured the amount of data transferred from a source language to a target language and found that models initialized from diverse languages perform similarly to a target language in a cross-lingual setting. This was surprising because the amount of data transferred to 10 diverse target languages, such as Spanish, Korean, and Finnish, was quite similar. We also found evidence that this transfer is not related to language contamination or language proximity, which strengthens the hypothesis that the model also relies on language-agnostic knowledge. Our experiments have opened up new possibilities for measuring how much data represents the language-agnostic representations learned during pretraining.
comment: NAACL 2024
☆ Reducing hallucination in structured outputs via Retrieval-Augmented Generation NAACL 2024
A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have taken the world by storm, without eliminating or at least reducing hallucinations, real-world GenAI systems may face challenges in user adoption. In the process of deploying an enterprise application that produces workflows based on natural language requirements, we devised a system leveraging Retrieval Augmented Generation (RAG) to greatly improve the quality of the structured output that represents such workflows. Thanks to our implementation of RAG, our proposed system significantly reduces hallucinations in the output and improves the generalization of our LLM in out-of-domain settings. In addition, we show that using a small, well-trained retriever encoder can reduce the size of the accompanying LLM, thereby making deployments of LLM-based systems less resource-intensive.
comment: To be presented at NAACL 2024. 11 pages and 4 figures
☆ Language Model Prompt Selection via Simulation Optimization
With the advancement in generative language models, the selection of prompts has gained significant attention in recent years. A prompt is an instruction or description provided by the user, serving as a guide for the generative language model in content generation. Despite existing methods for prompt selection that are based on human labor, we consider facilitating this selection through simulation optimization, aiming to maximize a pre-defined score for the selected prompt. Specifically, we propose a two-stage framework. In the first stage, we determine a feasible set of prompts in sufficient numbers, where each prompt is represented by a moderate-dimensional vector. In the subsequent stage for evaluation and selection, we construct a surrogate model of the score regarding the moderate-dimensional vectors that represent the prompts. We propose sequentially selecting the prompt for evaluation based on this constructed surrogate model. We prove the consistency of the sequential evaluation procedure in our framework. We also conduct numerical experiments to demonstrate the efficacy of our proposed framework, providing practical instructions for implementation.
☆ Experimental Design for Active Transductive Inference in Large Language Models
Transduction, the ability to include query-specific examples in the prompt at inference time, is one of the emergent abilities of large language models (LLMs). In this work, we propose a framework for adaptive prompt design called active transductive inference (ATI). We design the LLM prompt by adaptively choosing few-shot examples for a given inference query. The examples are initially unlabeled and we query the user to label the most informative ones, which maximally reduces the uncertainty in the LLM prediction. We propose two algorithms, GO and SAL, which differ in how the few-shot examples are chosen. We analyze these algorithms in linear models: first GO and then use its equivalence with SAL. We experiment with many different tasks and show that GO and SAL outperform other methods for choosing few-shot examples in the LLM prompt at inference time.
BERT-LSH: Reducing Absolute Compute For Attention
This study introduces a novel BERT-LSH model that incorporates Locality Sensitive Hashing (LSH) to approximate the attention mechanism in the BERT architecture. We examine the computational efficiency and performance of this model compared to a standard baseline BERT model. Our findings reveal that BERT-LSH significantly reduces computational demand for the self-attention layer while unexpectedly outperforming the baseline model in pretraining and fine-tuning tasks. These results suggest that the LSH-based attention mechanism not only offers computational advantages but also may enhance the model's ability to generalize from its training data. For more information, visit our GitHub repository: https://github.com/leo4life2/algoml-final
comment: 10 pages, 5 figures
☆ Constrained C-Test Generation via Mixed-Integer Programming
This work proposes a novel method to generate C-Tests; a deviated form of cloze tests (a gap filling exercise) where only the last part of a word is turned into a gap. In contrast to previous works that only consider varying the gap size or gap placement to achieve locally optimal solutions, we propose a mixed-integer programming (MIP) approach. This allows us to consider gap size and placement simultaneously, achieving globally optimal solutions, and to directly integrate state-of-the-art models for gap difficulty prediction into the optimization problem. A user study with 40 participants across four C-Test generation strategies (including GPT-4) shows that our approach (MIP) significantly outperforms two of the baseline strategies (based on gap placement and GPT-4); and performs on-par with the third (based on gap size). Our analysis shows that GPT-4 still struggles to fulfill explicit constraints during generation and that MIP produces C-Tests that correlate best with the perceived difficulty. We publish our code, model, and collected data consisting of 32 English C-Tests with 20 gaps each (totaling 3,200 individual gap responses) under an open source license.
comment: Github: https://github.com/UKPLab/arxiv2024-constrained-ctest-generation
☆ The Illusion of State in State-Space Models
State-space models (SSMs) have emerged as a potential alternative architecture for building large language models (LLMs) compared to the previously ubiquitous transformer architecture. One theoretical weakness of transformers is that they cannot express certain kinds of sequential computation and state tracking (Merrill and Sabharwal, 2023), which SSMs are explicitly designed to address via their close architectural similarity to recurrent neural networks (RNNs). But do SSMs truly have an advantage (over transformers) in expressive power for state tracking? Surprisingly, the answer is no. Our analysis reveals that the expressive power of SSMs is limited very similarly to transformers: SSMs cannot express computation outside the complexity class $\mathsf{TC}^0$. In particular, this means they cannot solve simple state-tracking problems like permutation composition. It follows that SSMs are provably unable to accurately track chess moves with certain notation, evaluate code, or track entities in a long narrative. To supplement our formal analysis, we report experiments showing that Mamba-style SSMs indeed struggle with state tracking. Thus, despite its recurrent formulation, the "state" in an SSM is an illusion: SSMs have similar expressiveness limitations to non-recurrent models like transformers, which may fundamentally limit their ability to solve real-world state-tracking problems.
comment: Preprint
☆ Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance
This paper revisits recent code similarity evaluation metrics, particularly focusing on the application of Abstract Syntax Tree (AST) editing distance in diverse programming languages. In particular, we explore the usefulness of these metrics and compare them to traditional sequence similarity metrics. Our experiments showcase the effectiveness of AST editing distance in capturing intricate code structures, revealing a high correlation with established metrics. Furthermore, we explore the strengths and weaknesses of AST editing distance and prompt-based GPT similarity scores in comparison to BLEU score, execution match, and Jaccard Similarity. We propose, optimize, and publish an adaptable metric that demonstrates effectiveness across all tested languages, representing an enhanced version of Tree Similarity of Edit Distance (TSED).
☆ Evaluating the Quality of Answers in Political Q&A Sessions with Large Language Models
This paper presents a new approach to evaluating the quality of answers in political question-and-answer sessions. We propose to measure an answer's quality based on the degree to which it allows us to infer the initial question accurately. This conception of answer quality inherently reflects their relevance to initial questions. Drawing parallels with semantic search, we argue that this measurement approach can be operationalized by fine-tuning a large language model on the observed corpus of questions and answers without additional labeled data. We showcase our measurement approach within the context of the Question Period in the Canadian House of Commons. Our approach yields valuable insights into the correlates of the quality of answers in the Question Period. We find that answer quality varies significantly based on the party affiliation of the members of Parliament asking the questions and uncover a meaningful correlation between answer quality and the topics of the questions.
☆ CreativEval: Evaluating Creativity of LLM-Based Hardware Code Generation
Large Language Models (LLMs) have proved effective and efficient in generating code, leading to their utilization within the hardware design process. Prior works evaluating LLMs' abilities for register transfer level code generation solely focus on functional correctness. However, the creativity associated with these LLMs, or the ability to generate novel and unique solutions, is a metric not as well understood, in part due to the challenge of quantifying this quality. To address this research gap, we present CreativeEval, a framework for evaluating the creativity of LLMs within the context of generating hardware designs. We quantify four creative sub-components, fluency, flexibility, originality, and elaboration, through various prompting and post-processing techniques. We then evaluate multiple popular LLMs (including GPT models, CodeLlama, and VeriGen) upon this creativity metric, with results indicating GPT-3.5 as the most creative model in generating hardware designs.
♻ ☆ LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models
Large Multimodal Models (LMMs) have shown significant reasoning capabilities by connecting a visual encoder and a large language model. LMMs typically use a fixed amount of visual tokens, such as the penultimate layer features in the CLIP visual encoder, as the prefix content. Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which increase the number of visual tokens significantly. However, due to the design of the Transformer architecture, computational costs associated with these models tend to increase quadratically with the number of input tokens. To tackle this problem, we explore a token reduction mechanism and find, similar to prior work, that many visual tokens are spatially redundant. Based on this, we propose PruMerge, a novel adaptive visual token reduction approach, which largely reduces the number of visual tokens while maintaining comparable model performance. We first select the unpruned visual tokens based on their similarity to class tokens and spatial tokens. We then cluster the pruned tokens based on key similarity and merge the clustered tokens with the unpruned tokens to supplement their information. Empirically, when applied to LLaVA-1.5, our approach can compress the visual tokens by 18 times on average, and achieve comparable performance across diverse visual question-answering and reasoning tasks. Code and checkpoints are at https://llava-prumerge.github.io/.
comment: Project page: https://llava-prumerge.github.io/
♻ ☆ PromptSync: Bridging Domain Gaps in Vision-Language Models through Class-Aware Prototype Alignment and Discrimination CVPR 2024
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tuning to adapt the model to unseen domains, but they overlooked the issue of imbalanced class distributions. In this study, we explicitly address this problem by employing class-aware prototype alignment weighted by mean class probabilities obtained for the test sample and filtered augmented views. Additionally, we ensure that the class probabilities are as accurate as possible by performing prototype discrimination using contrastive learning. The combination of alignment and discriminative loss serves as a geometric regularizer, preventing the prompt representation from collapsing onto a single class and effectively bridging the distribution gap between the source and test domains. Our method, named PromptSync, synchronizes the prompts for each test sample on both the text and vision branches of the V-L model. In empirical evaluations on the domain generalization benchmark, our method outperforms previous best methods by 2.33% in overall performance, by 1% in base-to-novel generalization, and by 2.84% in cross-dataset transfer tasks.
comment: Accepted at CVPR 2024 LIMIT, 12 pages, 8 Tables, 2 Figures
♻ ☆ Incremental Extractive Opinion Summarization Using Cover Trees
Extractive opinion summarization involves automatically producing a summary of text about an entity (e.g., a product's reviews) by extracting representative sentences that capture prevalent opinions in the review set. Typically, in online marketplaces user reviews accumulate over time, and opinion summaries need to be updated periodically to provide customers with up-to-date information. In this work, we study the task of extractive opinion summarization in an incremental setting, where the underlying review set evolves over time. Many of the state-of-the-art extractive opinion summarization approaches are centrality-based, such as CentroidRank (Radev et al., 2004; Chowdhury et al., 2022). CentroidRank performs extractive summarization by selecting a subset of review sentences closest to the centroid in the representation space as the summary. However, these methods are not capable of operating efficiently in an incremental setting, where reviews arrive one at a time. In this paper, we present an efficient algorithm for accurately computing the CentroidRank summaries in an incremental setting. Our approach, CoverSumm, relies on indexing review representations in a cover tree and maintaining a reservoir of candidate summary review sentences. CoverSumm's efficacy is supported by a theoretical and empirical analysis of running time. Empirically, on a diverse collection of data (both real and synthetically created to illustrate scaling considerations), we demonstrate that CoverSumm is up to 36x faster than baseline methods, and capable of adapting to nuanced changes in data distribution. We also conduct human evaluations of the generated summaries and find that CoverSumm is capable of producing informative summaries consistent with the underlying review set.
comment: Accepted at TMLR
♻ ☆ Towards Measuring and Modeling "Culture" in LLMs: A Survey
We present a survey of 39 recent papers that aim to study cultural representation and inclusion in large language models. We observe that none of the studies define "culture," which is a complex, multifaceted concept; instead, they probe the models on some specially designed datasets which represent certain aspects of "culture." We call these aspects the proxies of cultures, and organize them across three dimensions of demographic, semantic and linguistic-cultural interaction proxies. We also categorize the probing methods employed. Our analysis indicates that only certain aspects of "culture," such as values and objectives, have been studied, leaving several other interesting and important facets, especially the multitude of semantic domains (Thompson et al., 2020) and aboutness (Hershcovich et al., 2022), unexplored. Two other crucial gaps are the lack of robustness and situatedness of the current methods. Based on these observations, we provide several recommendations for a holistic and practically useful research agenda for furthering cultural inclusion in LLMs and LLM-based applications.
♻ ☆ TaCo: Targeted Concept Removal in Output Embeddings for NLP via Information Theory and Explainability
The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: https://github.com/fanny-jourdan/TaCo
♻ ☆ Rethinking How to Evaluate Language Model Jailbreak
Large language models (LLMs) have become increasingly integrated with various applications. To ensure that LLMs do not generate unsafe responses, they are aligned with safeguards that specify what content is restricted. However, such alignment can be bypassed to produce prohibited content using a technique commonly referred to as jailbreak. Different systems have been proposed to perform the jailbreak automatically. These systems rely on evaluation methods to determine whether a jailbreak attempt is successful. However, our analysis reveals that current jailbreak evaluation methods have two limitations. (1) Their objectives lack clarity and do not align with the goal of identifying unsafe responses. (2) They oversimplify the jailbreak result as a binary outcome, successful or not. In this paper, we propose three metrics, safeguard violation, informativeness, and relative truthfulness, to evaluate language model jailbreak. Additionally, we demonstrate how these metrics correlate with the goal of different malicious actors. To compute these metrics, we introduce a multifaceted approach that extends the natural language generation evaluation method after preprocessing the response. We evaluate our metrics on a benchmark dataset produced from three malicious intent datasets and three jailbreak systems. The benchmark dataset is labeled by three annotators. We compare our multifaceted approach with three existing jailbreak evaluation methods. Experiments demonstrate that our multifaceted evaluation outperforms existing methods, with F1 scores improving on average by 17% compared to existing baselines. Our findings motivate the need to move away from the binary view of the jailbreak problem and incorporate a more comprehensive evaluation to ensure the safety of the language model.
♻ ☆ Re-evaluating the Need for Multimodal Signals in Unsupervised Grammar Induction NAACL
Are multimodal inputs necessary for grammar induction? Recent work has shown that multimodal training inputs can improve grammar induction. However, these improvements are based on comparisons to weak text-only baselines that were trained on relatively little textual data. To determine whether multimodal inputs are needed in regimes with large amounts of textual training data, we design a stronger text-only baseline, which we refer to as LC-PCFG. LC-PCFG is a C-PFCG that incorporates em-beddings from text-only large language models (LLMs). We use a fixed grammar family to directly compare LC-PCFG to various multi-modal grammar induction methods. We compare performance on four benchmark datasets. LC-PCFG provides an up to 17% relative improvement in Corpus-F1 compared to state-of-the-art multimodal grammar induction methods. LC-PCFG is also more computationally efficient, providing an up to 85% reduction in parameter count and 8.8x reduction in training time compared to multimodal approaches. These results suggest that multimodal inputs may not be necessary for grammar induction, and emphasize the importance of strong vision-free baselines for evaluating the benefit of multimodal approaches.
comment: NAACL Findings 2024
♻ ☆ Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing
Handling graph data is one of the most difficult tasks. Traditional techniques, such as those based on geometry and matrix factorization, rely on assumptions about the data relations that become inadequate when handling large and complex graph data. On the other hand, deep learning approaches demonstrate promising results in handling large graph data, but they often fall short of providing interpretable explanations. To equip the graph processing with both high accuracy and explainability, we introduce a novel approach that harnesses the power of a large language model (LLM), enhanced by an uncertainty-aware module to provide a confidence score on the generated answer. We experiment with our approach on two graph processing tasks: few-shot knowledge graph completion and graph classification. Our results demonstrate that through parameter efficient fine-tuning, the LLM surpasses state-of-the-art algorithms by a substantial margin across ten diverse benchmark datasets. Moreover, to address the challenge of explainability, we propose an uncertainty estimation based on perturbation, along with a calibration scheme to quantify the confidence scores of the generated answers. Our confidence measure achieves an AUC of 0.8 or higher on seven out of the ten datasets in predicting the correctness of the answer generated by LLM.
comment: Because my organization does not allow members to privately upload papers to arXiv, I am requesting a withdrawal of my submission
♻ ☆ Direct Preference Optimization for Neural Machine Translation with Minimum Bayes Risk Decoding NAACL 2024
Minimum Bayes Risk (MBR) decoding can significantly improve translation performance of Multilingual Large Language Models (MLLMs). However, MBR decoding is computationally expensive. We show how the recently developed Reinforcement Learning technique, Direct Preference Optimization (DPO), can fine-tune MLLMs to get the gains of MBR without any additional computation in inference. Our method uses only a small monolingual fine-tuning set and yields significantly improved performance on multiple NMT test sets compared to MLLMs without DPO.
comment: To appear at NAACL 2024
♻ ☆ QAQ: Quality Adaptive Quantization for LLM KV Cache
The emergence of LLMs has ignited a fresh surge of breakthroughs in NLP applications, particularly in domains such as question-answering systems and text generation. As the need for longer context grows, a significant bottleneck in model deployment emerges due to the linear expansion of the Key-Value (KV) cache with the context length. Existing methods primarily rely on various hypotheses, such as sorting the KV cache based on attention scores for replacement or eviction, to compress the KV cache and improve model throughput. However, heuristics used by these strategies may wrongly evict essential KV cache, which can significantly degrade model performance. In this paper, we propose QAQ, a Quality Adaptive Quantization scheme for the KV cache. We theoretically demonstrate that key cache and value cache exhibit distinct sensitivities to quantization, leading to the formulation of separate quantization strategies for their non-uniform quantization. Through the integration of dedicated outlier handling, as well as an improved attention-aware approach, QAQ achieves up to 10x the compression ratio of the KV cache size with a neglectable impact on model performance. QAQ significantly reduces the practical hurdles of deploying LLMs, opening up new possibilities for longer-context applications. The code is available at github.com/ClubieDong/KVCacheQuantization.
♻ ☆ AILS-NTUA at SemEval-2024 Task 6: Efficient model tuning for hallucination detection and analysis SemEval-2024
In this paper, we present our team's submissions for SemEval-2024 Task-6 - SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. The participants were asked to perform binary classification to identify cases of fluent overgeneration hallucinations. Our experimentation included fine-tuning a pre-trained model on hallucination detection and a Natural Language Inference (NLI) model. The most successful strategy involved creating an ensemble of these models, resulting in accuracy rates of 77.8% and 79.9% on model-agnostic and model-aware datasets respectively, outperforming the organizers' baseline and achieving notable results when contrasted with the top-performing results in the competition, which reported accuracies of 84.7% and 81.3% correspondingly.
comment: SemEval-2024
♻ ☆ Prompt Tuned Embedding Classification for Multi-Label Industry Sector Allocation NAACL 2024
Prompt Tuning is emerging as a scalable and cost-effective method to fine-tune Pretrained Language Models (PLMs), which are often referred to as Large Language Models (LLMs). This study benchmarks the performance and computational efficiency of Prompt Tuning and baselines for multi-label text classification. This is applied to the challenging task of classifying companies into an investment firm's proprietary industry taxonomy, supporting their thematic investment strategy. Text-to-text classification is frequently reported to outperform task-specific classification heads, but has several limitations when applied to a multi-label classification problem where each label consists of multiple tokens: (a) Generated labels may not match any label in the label taxonomy; (b) The fine-tuning process lacks permutation invariance and is sensitive to the order of the provided labels; (c) The model provides binary decisions rather than appropriate confidence scores. Limitation (a) is addressed by applying constrained decoding using Trie Search, which slightly improves classification performance. All limitations (a), (b), and (c) are addressed by replacing the PLM's language head with a classification head, which is referred to as Prompt Tuned Embedding Classification (PTEC). This improves performance significantly, while also reducing computational costs during inference. In our industrial application, the training data is skewed towards well-known companies. We confirm that the model's performance is consistent across both well-known and less-known companies. Our overall results indicate the continuing need to adapt state-of-the-art methods to domain-specific tasks, even in the era of PLMs with strong generalization abilities. We release our codebase and a benchmarking dataset at https://github.com/EQTPartners/PTEC.
comment: Accepted by NAACL 2024 industry track (6 pages, 4 figures). Source code to be found at https://github.com/EQTPartners/PTEC
♻ ☆ Re-Ex: Revising after Explanation Reduces the Factual Errors in LLM Responses
Mitigating hallucination issues is a key challenge that must be overcome to reliably deploy large language models (LLMs) in real-world scenarios. Recently, various methods have been proposed to detect and revise factual errors in LLM-generated texts, in order to reduce hallucination. In this paper, we propose Re-Ex, a method for post-editing LLM-generated responses. Re-Ex introduces a novel reasoning step dubbed as the factual error explanation step. Re-Ex revises the initial response of LLMs using 3-steps : first, external tools are used to retrieve the evidences of the factual errors in the initial LLM response; next, LLM is instructed to explain the problematic parts of the response based on the gathered evidence; finally, LLM revises the initial response using the explanations provided in the previous step. In addition to the explanation step, Re-Ex also incorporates new prompting techniques to reduce the token count and inference time required for the response revision process. Compared with existing methods including FacTool, CoVE, and RARR, Re-Ex provides better detection and revision performance with less inference time and fewer tokens in multiple benchmarks.
comment: 16 pages
♻ ☆ HuixiangDou: Overcoming Group Chat Scenarios with LLM-based Technical Assistance
In this work, we present HuixiangDou, a technical assistant powered by Large Language Models (LLM). This system is designed to assist algorithm developers by providing insightful responses to questions related to open-source algorithm projects, such as computer vision and deep learning projects from OpenMMLab. We further explore the integration of this assistant into the group chats of instant messaging (IM) tools such as WeChat and Lark. Through several iterative improvements and trials, we have developed a sophisticated technical chat assistant capable of effectively answering users' technical questions without causing message flooding. This paper's contributions include: 1) Designing an algorithm pipeline specifically for group chat scenarios; 2) Verifying the reliable performance of text2vec in task rejection; 3) Identifying three critical requirements for LLMs in technical-assistant-like products, namely scoring ability, In-Context Learning (ICL), and Long Context. We have made the source code, android app and web service available at Github (https://github.com/internlm/huixiangdou), OpenXLab (https://openxlab.org.cn/apps/detail/tpoisonooo/huixiangdou-web) and YouTube (https://youtu.be/ylXrT-Tei-Y) to aid in future research and application. HuixiangDou is applicable to any group chat within IM tools.
comment: 13 pages, 4 figures
♻ ☆ Topic-Controllable Summarization: Topic-Aware Evaluation and Transformer Methods
Topic-controllable summarization is an emerging research area with a wide range of potential applications. However, existing approaches suffer from significant limitations. For example, the majority of existing methods built upon recurrent architectures, which can significantly limit their performance compared to more recent Transformer-based architectures, while they also require modifications to the model's architecture for controlling the topic. At the same time, there is currently no established evaluation metric designed specifically for topic-controllable summarization. This work proposes a new topic-oriented evaluation measure to automatically evaluate the generated summaries based on the topic affinity between the generated summary and the desired topic. The reliability of the proposed measure is demonstrated through appropriately designed human evaluation. In addition, we adapt topic embeddings to work with powerful Transformer architectures and propose a novel and efficient approach for guiding the summary generation through control tokens. Experimental results reveal that control tokens can achieve better performance compared to more complicated embedding-based approaches while also being significantly faster.
comment: 11 pages, 1 figure, 6 tables
♻ ☆ Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios. However, the absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors. In this paper, we propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration. Building on the foundation of BLIP-2, Lyrics infuses local visual features extracted from a visual refiner that includes image tagging, object detection and semantic segmentation modules into the Querying Transformer, while on the text side, the language inputs equip the boundary boxes and tags derived from the visual refiner. We further introduce a two-stage training scheme, in which the pre-training stage bridges the modality gap through explicit and comprehensive vision-language alignment targets. During the instruction fine-tuning stage, we introduce semantic-aware visual feature extraction, a crucial method that enables the model to extract informative features from concrete visual objects. Our approach achieves robust performance on 13 datasets across various vision-language tasks, and demonstrates promising multi-modal understanding, perception and conversation capabilities in 11 scenario-based benchmark toolkits.
♻ ☆ TextMachina: Seamless Generation of Machine-Generated Text Datasets
Recent advancements in Large Language Models (LLMs) have led to high-quality Machine-Generated Text (MGT), giving rise to countless new use cases and applications. However, easy access to LLMs is posing new challenges due to misuse. To address malicious usage, researchers have released datasets to effectively train models on MGT-related tasks. Similar strategies are used to compile these datasets, but no tool currently unifies them. In this scenario, we introduce TextMachina, a modular and extensible Python framework, designed to aid in the creation of high-quality, unbiased datasets to build robust models for MGT-related tasks such as detection, attribution, mixcase, or boundary detection. It provides a user-friendly pipeline that abstracts away the inherent intricacies of building MGT datasets, such as LLM integrations, prompt templating, and bias mitigation. The quality of the datasets generated by TextMachina has been assessed in previous works, including shared tasks where more than one hundred teams trained robust MGT detectors.
comment: 14 pages, 10 figures
♻ ☆ Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Large-scale vision-and-language models, such as CLIP, are typically trained on web-scale data, which can introduce inappropriate content and lead to the development of unsafe and biased behavior. This, in turn, hampers their applicability in sensitive and trustworthy contexts and could raise significant concerns in their adoption. Our research introduces a novel approach to enhancing the safety of vision-and-language models by diminishing their sensitivity to NSFW (not safe for work) inputs. In particular, our methodology seeks to sever "toxic" linguistic and visual concepts, unlearning the linkage between unsafe linguistic or visual items and unsafe regions of the embedding space. We show how this can be done by fine-tuning a CLIP model on synthetic data obtained from a large language model trained to convert between safe and unsafe sentences, and a text-to-image generator. We conduct extensive experiments on the resulting embedding space for cross-modal retrieval, text-to-image, and image-to-text generation, where we show that our model can be remarkably employed with pre-trained generative models. Our source code and trained models are available at: https://github.com/aimagelab/safe-clip.
♻ ☆ Using Large Language Models to Understand Telecom Standards ICML
The Third Generation Partnership Project (3GPP) has successfully introduced standards for global mobility. However, the volume and complexity of these standards has increased over time, thus complicating access to relevant information for vendors and service providers. Use of Generative Artificial Intelligence (AI) and in particular Large Language Models (LLMs), may provide faster access to relevant information. In this paper, we evaluate the capability of state-of-art LLMs to be used as Question Answering (QA) assistants for 3GPP document reference. Our contribution is threefold. First, we provide a benchmark and measuring methods for evaluating performance of LLMs. Second, we do data preprocessing and fine-tuning for one of these LLMs and provide guidelines to increase accuracy of the responses that apply to all LLMs. Third, we provide a model of our own, TeleRoBERTa, that performs on-par with foundation LLMs but with an order of magnitude less number of parameters. Results show that LLMs can be used as a credible reference tool on telecom technical documents, and thus have potential for a number of different applications from troubleshooting and maintenance, to network operations and software product development.
comment: Accepted to ICMLCN 2024, Stockholm, May 2024. Updating typo in authors list
♻ ☆ From News to Summaries: Building a Hungarian Corpus for Extractive and Abstractive Summarization
Training summarization models requires substantial amounts of training data. However for less resourceful languages like Hungarian, openly available models and datasets are notably scarce. To address this gap our paper introduces HunSum-2 an open-source Hungarian corpus suitable for training abstractive and extractive summarization models. The dataset is assembled from segments of the Common Crawl corpus undergoing thorough cleaning, preprocessing and deduplication. In addition to abstractive summarization we generate sentence-level labels for extractive summarization using sentence similarity. We train baseline models for both extractive and abstractive summarization using the collected dataset. To demonstrate the effectiveness of the trained models, we perform both quantitative and qualitative evaluation. Our dataset, models and code are publicly available, encouraging replication, further research, and real-world applications across various domains.
♻ ☆ Llama-VITS: Enhancing TTS Synthesis with Semantic Awareness LREC
Recent advancements in Natural Language Processing (NLP) have seen Large-scale Language Models (LLMs) excel at producing high-quality text for various purposes. Notably, in Text-To-Speech (TTS) systems, the integration of BERT for semantic token generation has underscored the importance of semantic content in producing coherent speech outputs. Despite this, the specific utility of LLMs in enhancing TTS synthesis remains considerably limited. This research introduces an innovative approach, Llama-VITS, which enhances TTS synthesis by enriching the semantic content of text using LLM. Llama-VITS integrates semantic embeddings from Llama2 with the VITS model, a leading end-to-end TTS framework. By leveraging Llama2 for the primary speech synthesis process, our experiments demonstrate that Llama-VITS matches the naturalness of the original VITS (ORI-VITS) and those incorporate BERT (BERT-VITS), on the LJSpeech dataset, a substantial collection of neutral, clear speech. Moreover, our method significantly enhances emotive expressiveness on the EmoV_DB_bea_sem dataset, a curated selection of emotionally consistent speech from the EmoV_DB dataset, highlighting its potential to generate emotive speech.
comment: 9 pages, 2 figures, 4 tables; accepted at LREC-COLING 2024
♻ ☆ Increasing Trust in Language Models through the Reuse of Verified Circuits
Language Models (LMs) are increasingly used for a wide range of prediction tasks, but their training can often neglect rare edge cases, reducing their reliability. Here, we define a stringent standard of trustworthiness whereby the task algorithm and circuit implementation must be verified, accounting for edge cases, with no known failure modes. We show that a transformer model can be trained to meet this standard if built using mathematically and logically specified frameworks. In this paper, we fully verify a model for n-digit integer addition. To exhibit the reusability of verified modules, we insert the trained integer addition model into an untrained model and train the combined model to perform both addition and subtraction. We find extensive reuse of the addition circuits for both tasks, easing verification of the more complex subtractor model. We discuss how inserting verified task modules into LMs can leverage model reuse to improve verifiability and trustworthiness of language models built using them. The reuse of verified circuits reduces the effort to verify more complex composite models which we believe to be a significant step towards safety of language models.
comment: 8 pages, 10 figures
♻ ☆ Eye-gaze Guided Multi-modal Alignment Framework for Radiology
In multi-modal frameworks, the alignment of cross-modal features presents a significant challenge. The predominant approach in multi-modal pre-training emphasizes either global or local alignment between modalities, utilizing extensive datasets. This bottom-up driven method often suffers from a lack of interpretability, a critical concern in radiology. Previous studies have integrated high-level labels in medical images or text, but these still rely on manual annotation, a costly and labor-intensive process. Our work introduces a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. This data, indicating radiologists' focus areas, naturally links chest X-rays to diagnostic texts. We propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of image and text features, aiming to reduce reliance on manual annotations and thus cut training costs. Our model demonstrates robust performance, outperforming other state-of-the-art methods in zero-shot classification and retrieval tasks. The incorporation of easily-obtained eye-gaze data during routine radiological diagnoses signifies a step towards minimizing manual annotation dependency. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal pre-training.
comment: 12 pages, 4 figures
♻ ☆ Interpretation of Intracardiac Electrograms Through Textual Representations
Understanding the irregular electrical activity of atrial fibrillation (AFib) has been a key challenge in electrocardiography. For serious cases of AFib, catheter ablations are performed to collect intracardiac electrograms (EGMs). EGMs offer intricately detailed and localized electrical activity of the heart and are an ideal modality for interpretable cardiac studies. Recent advancements in artificial intelligence (AI) has allowed some works to utilize deep learning frameworks to interpret EGMs during AFib. Additionally, language models (LMs) have shown exceptional performance in being able to generalize to unseen domains, especially in healthcare. In this study, we are the first to leverage pretrained LMs for finetuning of EGM interpolation and AFib classification via masked language modeling. We formulate the EGM as a textual sequence and present competitive performances on AFib classification compared against other representations. Lastly, we provide a comprehensive interpretability study to provide a multi-perspective intuition of the model's behavior, which could greatly benefit the clinical use.
comment: 18 pages, 9 figures; Accepted to CHIL 2024
♻ ☆ Large Language Model for Causal Decision Making
Large Language Models (LLMs) have shown their success in language understanding and reasoning on general topics. However, their capability to perform inference based on user-specified structured data and knowledge in corpus-rare concepts, such as causal decision-making is still limited. In this work, we explore the possibility of fine-tuning an open-sourced LLM into LLM4Causal, which can identify the causal task, execute a corresponding function, and interpret its numerical results based on users' queries and the provided dataset. Meanwhile, we propose a data generation process for more controllable GPT prompting and present two instruction-tuning datasets: (1) Causal-Retrieval-Bench for causal problem identification and input parameter extraction for causal function calling and (2) Causal-Interpret-Bench for in-context causal interpretation. By conducting end-to-end evaluations and two ablation studies, we showed that LLM4Causal can deliver end-to-end solutions for causal problems and provide easy-to-understand answers, which significantly outperforms the baselines.
♻ ☆ Provably Robust DPO: Aligning Language Models with Noisy Feedback
Learning from preference-based feedback has recently gained traction as a promising approach to align language models with human interests. While these aligned generative models have demonstrated impressive capabilities across various tasks, their dependence on high-quality human preference data poses a bottleneck in practical applications. Specifically, noisy (incorrect and ambiguous) preference pairs in the dataset might restrict the language models from capturing human intent accurately. While practitioners have recently proposed heuristics to mitigate the effect of noisy preferences, a complete theoretical understanding of their workings remain elusive. In this work, we aim to bridge this gap by by introducing a general framework for policy optimization in the presence of random preference flips. We focus on the direct preference optimization (DPO) algorithm in particular since it assumes that preferences adhere to the Bradley-Terry-Luce (BTL) model, raising concerns about the impact of noisy data on the learned policy. We design a novel loss function, which de-bias the effect of noise on average, making a policy trained by minimizing that loss robust to the noise. Under log-linear parameterization of the policy class and assuming good feature coverage of the SFT policy, we prove that the sub-optimality gap of the proposed robust DPO (rDPO) policy compared to the optimal policy is of the order $O(\frac{1}{1-2\epsilon}\sqrt{\frac{d}{n}})$, where $\epsilon < 1/2$ is flip rate of labels, $d$ is policy parameter dimension and $n$ is size of dataset. Our experiments on IMDb sentiment generation and Anthropic's helpful-harmless dataset show that rDPO is robust to noise in preference labels compared to vanilla DPO and other heuristics proposed by practitioners.
♻ ☆ UMBCLU at SemEval-2024 Task 1A and 1C: Semantic Textual Relatedness with and without machine translation SemEval 2024
The aim of SemEval-2024 Task 1, "Semantic Textual Relatedness for African and Asian Languages" is to develop models for identifying semantic textual relatedness (STR) between two sentences using multiple languages (14 African and Asian languages) and settings (supervised, unsupervised, and cross-lingual). Large language models (LLMs) have shown impressive performance on several natural language understanding tasks such as multilingual machine translation (MMT), semantic similarity (STS), and encoding sentence embeddings. Using a combination of LLMs that perform well on these tasks, we developed two STR models, $\textit{TranSem}$ and $\textit{FineSem}$, for the supervised and cross-lingual settings. We explore the effectiveness of several training methods and the usefulness of machine translation. We find that direct fine-tuning on the task is comparable to using sentence embeddings and translating to English leads to better performance for some languages. In the supervised setting, our model performance is better than the official baseline for 3 languages with the remaining 4 performing on par. In the cross-lingual setting, our model performance is better than the baseline for 3 languages (leading to $1^{st}$ place for Africaans and $2^{nd}$ place for Indonesian), is on par for 2 languages and performs poorly on the remaining 7 languages. Our code is publicly available at https://github.com/dipta007/SemEval24-Task8.
comment: Accepted at SemEval 2024 (Colocated with NAACL 2024)
♻ ☆ Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models
Parameter Efficient Fine-Tuning (PEFT) methods have been extensively utilized in Large Language Models (LLMs) to improve the down-streaming tasks without the cost of fine-tuing the whole LLMs. Recent studies have shown how to effectively use PEFT for fine-tuning LLMs in ranking tasks with convincing performance; there are some limitations, including the learned prompt being fixed for different documents, overfitting to specific tasks, and low adaptation ability. In this paper, we introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak the information of the true queries to LLMs and then make the generation of true queries from input documents much easier. Specifically, we utilize the query to extract the top-$k$ tokens from concatenated documents, serving as contextual clues. We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents, guiding the LLMs to generate more document-specific synthetic queries, thereby further improving the reranking performance. Extensive experiments are conducted on four public datasets, demonstrating the effectiveness of our proposed approach.
♻ ☆ Towards Measuring the Representation of Subjective Global Opinions in Language Models
Large language models (LLMs) may not equitably represent diverse global perspectives on societal issues. In this paper, we develop a quantitative framework to evaluate whose opinions model-generated responses are more similar to. We first build a dataset, GlobalOpinionQA, comprised of questions and answers from cross-national surveys designed to capture diverse opinions on global issues across different countries. Next, we define a metric that quantifies the similarity between LLM-generated survey responses and human responses, conditioned on country. With our framework, we run three experiments on an LLM trained to be helpful, honest, and harmless with Constitutional AI. By default, LLM responses tend to be more similar to the opinions of certain populations, such as those from the USA, and some European and South American countries, highlighting the potential for biases. When we prompt the model to consider a particular country's perspective, responses shift to be more similar to the opinions of the prompted populations, but can reflect harmful cultural stereotypes. When we translate GlobalOpinionQA questions to a target language, the model's responses do not necessarily become the most similar to the opinions of speakers of those languages. We release our dataset for others to use and build on. Our data is at https://huggingface.co/datasets/Anthropic/llm_global_opinions. We also provide an interactive visualization at https://llmglobalvalues.anthropic.com.
♻ ☆ Tied-Lora: Enhancing parameter efficiency of LoRA with weight tying
We introduce Tied-LoRA, a novel paradigm leveraging weight tying and selective training to enhance the parameter efficiency of Low-rank Adaptation (LoRA). Our exploration encompasses different plausible combinations of parameter training and freezing, coupled with weight tying, aimed at identifying the optimal trade-off between performance and the count of trainable parameters. Across $5$ diverse tasks and two foundational language models with different parameter counts, our experiments provide comprehensive insights into the inherent trade-offs between efficiency and performance. Our findings reveal a specific Tied-LoRA configuration that distinguishes itself by showcasing comparable performance to LoRA across multiple tasks while utilizing only a fraction of the parameters employed by the standard LoRA method, particularly at elevated ranks. This underscores the efficacy of Tied-LoRA in achieving impressive results with significantly reduced model complexity.
comment: 8 pages 4 figures
♻ ☆ Sequence-Level Certainty Reduces Hallucination In Knowledge-Grounded Dialogue Generation
In this work, we propose sequence-level certainty as a common theme over hallucination in Knowledge Grounded Dialogue Generation (KGDG). We explore the correlation between the level of hallucination in model responses and two types of sequence-level certainty: probabilistic certainty and semantic certainty. Empirical results reveal that higher levels of both types of certainty in model responses are correlated with lower levels of hallucination. We further propose Certainty-based Response Ranking (CRR), a decoding-time hallucination mitigation method that samples several response candidates, ranks them based on sequence-level certainty, and outputs the response with the highest certainty level. Aligning with our definitions of sequence-level certainty, we design 2 types of CRR approaches: Probabilistic CRR (P-CRR) and Semantic CRR (S-CRR). P-CRR ranks individually sampled model responses using the arithmetic mean log-probability of the entire sequence. S-CRR approaches certainty estimation from meaning-space, and ranks model response candidates based on their semantic certainty level as measured by an entailment-based Agreement Score (AS). Through extensive experiments across 3 KGDG datasets, 3 decoding methods, and 4 KGDG models, we validate the effectiveness of CRR for reducing hallucination in KGDG task.
♻ ☆ Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions
The advent of Large Language Models (LLMs) has significantly reshaped the trajectory of the AI revolution. Nevertheless, these LLMs exhibit a notable limitation, as they are primarily adept at processing textual information. To address this constraint, researchers have endeavored to integrate visual capabilities with LLMs, resulting in the emergence of Vision-Language Models (VLMs). These advanced models are instrumental in tackling more intricate tasks such as image captioning and visual question answering. In our comprehensive survey paper, we delve into the key advancements within the realm of VLMs. Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.This classification is based on their respective capabilities and functionalities in processing and generating various modalities of data.We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible, providing readers with a comprehensive understanding of its essential components. We also analyzed the performance of VLMs in various benchmark datasets. By doing so, we aim to offer a nuanced understanding of the diverse landscape of VLMs. Additionally, we underscore potential avenues for future research in this dynamic domain, anticipating further breakthroughs and advancements.
comment: The most extensive and up to date Survey on Visual Language Models covering 76 Visual Language Models
♻ ☆ ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models NAACL 2024
In recent times, large language models (LLMs) have shown impressive performance on various document-level tasks such as document classification, summarization, and question-answering. However, research on understanding their capabilities on the task of self-contradictions in long documents has been very limited. In this work, we introduce ContraDoc, the first human-annotated dataset to study self-contradictions in long documents across multiple domains, varying document lengths, self-contradictions types, and scope. We then analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset. While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context. We release the dataset and all the code associated with the experiments (https://github.com/ddhruvkr/CONTRADOC).
comment: Accepted to NAACL 2024 main conference
Computer Vision and Pattern Recognition 116
☆ EventEgo3D: 3D Human Motion Capture from Egocentric Event Streams CVPR
Monocular egocentric 3D human motion capture is a challenging and actively researched problem. Existing methods use synchronously operating visual sensors (e.g. RGB cameras) and often fail under low lighting and fast motions, which can be restricting in many applications involving head-mounted devices. In response to the existing limitations, this paper 1) introduces a new problem, i.e., 3D human motion capture from an egocentric monocular event camera with a fisheye lens, and 2) proposes the first approach to it called EventEgo3D (EE3D). Event streams have high temporal resolution and provide reliable cues for 3D human motion capture under high-speed human motions and rapidly changing illumination. The proposed EE3D framework is specifically tailored for learning with event streams in the LNES representation, enabling high 3D reconstruction accuracy. We also design a prototype of a mobile head-mounted device with an event camera and record a real dataset with event observations and the ground-truth 3D human poses (in addition to the synthetic dataset). Our EE3D demonstrates robustness and superior 3D accuracy compared to existing solutions across various challenging experiments while supporting real-time 3D pose update rates of 140Hz.
comment: 14 pages, 11 figures and 6 tables; project page: https://4dqv.mpi-inf.mpg.de/EventEgo3D/; Computer Vision and Pattern Recognition (CVPR) 2024
☆ COCONut: Modernizing COCO Segmentation CVPR2024
In recent decades, the vision community has witnessed remarkable progress in visual recognition, partially owing to advancements in dataset benchmarks. Notably, the established COCO benchmark has propelled the development of modern detection and segmentation systems. However, the COCO segmentation benchmark has seen comparatively slow improvement over the last decade. Originally equipped with coarse polygon annotations for thing instances, it gradually incorporated coarse superpixel annotations for stuff regions, which were subsequently heuristically amalgamated to yield panoptic segmentation annotations. These annotations, executed by different groups of raters, have resulted not only in coarse segmentation masks but also in inconsistencies between segmentation types. In this study, we undertake a comprehensive reevaluation of the COCO segmentation annotations. By enhancing the annotation quality and expanding the dataset to encompass 383K images with more than 5.18M panoptic masks, we introduce COCONut, the COCO Next Universal segmenTation dataset. COCONut harmonizes segmentation annotations across semantic, instance, and panoptic segmentation with meticulously crafted high-quality masks, and establishes a robust benchmark for all segmentation tasks. To our knowledge, COCONut stands as the inaugural large-scale universal segmentation dataset, verified by human raters. We anticipate that the release of COCONut will significantly contribute to the community's ability to assess the progress of novel neural networks.
comment: Accepted at CVPR2024, data available at https://xdeng7.github.io/coconut.github.io/
☆ Probing the 3D Awareness of Visual Foundation Models CVPR 2024
Recent advances in large-scale pretraining have yielded visual foundation models with strong capabilities. Not only can recent models generalize to arbitrary images for their training task, their intermediate representations are useful for other visual tasks such as detection and segmentation. Given that such models can classify, delineate, and localize objects in 2D, we ask whether they also represent their 3D structure? In this work, we analyze the 3D awareness of visual foundation models. We posit that 3D awareness implies that representations (1) encode the 3D structure of the scene and (2) consistently represent the surface across views. We conduct a series of experiments using task-specific probes and zero-shot inference procedures on frozen features. Our experiments reveal several limitations of the current models. Our code and analysis can be found at https://github.com/mbanani/probe3d.
comment: Accepted to CVPR 2024. Project page: https://github.com/mbanani/probe3d
☆ Automatic Quantification of Serial PET/CT Images for Pediatric Hodgkin Lymphoma Patients Using a Longitudinally-Aware Segmentation Network
$\textbf{Purpose}$: Automatic quantification of longitudinal changes in PET scans for lymphoma patients has proven challenging, as residual disease in interim-therapy scans is often subtle and difficult to detect. Our goal was to develop a longitudinally-aware segmentation network (LAS-Net) that can quantify serial PET/CT images for pediatric Hodgkin lymphoma patients. $\textbf{Materials and Methods}$: This retrospective study included baseline (PET1) and interim (PET2) PET/CT images from 297 patients enrolled in two Children's Oncology Group clinical trials (AHOD1331 and AHOD0831). LAS-Net incorporates longitudinal cross-attention, allowing relevant features from PET1 to inform the analysis of PET2. Model performance was evaluated using Dice coefficients for PET1 and detection F1 scores for PET2. Additionally, we extracted and compared quantitative PET metrics, including metabolic tumor volume (MTV) and total lesion glycolysis (TLG) in PET1, as well as qPET and $\Delta$SUVmax in PET2, against physician measurements. We quantified their agreement using Spearman's $\rho$ correlations and employed bootstrap resampling for statistical analysis. $\textbf{Results}$: LAS-Net detected residual lymphoma in PET2 with an F1 score of 0.606 (precision/recall: 0.615/0.600), outperforming all comparator methods (P<0.01). For baseline segmentation, LAS-Net achieved a mean Dice score of 0.772. In PET quantification, LAS-Net's measurements of qPET, $\Delta$SUVmax, MTV and TLG were strongly correlated with physician measurements, with Spearman's $\rho$ of 0.78, 0.80, 0.93 and 0.96, respectively. The performance remained high, with a slight decrease, in an external testing cohort. $\textbf{Conclusion}$: LAS-Net achieved high performance in quantifying PET metrics across serial scans, highlighting the value of longitudinal awareness in evaluating multi-time-point imaging datasets.
comment: 6 figures, 4 tables in the main text
☆ Training-free Boost for Open-Vocabulary Object Detection with Confidence Aggregation
Open-vocabulary object detection (OVOD) aims at localizing and recognizing visual objects from novel classes unseen at the training time. Whereas, empirical studies reveal that advanced detectors generally assign lower scores to those novel instances, which are inadvertently suppressed during inference by commonly adopted greedy strategies like Non-Maximum Suppression (NMS), leading to sub-optimal detection performance for novel classes. This paper systematically investigates this problem with the commonly-adopted two-stage OVOD paradigm. Specifically, in the region-proposal stage, proposals that contain novel instances showcase lower objectness scores, since they are treated as background proposals during the training phase. Meanwhile, in the object-classification stage, novel objects share lower region-text similarities (i.e., classification scores) due to the biased visual-language alignment by seen training samples. To alleviate this problem, this paper introduces two advanced measures to adjust confidence scores and conserve erroneously dismissed objects: (1) a class-agnostic localization quality estimate via overlap degree of region/object proposals, and (2) a text-guided visual similarity estimate with proxy prototypes for novel classes. Integrated with adjusting techniques specifically designed for the region-proposal and object-classification stages, this paper derives the aggregated confidence estimate for the open-vocabulary object detection paradigm (AggDet). Our AggDet is a generic and training-free post-processing scheme, which consistently bolsters open-vocabulary detectors across model scales and architecture designs. For instance, AggDet receives 3.3% and 1.5% gains on OV-COCO and OV-LVIS benchmarks respectively, without any training cost.
☆ Improving Referring Image Segmentation using Vision-Aware Text Features
Referring image segmentation is a challenging task that involves generating pixel-wise segmentation masks based on natural language descriptions. Existing methods have relied mostly on visual features to generate the segmentation masks while treating text features as supporting components. This over-reliance on visual features can lead to suboptimal results, especially in complex scenarios where text prompts are ambiguous or context-dependent. To overcome these challenges, we present a novel framework VATEX to improve referring image segmentation by enhancing object and context understanding with Vision-Aware Text Feature. Our method involves using CLIP to derive a CLIP Prior that integrates an object-centric visual heatmap with text description, which can be used as the initial query in DETR-based architecture for the segmentation task. Furthermore, by observing that there are multiple ways to describe an instance in an image, we enforce feature similarity between text variations referring to the same visual input by two components: a novel Contextual Multimodal Decoder that turns text embeddings into vision-aware text features, and a Meaning Consistency Constraint to ensure further the coherent and consistent interpretation of language expressions with the context understanding obtained from the image. Our method achieves a significant performance improvement on three benchmark datasets RefCOCO, RefCOCO+ and G-Ref. Code is available at: https://nero1342.github.io/VATEX\_RIS.
comment: 30 pages including supplementary
☆ Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts CVPR 2024
Visual question answering (VQA) is known as an AI-complete task as it requires understanding, reasoning, and inferring about the vision and the language content. Over the past few years, numerous neural architectures have been suggested for the VQA problem. However, achieving success in zero-shot VQA remains a challenge due to its requirement for advanced generalization and reasoning skills. This study explores the impact of incorporating image captioning as an intermediary process within the VQA pipeline. Specifically, we explore the efficacy of utilizing image captions instead of images and leveraging large language models (LLMs) to establish a zero-shot setting. Since image captioning is the most crucial step in this process, we compare the impact of state-of-the-art image captioning models on VQA performance across various question types in terms of structure and semantics. We propose a straightforward and efficient question-driven image captioning approach within this pipeline to transfer contextual information into the question-answering (QA) model. This method involves extracting keywords from the question, generating a caption for each image-question pair using the keywords, and incorporating the question-driven caption into the LLM prompt. We evaluate the efficacy of using general-purpose and question-driven image captions in the VQA pipeline. Our study highlights the potential of employing image captions and harnessing the capabilities of LLMs to achieve competitive performance on GQA under the zero-shot setting. Our code is available at \url{https://github.com/ovguyo/captions-in-VQA}.
comment: The paper has been accepted for presentation at CVPR 2024 Workshop on Prompting in Vision
☆ Advanced wood species identification based on multiple anatomical sections and using deep feature transfer and fusion
In recent years, we have seen many advancements in wood species identification. Methods like DNA analysis, Near Infrared (NIR) spectroscopy, and Direct Analysis in Real Time (DART) mass spectrometry complement the long-established wood anatomical assessment of cell and tissue morphology. However, most of these methods have some limitations such as high costs, the need for skilled experts for data interpretation, and the lack of good datasets for professional reference. Therefore, most of these methods, and certainly the wood anatomical assessment, may benefit from tools based on Artificial Intelligence. In this paper, we apply two transfer learning techniques with Convolutional Neural Networks (CNNs) to a multi-view Congolese wood species dataset including sections from different orientations and viewed at different microscopic magnifications. We explore two feature extraction methods in detail, namely Global Average Pooling (GAP) and Random Encoding of Aggregated Deep Activation Maps (RADAM), for efficient and accurate wood species identification. Our results indicate superior accuracy on diverse datasets and anatomical sections, surpassing the results of other methods. Our proposal represents a significant advancement in wood species identification, offering a robust tool to support the conservation of forest ecosystems and promote sustainable forestry practices.
comment: 33 pages, 7 tables, 9 figures
☆ Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation
Medical image processing usually requires a model trained with carefully crafted datasets due to unique image characteristics and domain-specific challenges, especially in pathology. Primitive detection and segmentation in digitized tissue samples are essential for objective and automated diagnosis and prognosis of cancer. SAM (Segment Anything Model) has recently been developed to segment general objects from natural images with high accuracy, but it requires human prompts to generate masks. In this work, we present a novel approach that adapts pre-trained natural image encoders of SAM for detection-based region proposals. Regions proposed by a pre-trained encoder are sent to cascaded feature propagation layers for projection. Then, local semantic and global context is aggregated from multi-scale for bounding box localization and classification. Finally, the SAM decoder uses the identified bounding boxes as essential prompts to generate a comprehensive primitive segmentation map. The entire base framework, SAM, requires no additional training or fine-tuning but could produce an end-to-end result for two fundamental segmentation tasks in pathology. Our method compares with state-of-the-art models in F1 score for nuclei detection and binary/multiclass panoptic(bPQ/mPQ) and mask quality(dice) for segmentation quality on the PanNuke dataset while offering end-to-end efficiency. Our model also achieves remarkable Average Precision (+4.5%) on the secondary dataset (HuBMAP Kidney) compared to Faster RCNN. The code is publicly available at https://github.com/learner-codec/autoprom_sam.
comment: 2024 IEEE International Symposium on Biomedical Imaging
☆ FashionFail: Addressing Failure Cases in Fashion Object Detection and Segmentation IJCNN
In the realm of fashion object detection and segmentation for online shopping images, existing state-of-the-art fashion parsing models encounter limitations, particularly when exposed to non-model-worn apparel and close-up shots. To address these failures, we introduce FashionFail; a new fashion dataset with e-commerce images for object detection and segmentation. The dataset is efficiently curated using our novel annotation tool that leverages recent foundation models. The primary objective of FashionFail is to serve as a test bed for evaluating the robustness of models. Our analysis reveals the shortcomings of leading models, such as Attribute-Mask R-CNN and Fashionformer. Additionally, we propose a baseline approach using naive data augmentation to mitigate common failure cases and improve model robustness. Through this work, we aim to inspire and support further research in fashion item detection and segmentation for industrial applications. The dataset, annotation tool, code, and models are available at \url{https://rizavelioglu.github.io/fashionfail/}.
comment: to be published in 2024 International Joint Conference on Neural Networks (IJCNN)
☆ Lossy Image Compression with Foundation Diffusion Models
Incorporating diffusion models in the image compression domain has the potential to produce realistic and detailed reconstructions, especially at extremely low bitrates. Previous methods focus on using diffusion models as expressive decoders robust to quantization errors in the conditioning signals, yet achieving competitive results in this manner requires costly training of the diffusion model and long inference times due to the iterative generative process. In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent. Our approach allows us to perform less than 10\% of the full diffusion generative process and requires no architectural changes to the diffusion model, enabling the use of foundation models as a strong prior without additional fine tuning of the backbone. Our proposed codec outperforms previous methods in quantitative realism metrics, and we verify that our reconstructions are qualitatively preferred by end users, even when other methods use twice the bitrate.
☆ IDD-X: A Multi-View Dataset for Ego-relative Important Object Localization and Explanation in Dense and Unstructured Traffic ICRA 2024
Intelligent vehicle systems require a deep understanding of the interplay between road conditions, surrounding entities, and the ego vehicle's driving behavior for safe and efficient navigation. This is particularly critical in developing countries where traffic situations are often dense and unstructured with heterogeneous road occupants. Existing datasets, predominantly geared towards structured and sparse traffic scenarios, fall short of capturing the complexity of driving in such environments. To fill this gap, we present IDD-X, a large-scale dual-view driving video dataset. With 697K bounding boxes, 9K important object tracks, and 1-12 objects per video, IDD-X offers comprehensive ego-relative annotations for multiple important road objects covering 10 categories and 19 explanation label categories. The dataset also incorporates rearview information to provide a more complete representation of the driving environment. We also introduce custom-designed deep networks aimed at multiple important object localization and per-object explanation prediction. Overall, our dataset and introduced prediction models form the foundation for studying how road conditions and surrounding entities affect driving behavior in complex traffic situations.
comment: Accepted at ICRA 2024
☆ Scalability in Building Component Data Annotation: Enhancing Facade Material Classification with Synthetic Data
Computer vision models trained on Google Street View images can create material cadastres. However, current approaches need manually annotated datasets that are difficult to obtain and often have class imbalance. To address these challenges, this paper fine-tuned a Swin Transformer model on a synthetic dataset generated with DALL-E and compared the performance to a similar manually annotated dataset. Although manual annotation remains the gold standard, the synthetic dataset performance demonstrates a reasonable alternative. The findings will ease annotation needed to develop material cadastres, offering architects insights into opportunities for material reuse, thus contributing to the reduction of demolition waste.
comment: 10 pages, 6 figures, submitted to 2024 European Conference of Computing in Construction
☆ Benchmarking the Cell Image Segmentation Models Robustness under the Microscope Optical Aberrations
Cell segmentation is essential in biomedical research for analyzing cellular morphology and behavior. Deep learning methods, particularly convolutional neural networks (CNNs), have revolutionized cell segmentation by extracting intricate features from images. However, the robustness of these methods under microscope optical aberrations remains a critical challenge. This study comprehensively evaluates the performance of cell instance segmentation models under simulated aberration conditions using the DynamicNuclearNet (DNN) and LIVECell datasets. Aberrations, including Astigmatism, Coma, Spherical, and Trefoil, were simulated using Zernike polynomial equations. Various segmentation models, such as Mask R-CNN with different network heads (FPN, C3) and backbones (ResNet, VGG19, SwinS), were trained and tested under aberrated conditions. Results indicate that FPN combined with SwinS demonstrates superior robustness in handling simple cell images affected by minor aberrations. Conversely, Cellpose2.0 proves effective for complex cell images under similar conditions. Our findings provide insights into selecting appropriate segmentation models based on cell morphology and aberration severity, enhancing the reliability of cell segmentation in biomedical applications. Further research is warranted to validate these methods with diverse aberration types and emerging segmentation models. Overall, this research aims to guide researchers in effectively utilizing cell segmentation models in the presence of minor optical aberrations.
☆ Analyzing Decades-Long Environmental Changes in Namibia Using Archival Aerial Photography and Deep Learning
This study explores object detection in historical aerial photographs of Namibia to identify long-term environmental changes. Specifically, we aim to identify key objects -- \textit{Waterholes}, \textit{Omuti homesteads}, and \textit{Big trees} -- around Oshikango in Namibia using sub-meter gray-scale aerial imagery from 1943 and 1972. In this work, we propose a workflow for analyzing historical aerial imagery using a deep semantic segmentation model on sparse hand-labels. To this end, we employ a number of strategies including class-weighting, pseudo-labeling and empirical p-value-based filtering to balance skewed and sparse representations of objects in the ground truth data. Results demonstrate the benefits of these different training strategies resulting in an average $F_1=0.661$ and $F_1=0.755$ over the three objects of interest for the 1943 and 1972 imagery, respectively. We also identified that the average size of Waterhole and Big trees increased while the average size of Omutis decreased between 1943 and 1972 reflecting some of the local effects of the massive post-Second World War economic, agricultural, demographic, and environmental changes. This work also highlights the untapped potential of historical aerial photographs in understanding long-term environmental changes beyond Namibia (and Africa). With the lack of adequate satellite technology in the past, archival aerial photography offers a great alternative to uncover decades-long environmental changes.
☆ On the Robustness of Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation CVPR 2024
Recent advances in monocular depth estimation have been made by incorporating natural language as additional guidance. Although yielding impressive results, the impact of the language prior, particularly in terms of generalization and robustness, remains unexplored. In this paper, we address this gap by quantifying the impact of this prior and introduce methods to benchmark its effectiveness across various settings. We generate "low-level" sentences that convey object-centric, three-dimensional spatial relationships, incorporate them as additional language priors and evaluate their downstream impact on depth estimation. Our key finding is that current language-guided depth estimators perform optimally only with scene-level descriptions and counter-intuitively fare worse with low level descriptions. Despite leveraging additional data, these methods are not robust to directed adversarial attacks and decline in performance with an increase in distribution shift. Finally, to provide a foundation for future research, we identify points of failures and offer insights to better understand these shortcomings. With an increasing number of methods using language for depth estimation, our findings highlight the opportunities and pitfalls that require careful consideration for effective deployment in real-world settings
comment: Accepted to CVPR 2024. Project webpage: https://agneetchatterjee.com/robustness_depth_lang/
☆ Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
☆ Text Prompt with Normality Guidance for Weakly Supervised Video Anomaly Detection CVPR2024
Weakly supervised video anomaly detection (WSVAD) is a challenging task. Generating fine-grained pseudo-labels based on weak-label and then self-training a classifier is currently a promising solution. However, since the existing methods use only RGB visual modality and the utilization of category text information is neglected, thus limiting the generation of more accurate pseudo-labels and affecting the performance of self-training. Inspired by the manual labeling process based on the event description, in this paper, we propose a novel pseudo-label generation and self-training framework based on Text Prompt with Normality Guidance (TPWNG) for WSVAD. Our idea is to transfer the rich language-visual knowledge of the contrastive language-image pre-training (CLIP) model for aligning the video event description text and corresponding video frames to generate pseudo-labels. Specifically, We first fine-tune the CLIP for domain adaptation by designing two ranking losses and a distributional inconsistency loss. Further, we propose a learnable text prompt mechanism with the assist of a normality visual prompt to further improve the matching accuracy of video event description text and video frames. Then, we design a pseudo-label generation module based on the normality guidance to infer reliable frame-level pseudo-labels. Finally, we introduce a temporal context self-adaptive learning module to learn the temporal dependencies of different video events more flexibly and accurately. Extensive experiments show that our method achieves state-of-the-art performance on two benchmark datasets, UCF-Crime and XD-Viole
comment: Accepted to CVPR2024
☆ Masked Image Modeling as a Framework for Self-Supervised Learning across Eye Movements
To make sense of their surroundings, intelligent systems must transform complex sensory inputs to structured codes that are reduced to task-relevant information such as object category. Biological agents achieve this in a largely autonomous manner, presumably via self-\allowbreak super-\allowbreak vised learning. Whereas previous attempts to model the underlying mechanisms were largely discriminative in nature, there is ample evidence that the brain employs a generative model of the world. Here, we propose that eye movements, in combination with the focused nature of primate vision, constitute a generative, self-supervised task of predicting and revealing visual information. We construct a proof-of-principle model starting from the framework of masked image modeling (MIM), a common approach in deep representation learning. To do so, we analyze how core components of MIM such as masking technique and data augmentation influence the formation of category-specific representations. This allows us not only to better understand the principles behind MIM, but to then reassemble a MIM more in line with the focused nature of biological perception. From a theoretical angle, we find that MIM disentangles neurons in latent space, a property that has been suggested to structure visual representations in primates, without explicit regulation. Together with previous findings of invariance learning, this highlights an interesting connection of MIM to latent regularization approaches for self-supervised learning. The source code is available under https://github.com/RobinWeiler/FocusMIM
☆ ChatGPT and general-purpose AI count fruits in pictures surprisingly well
Object counting is a popular task in deep learning applications in various domains, including agriculture. A conventional deep learning approach requires a large amount of training data, often a logistic problem in a real-world application. To address this issue, we examined how well ChatGPT (GPT4V) and a general-purpose AI (foundation model for object counting, T-Rex) can count the number of fruit bodies (coffee cherries) in 100 images. The foundation model with few-shot learning outperformed the trained YOLOv8 model (R2 = 0.923 and 0.900, respectively). ChatGPT also showed some interesting potential, especially when few-shot learning with human feedback was applied (R2 = 0.360 and 0.460, respectively). Moreover, we examined the time required for implementation as a practical question. Obtaining the results with the foundation model and ChatGPT were much shorter than the YOLOv8 model (0.83 hrs, 1.75 hrs, and 161 hrs). We interpret these results as two surprises for deep learning users in applied domains: a foundation model with few-shot domain-specific learning can drastically save time and effort compared to the conventional approach, and ChatGPT can reveal a relatively good performance. Both approaches do not need coding skills, which can foster AI education and dissemination.
comment: 12 pages, 3 figures
☆ NIR-Assisted Image Denoising: A Selective Fusion Approach and A Real-World Benchmark Datase
Despite the significant progress in image denoising, it is still challenging to restore fine-scale details while removing noise, especially in extremely low-light environments. Leveraging near-infrared (NIR) images to assist visible RGB image denoising shows the potential to address this issue, becoming a promising technology. Nonetheless, existing works still struggle with taking advantage of NIR information effectively for real-world image denoising, due to the content inconsistency between NIR-RGB images and the scarcity of real-world paired datasets. To alleviate the problem, we propose an efficient Selective Fusion Module (SFM), which can be plug-and-played into the advanced denoising networks to merge the deep NIR-RGB features. Specifically, we sequentially perform the global and local modulation for NIR and RGB features, and then integrate the two modulated features. Furthermore, we present a Real-world NIR-Assisted Image Denoising (Real-NAID) dataset, which covers diverse scenarios as well as various noise levels. Extensive experiments on both synthetic and our real-world datasets demonstrate that the proposed method achieves better results than state-of-the-art ones. The dataset, codes, and pre-trained models will be publicly available at https://github.com/ronjonxu/NAID.
comment: 10 pages
☆ LaSagnA: Language-based Segmentation Assistant for Complex Queries
Recent advancements have empowered Large Language Models for Vision (vLLMs) to generate detailed perceptual outcomes, including bounding boxes and masks. Nonetheless, there are two constraints that restrict the further application of these vLLMs: the incapability of handling multiple targets per query and the failure to identify the absence of query objects in the image. In this study, we acknowledge that the main cause of these problems is the insufficient complexity of training queries. Consequently, we define the general sequence format for complex queries. Then we incorporate a semantic segmentation task in the current pipeline to fulfill the requirements of training data. Furthermore, we present three novel strategies to effectively handle the challenges arising from the direct integration of the proposed format. The effectiveness of our model in processing complex queries is validated by the comparable results with conventional methods on both close-set and open-set semantic segmentation datasets. Additionally, we outperform a series of vLLMs in reasoning and referring segmentation, showcasing our model's remarkable capabilities. We release the code at https://github.com/congvvc/LaSagnA.
☆ 3D Human Scan With A Moving Event Camera
Capturing the 3D human body is one of the important tasks in computer vision with a wide range of applications such as virtual reality and sports analysis. However, conventional frame cameras are limited by their temporal resolution and dynamic range, which imposes constraints in real-world application setups. Event cameras have the advantages of high temporal resolution and high dynamic range (HDR), but the development of event-based methods is necessary to handle data with different characteristics. This paper proposes a novel event-based method for 3D pose estimation and human mesh recovery. Prior work on event-based human mesh recovery require frames (images) as well as event data. The proposed method solely relies on events; it carves 3D voxels by moving the event camera around a stationary body, reconstructs the human pose and mesh by attenuated rays, and fit statistical body models, preserving high-frequency details. The experimental results show that the proposed method outperforms conventional frame-based methods in the estimation accuracy of both pose and body mesh. We also demonstrate results in challenging situations where a conventional camera has motion blur. This is the first to demonstrate event-only human mesh recovery, and we hope that it is the first step toward achieving robust and accurate 3D human body scanning from vision sensors.
☆ SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
Recurrent neural networks and Transformers have recently dominated most applications in hyperspectral (HS) imaging, owing to their capability to capture long-range dependencies from spectrum sequences. However, despite the success of these sequential architectures, the non-ignorable inefficiency caused by either difficulty in parallelization or computationally prohibitive attention still hinders their practicality, especially for large-scale observation in remote sensing scenarios. To address this issue, we herein propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification. SpectralMamba features the simplified but adequate modeling of HS data dynamics at two levels. First, in spatial-spectral space, a dynamical mask is learned by efficient convolutions to simultaneously encode spatial regularity and spectral peculiarity, thus attenuating the spectral variability and confusion in discriminative representation learning. Second, the merged spectrum can then be efficiently operated in the hidden state space with all parameters learned input-dependent, yielding selectively focused responses without reliance on redundant attention or imparallelizable recurrence. To explore the room for further computational downsizing, a piece-wise scanning mechanism is employed in-between, transferring approximately continuous spectrum into sequences with squeezed length while maintaining short- and long-term contextual profiles among hundreds of bands. Through extensive experiments on four benchmark HS datasets acquired by satellite-, aircraft-, and UAV-borne imagers, SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
☆ New Efficient Visual OILU Markers
Basic patterns are the source of a wide range of more or less complex geometric structures. We will exploit such patterns to develop new efficient visual markers. Besides being projective invariants, the proposed markers allow producing rich panel of unique identifiers, highly required for resource-intensive navigation and augmented reality applications. The spiral topology of our markers permits the validation of an accurate identification scheme, which is based on level set methods. The robustness of the markers against acquisition and geometric distortions is validated by extensive experimental tests.
☆ MoE-FFD: Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection
Deepfakes have recently raised significant trust issues and security concerns among the public. Compared to CNN face forgery detectors, ViT-based methods take advantage of the expressivity of transformers, achieving superior detection performance. However, these approaches still exhibit the following limitations: (1). Fully fine-tuning ViT-based models from ImageNet weights demands substantial computational and storage resources; (2). ViT-based methods struggle to capture local forgery clues, leading to model bias and limited generalizability. To tackle these challenges, this work introduces Mixture-of-Experts modules for Face Forgery Detection (MoE-FFD), a generalized yet parameter-efficient ViT-based approach. MoE-FFD only updates lightweight Low-Rank Adaptation (LoRA) and Adapter layers while keeping the ViT backbone frozen, thereby achieving parameter-efficient training. Moreover, MoE-FFD leverages the expressivity of transformers and local priors of CNNs to simultaneously extract global and local forgery clues. Additionally, novel MoE modules are designed to scale the model's capacity and select optimal forgery experts, further enhancing forgery detection performance. The proposed MoE learning scheme can be seamlessly adapted to various transformer backbones in a plug-and-play manner. Extensive experimental results demonstrate that the proposed method achieves state-of-the-art face forgery detection performance with reduced parameter overhead. The code will be released upon acceptance.
☆ Joint Physical-Digital Facial Attack Detection Via Simulating Spoofing Clues CVPR
Face recognition systems are frequently subjected to a variety of physical and digital attacks of different types. Previous methods have achieved satisfactory performance in scenarios that address physical attacks and digital attacks, respectively. However, few methods are considered to integrate a model that simultaneously addresses both physical and digital attacks, implying the necessity to develop and maintain multiple models. To jointly detect physical and digital attacks within a single model, we propose an innovative approach that can adapt to any network architecture. Our approach mainly contains two types of data augmentation, which we call Simulated Physical Spoofing Clues augmentation (SPSC) and Simulated Digital Spoofing Clues augmentation (SDSC). SPSC and SDSC augment live samples into simulated attack samples by simulating spoofing clues of physical and digital attacks, respectively, which significantly improve the capability of the model to detect "unseen" attack types. Extensive experiments show that SPSC and SDSC can achieve state-of-the-art generalization in Protocols 2.1 and 2.2 of the UniAttackData dataset, respectively. Our method won first place in "Unified Physical-Digital Face Attack Detection" of the 5th Face Anti-spoofing Challenge@CVPR2024. Our final submission obtains 3.75% APCER, 0.93% BPCER, and 2.34% ACER, respectively. Our code is available at https://github.com/Xianhua-He/cvpr2024-face-anti-spoofing-challenge.
comment: 10 pages with 6 figures, Accepted by CVPRW 2024
☆ OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering
Rendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
comment: 12 April, 2024; originally announced April 2024
☆ MSSTNet: A Multi-Scale Spatio-Temporal CNN-Transformer Network for Dynamic Facial Expression Recognition ICASSP 2024
Unlike typical video action recognition, Dynamic Facial Expression Recognition (DFER) does not involve distinct moving targets but relies on localized changes in facial muscles. Addressing this distinctive attribute, we propose a Multi-Scale Spatio-temporal CNN-Transformer network (MSSTNet). Our approach takes spatial features of different scales extracted by CNN and feeds them into a Multi-scale Embedding Layer (MELayer). The MELayer extracts multi-scale spatial information and encodes these features before sending them into a Temporal Transformer (T-Former). The T-Former simultaneously extracts temporal information while continually integrating multi-scale spatial information. This process culminates in the generation of multi-scale spatio-temporal features that are utilized for the final classification. Our method achieves state-of-the-art results on two in-the-wild datasets. Furthermore, a series of ablation experiments and visualizations provide further validation of our approach's proficiency in leveraging spatio-temporal information within DFER.
comment: Accepted to 2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024)
☆ Adapting the Segment Anything Model During Usage in Novel Situations
The interactive segmentation task consists in the creation of object segmentation masks based on user interactions. The most common way to guide a model towards producing a correct segmentation consists in clicks on the object and background. The recently published Segment Anything Model (SAM) supports a generalized version of the interactive segmentation problem and has been trained on an object segmentation dataset which contains 1.1B masks. Though being trained extensively and with the explicit purpose of serving as a foundation model, we show significant limitations of SAM when being applied for interactive segmentation on novel domains or object types. On the used datasets, SAM displays a failure rate $\text{FR}_{30}@90$ of up to $72.6 \%$. Since we still want such foundation models to be immediately applicable, we present a framework that can adapt SAM during immediate usage. For this we will leverage the user interactions and masks, which are constructed during the interactive segmentation process. We use this information to generate pseudo-labels, which we use to compute a loss function and optimize a part of the SAM model. The presented method causes a relative reduction of up to $48.1 \%$ in the $\text{FR}_{20}@85$ and $46.6 \%$ in the $\text{FR}_{30}@90$ metrics.
comment: 11 pages, 2 figures, 4 tables
☆ Direct May Not Be the Best: An Incremental Evolution View of Pose Generation
Pose diversity is an inherent representative characteristic of 2D images. Due to the 3D to 2D projection mechanism, there is evident content discrepancy among distinct pose images. This is the main obstacle bothering pose transformation related researches. To deal with this challenge, we propose a fine-grained incremental evolution centered pose generation framework, rather than traditional direct one-to-one in a rush. Since proposed approach actually bypasses the theoretical difficulty of directly modeling dramatic non-linear variation, the incurred content distortion and blurring could be effectively constrained, at the same time the various individual pose details, especially clothes texture, could be precisely maintained. In order to systematically guide the evolution course, both global and incremental evolution constraints are elaborately designed and merged into the overall frame?work. And a novel triple-path knowledge fusion structure is worked out to take full advantage of all available valuable knowledge to conduct high-quality pose synthesis. In addition, our framework could generate a series of valuable byproducts, namely the various intermediate poses. Extensive experiments have been conducted to verify the effectiveness of the proposed approach. Code is available at https://github.com/Xiaofei-CN/Incremental-Evolution-Pose-Generation.
☆ MambaDFuse: A Mamba-based Dual-phase Model for Multi-modality Image Fusion
Multi-modality image fusion (MMIF) aims to integrate complementary information from different modalities into a single fused image to represent the imaging scene and facilitate downstream visual tasks comprehensively. In recent years, significant progress has been made in MMIF tasks due to advances in deep neural networks. However, existing methods cannot effectively and efficiently extract modality-specific and modality-fused features constrained by the inherent local reductive bias (CNN) or quadratic computational complexity (Transformers). To overcome this issue, we propose a Mamba-based Dual-phase Fusion (MambaDFuse) model. Firstly, a dual-level feature extractor is designed to capture long-range features from single-modality images by extracting low and high-level features from CNN and Mamba blocks. Then, a dual-phase feature fusion module is proposed to obtain fusion features that combine complementary information from different modalities. It uses the channel exchange method for shallow fusion and the enhanced Multi-modal Mamba (M3) blocks for deep fusion. Finally, the fused image reconstruction module utilizes the inverse transformation of the feature extraction to generate the fused result. Through extensive experiments, our approach achieves promising fusion results in infrared-visible image fusion and medical image fusion. Additionally, in a unified benchmark, MambaDFuse has also demonstrated improved performance in downstream tasks such as object detection. Code with checkpoints will be available after the peer-review process.
☆ No Bells, Just Whistles: Sports Field Registration by Leveraging Geometric Properties CVPR
Broadcast sports field registration is traditionally addressed as a homography estimation task, mapping the visible image area to a planar field model, predominantly focusing on the main camera shot. Addressing the shortcomings of previous approaches, we propose a novel calibration pipeline enabling camera calibration using a 3D soccer field model and extending the process to assess the multiple-view nature of broadcast videos. Our approach begins with a keypoint generation pipeline derived from SoccerNet dataset annotations, leveraging the geometric properties of the court. Subsequently, we execute classical camera calibration through DLT algorithm in a minimalist fashion, without further refinement. Through extensive experimentation on real-world soccer broadcast datasets such as SoccerNet-Calibration, WorldCup 2014 and TS- WorldCup, our method demonstrates superior performance in both multiple- and single-view 3D camera calibration while maintaining competitive results in homography estimation compared to state-of-the-art techniques.
comment: Accepted in CVPRW 2024
☆ Mitigating Challenges of the Space Environment for Onboard Artificial Intelligence: Design Overview of the Imaging Payload on SpIRIT CVPR 2024
Artificial intelligence (AI) and autonomous edge computing in space are emerging areas of interest to augment capabilities of nanosatellites, where modern sensors generate orders of magnitude more data than can typically be transmitted to mission control. Here, we present the hardware and software design of an onboard AI subsystem hosted on SpIRIT. The system is optimised for on-board computer vision experiments based on visible light and long wave infrared cameras. This paper highlights the key design choices made to maximise the robustness of the system in harsh space conditions, and their motivation relative to key mission requirements, such as limited compute resources, resilience to cosmic radiation, extreme temperature variations, distribution shifts, and very low transmission bandwidths. The payload, called Loris, consists of six visible light cameras, three infrared cameras, a camera control board and a Graphics Processing Unit (GPU) system-on-module. Loris enables the execution of AI models with on-orbit fine-tuning as well as a next-generation image compression algorithm, including progressive coding. This innovative approach not only enhances the data processing capabilities of nanosatellites but also lays the groundwork for broader applications to remote sensing from space.
comment: AI4Space 2024, 3rd Workshop on AI for Space, CVPR 2024
☆ NC-TTT: A Noise Contrastive Approach for Test-Time Training
Despite their exceptional performance in vision tasks, deep learning models often struggle when faced with domain shifts during testing. Test-Time Training (TTT) methods have recently gained popularity by their ability to enhance the robustness of models through the addition of an auxiliary objective that is jointly optimized with the main task. Being strictly unsupervised, this auxiliary objective is used at test time to adapt the model without any access to labels. In this work, we propose Noise-Contrastive Test-Time Training (NC-TTT), a novel unsupervised TTT technique based on the discrimination of noisy feature maps. By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin. Experiments on several popular test-time adaptation baselines demonstrate the advantages of our method compared to recent approaches for this task. The code can be found at:https://github.com/GustavoVargasHakim/NCTTT.git
☆ Let It Flow: Simultaneous Optimization of 3D Flow and Object Clustering ECCV
We study the problem of self-supervised 3D scene flow estimation from real large-scale raw point cloud sequences, which is crucial to various tasks like trajectory prediction or instance segmentation. In the absence of ground truth scene flow labels, contemporary approaches concentrate on deducing optimizing flow across sequential pairs of point clouds by incorporating structure based regularization on flow and object rigidity. The rigid objects are estimated by a variety of 3D spatial clustering methods. While state-of-the-art methods successfully capture overall scene motion using the Neural Prior structure, they encounter challenges in discerning multi-object motions. We identified the structural constraints and the use of large and strict rigid clusters as the main pitfall of the current approaches and we propose a novel clustering approach that allows for combination of overlapping soft clusters as well as non-overlapping rigid clusters representation. Flow is then jointly estimated with progressively growing non-overlapping rigid clusters together with fixed size overlapping soft clusters. We evaluate our method on multiple datasets with LiDAR point clouds, demonstrating the superior performance over the self-supervised baselines reaching new state of the art results. Our method especially excels in resolving flow in complicated dynamic scenes with multiple independently moving objects close to each other which includes pedestrians, cyclists and other vulnerable road users. Our codes will be publicly available.
comment: ECCV submission
☆ TDANet: Target-Directed Attention Network For Object-Goal Visual Navigation With Zero-Shot Ability
The generalization of the end-to-end deep reinforcement learning (DRL) for object-goal visual navigation is a long-standing challenge since object classes and placements vary in new test environments. Learning domain-independent visual representation is critical for enabling the trained DRL agent with the ability to generalize to unseen scenes and objects. In this letter, a target-directed attention network (TDANet) is proposed to learn the end-to-end object-goal visual navigation policy with zero-shot ability. TDANet features a novel target attention (TA) module that learns both the spatial and semantic relationships among objects to help TDANet focus on the most relevant observed objects to the target. With the Siamese architecture (SA) design, TDANet distinguishes the difference between the current and target states and generates the domain-independent visual representation. To evaluate the navigation performance of TDANet, extensive experiments are conducted in the AI2-THOR embodied AI environment. The simulation results demonstrate a strong generalization ability of TDANet to unseen scenes and target objects, with higher navigation success rate (SR) and success weighted by length (SPL) than other state-of-the-art models.
☆ OmniSat: Self-Supervised Modality Fusion for Earth Observation
The field of Earth Observations (EO) offers a wealth of data from diverse sensors, presenting a great opportunity for advancing self-supervised multimodal learning. However, current multimodal EO datasets and models focus on a single data type, either mono-date images or time series, which limits their expressivity. We introduce OmniSat, a novel architecture that exploits the spatial alignment between multiple EO modalities to learn expressive multimodal representations without labels. To demonstrate the advantages of combining modalities of different natures, we augment two existing datasets with new modalities. As demonstrated on three downstream tasks: forestry, land cover classification, and crop mapping. OmniSat can learn rich representations in an unsupervised manner, leading to improved performance in the semi- and fully-supervised settings, even when only one modality is available for inference. The code and dataset are available at github.com/gastruc/OmniSat.
Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions. Yet, their exclusive training in k-space limits the application of common image regularization methods to improve the final reconstruction. In this work, we introduce the concept of parallel imaging-inspired self-consistency (PISCO), which we incorporate as novel self-supervised k-space regularization enforcing a consistent neighborhood relationship. At no additional data cost, the proposed regularization significantly improves neural implicit k-space reconstructions on simulated data. Abdominal in-vivo reconstructions using PISCO result in enhanced spatio-temporal image quality compared to state-of-the-art methods. Code is available at https://github.com/vjspi/PISCO-NIK.
comment: Under Review
☆ Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks
Multi-modal learning aims to enhance performance by unifying models from various modalities but often faces the "modality imbalance" problem in real data, leading to a bias towards dominant modalities and neglecting others, thereby limiting its overall effectiveness. To address this challenge, the core idea is to balance the optimization of each modality to achieve a joint optimum. Existing approaches often employ a modal-level control mechanism for adjusting the update of each modal parameter. However, such a global-wise updating mechanism ignores the different importance of each parameter. Inspired by subnetwork optimization, we explore a uniform sampling-based optimization strategy and find it more effective than global-wise updating. According to the findings, we further propose a novel importance sampling-based, element-wise joint optimization method, called Adaptively Mask Subnetworks Considering Modal Significance(AMSS). Specifically, we incorporate mutual information rates to determine the modal significance and employ non-uniform adaptive sampling to select foreground subnetworks from each modality for parameter updates, thereby rebalancing multi-modal learning. Additionally, we demonstrate the reliability of the AMSS strategy through convergence analysis. Building upon theoretical insights, we further enhance the multi-modal mask subnetwork strategy using unbiased estimation, referred to as AMSS+. Extensive experiments reveal the superiority of our approach over comparison methods.
comment: 17 pages;6 figures
☆ Counterfactual Explanations for Face Forgery Detection via Adversarial Removal of Artifacts ICME2024
Highly realistic AI generated face forgeries known as deepfakes have raised serious social concerns. Although DNN-based face forgery detection models have achieved good performance, they are vulnerable to latest generative methods that have less forgery traces and adversarial attacks. This limitation of generalization and robustness hinders the credibility of detection results and requires more explanations. In this work, we provide counterfactual explanations for face forgery detection from an artifact removal perspective. Specifically, we first invert the forgery images into the StyleGAN latent space, and then adversarially optimize their latent representations with the discrimination supervision from the target detection model. We verify the effectiveness of the proposed explanations from two aspects: (1) Counterfactual Trace Visualization: the enhanced forgery images are useful to reveal artifacts by visually contrasting the original images and two different visualization methods; (2) Transferable Adversarial Attacks: the adversarial forgery images generated by attacking the detection model are able to mislead other detection models, implying the removed artifacts are general. Extensive experiments demonstrate that our method achieves over 90% attack success rate and superior attack transferability. Compared with naive adversarial noise methods, our method adopts both generative and discriminative model priors, and optimize the latent representations in a synthesis-by-analysis way, which forces the search of counterfactual explanations on the natural face manifold. Thus, more general counterfactual traces can be found and better adversarial attack transferability can be achieved.
comment: Accepted to ICME2024
☆ Emerging Property of Masked Token for Effective Pre-training
Driven by the success of Masked Language Modeling (MLM), the realm of self-supervised learning for computer vision has been invigorated by the central role of Masked Image Modeling (MIM) in driving recent breakthroughs. Notwithstanding the achievements of MIM across various downstream tasks, its overall efficiency is occasionally hampered by the lengthy duration of the pre-training phase. This paper presents a perspective that the optimization of masked tokens as a means of addressing the prevailing issue. Initially, we delve into an exploration of the inherent properties that a masked token ought to possess. Within the properties, we principally dedicated to articulating and emphasizing the `data singularity' attribute inherent in masked tokens. Through a comprehensive analysis of the heterogeneity between masked tokens and visible tokens within pre-trained models, we propose a novel approach termed masked token optimization (MTO), specifically designed to improve model efficiency through weight recalibration and the enhancement of the key property of masked tokens. The proposed method serves as an adaptable solution that seamlessly integrates into any MIM approach that leverages masked tokens. As a result, MTO achieves a considerable improvement in pre-training efficiency, resulting in an approximately 50% reduction in pre-training epochs required to attain converged performance of the recent approaches.
☆ Salience-Based Adaptive Masking: Revisiting Token Dynamics for Enhanced Pre-training
In this paper, we introduce Saliency-Based Adaptive Masking (SBAM), a novel and cost-effective approach that significantly enhances the pre-training performance of Masked Image Modeling (MIM) approaches by prioritizing token salience. Our method provides robustness against variations in masking ratios, effectively mitigating the performance instability issues common in existing methods. This relaxes the sensitivity of MIM-based pre-training to masking ratios, which in turn allows us to propose an adaptive strategy for `tailored' masking ratios for each data sample, which no existing method can provide. Toward this goal, we propose an Adaptive Masking Ratio (AMR) strategy that dynamically adjusts the proportion of masking for the unique content of each image based on token salience. We show that our method significantly improves over the state-of-the-art in mask-based pre-training on the ImageNet-1K dataset.
☆ GPN: Generative Point-based NeRF
Scanning real-life scenes with modern registration devices typically gives incomplete point cloud representations, primarily due to the limitations of partial scanning, 3D occlusions, and dynamic light conditions. Recent works on processing incomplete point clouds have always focused on point cloud completion. However, these approaches do not ensure consistency between the completed point cloud and the captured images regarding color and geometry. We propose using Generative Point-based NeRF (GPN) to reconstruct and repair a partial cloud by fully utilizing the scanning images and the corresponding reconstructed cloud. The repaired point cloud can achieve multi-view consistency with the captured images at high spatial resolution. For the finetunes of a single scene, we optimize the global latent condition by incorporating an Auto-Decoder architecture while retaining multi-view consistency. As a result, the generated point clouds are smooth, plausible, and geometrically consistent with the partial scanning images. Extensive experiments on ShapeNet demonstrate that our works achieve competitive performances to the other state-of-the-art point cloud-based neural scene rendering and editing performances.
☆ Interference Motion Removal for Doppler Radar Vital Sign Detection Using Variational Encoder-Decoder Neural Network
The treatment of interfering motion contributions remains one of the key challenges in the domain of radar-based vital sign monitoring. Removal of the interference to extract the vital sign contributions is demanding due to overlapping Doppler bands, the complex structure of the interference motions and significant variations in the power levels of their contributions. A novel approach to the removal of interference through the use of a probabilistic deep learning model is presented. Results show that a convolutional encoder-decoder neural network with a variational objective is capable of learning a meaningful representation space of vital sign Doppler-time distribution facilitating their extraction from a mixture signal. The approach is tested on semi-experimental data containing real vital sign signatures and simulated returns from interfering body motions. The application of the proposed network enhances the extraction of the micro-Doppler frequency corresponding to the respiration rate is demonstrated.
comment: Presented at 2021 IEEE Radar Conference (RadarConf21)
☆ Overcoming Scene Context Constraints for Object Detection in wild using Defilters
This paper focuses on improving object detection performance by addressing the issue of image distortions, commonly encountered in uncontrolled acquisition environments. High-level computer vision tasks such as object detection, recognition, and segmentation are particularly sensitive to image distortion. To address this issue, we propose a novel approach employing an image defilter to rectify image distortion prior to object detection. This method enhances object detection accuracy, as models perform optimally when trained on non-distorted images. Our experiments demonstrate that utilizing defiltered images significantly improves mean average precision compared to training object detection models on distorted images. Consequently, our proposed method offers considerable benefits for real-world applications plagued by image distortion. To our knowledge, the contribution lies in employing distortion-removal paradigm for object detection on images captured in natural settings. We achieved an improvement of 0.562 and 0.564 of mean Average precision on validation and test data.
☆ AdaContour: Adaptive Contour Descriptor with Hierarchical Representation
Existing angle-based contour descriptors suffer from lossy representation for non-starconvex shapes. By and large, this is the result of the shape being registered with a single global inner center and a set of radii corresponding to a polar coordinate parameterization. In this paper, we propose AdaContour, an adaptive contour descriptor that uses multiple local representations to desirably characterize complex shapes. After hierarchically encoding object shapes in a training set and constructing a contour matrix of all subdivided regions, we compute a robust low-rank robust subspace and approximate each local contour by linearly combining the shared basis vectors to represent an object. Experiments show that AdaContour is able to represent shapes more accurately and robustly than other descriptors while retaining effectiveness. We validate AdaContour by integrating it into off-the-shelf detectors to enable instance segmentation which demonstrates faithful performance. The code is available at https://github.com/tding1/AdaContour.
☆ On Input Formats for Radar Micro-Doppler Signature Processing by Convolutional Neural Networks
Convolutional neural networks have often been proposed for processing radar Micro-Doppler signatures, most commonly with the goal of classifying the signals. The majority of works tend to disregard phase information from the complex time-frequency representation. Here, the utility of the phase information, as well as the optimal format of the Doppler-time input for a convolutional neural network, is analysed. It is found that the performance achieved by convolutional neural network classifiers is heavily influenced by the type of input representation, even across formats with equivalent information. Furthermore, it is demonstrated that the phase component of the Doppler-time representation contains rich information useful for classification and that unwrapping the phase in the temporal dimension can improve the results compared to a magnitude-only solution, improving accuracy from 0.920 to 0.938 on the tested human activity dataset. Further improvement of 0.947 is achieved by training a linear classifier on embeddings from multiple-formats.
comment: Presented at International Conference on Radar Systems (RADAR 2022)
☆ A Survey of Neural Network Robustness Assessment in Image Recognition
In recent years, there has been significant attention given to the robustness assessment of neural networks. Robustness plays a critical role in ensuring reliable operation of artificial intelligence (AI) systems in complex and uncertain environments. Deep learning's robustness problem is particularly significant, highlighted by the discovery of adversarial attacks on image classification models. Researchers have dedicated efforts to evaluate robustness in diverse perturbation conditions for image recognition tasks. Robustness assessment encompasses two main techniques: robustness verification/ certification for deliberate adversarial attacks and robustness testing for random data corruptions. In this survey, we present a detailed examination of both adversarial robustness (AR) and corruption robustness (CR) in neural network assessment. Analyzing current research papers and standards, we provide an extensive overview of robustness assessment in image recognition. Three essential aspects are analyzed: concepts, metrics, and assessment methods. We investigate the perturbation metrics and range representations used to measure the degree of perturbations on images, as well as the robustness metrics specifically for the robustness conditions of classification models. The strengths and limitations of the existing methods are also discussed, and some potential directions for future research are provided.
☆ Calibration & Reconstruction: Deep Integrated Language for Referring Image Segmentation ICMR2024
Referring image segmentation aims to segment an object referred to by natural language expression from an image. The primary challenge lies in the efficient propagation of fine-grained semantic information from textual features to visual features. Many recent works utilize a Transformer to address this challenge. However, conventional transformer decoders can distort linguistic information with deeper layers, leading to suboptimal results. In this paper, we introduce CRFormer, a model that iteratively calibrates multi-modal features in the transformer decoder. We start by generating language queries using vision features, emphasizing different aspects of the input language. Then, we propose a novel Calibration Decoder (CDec) wherein the multi-modal features can iteratively calibrated by the input language features. In the Calibration Decoder, we use the output of each decoder layer and the original language features to generate new queries for continuous calibration, which gradually updates the language features. Based on CDec, we introduce a Language Reconstruction Module and a reconstruction loss. This module leverages queries from the final layer of the decoder to reconstruct the input language and compute the reconstruction loss. This can further prevent the language information from being lost or distorted. Our experiments consistently show the superior performance of our approach across RefCOCO, RefCOCO+, and G-Ref datasets compared to state-of-the-art methods.
comment: 9 pages, 8 figures ICMR2024. arXiv admin note: text overlap with arXiv:2305.14969
☆ Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example
Breast cancer is a relatively common cancer among gynecological cancers. Its diagnosis often relies on the pathology of cells in the lesion. The pathological diagnosis of breast cancer not only requires professionals and time, but also sometimes involves subjective judgment. To address the challenges of dependence on pathologists expertise and the time-consuming nature of achieving accurate breast pathological image classification, this paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images, aiming to enhance the efficiency of breast pathological image detection. And the approach enables the rapid and automatic classification of pathological images into benign and malignant groups. The methodology involves utilizing a convolutional neural network (CNN) model leveraging the Inceptionv3 architecture and transfer learning algorithm for extracting features from pathological images. Utilizing a neural network with fully connected layers and employing the SoftMax function for image classification. Additionally, the concept of image partitioning is introduced to handle high-resolution images. To achieve the ultimate classification outcome, the classification probabilities of each image block are aggregated using three algorithms: summation, product, and maximum. Experimental validation was conducted on the BreaKHis public dataset, resulting in accuracy rates surpassing 0.92 across all four magnification coefficients (40X, 100X, 200X, and 400X). It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
☆ FaceFilterSense: A Filter-Resistant Face Recognition and Facial Attribute Analysis Framework
With the advent of social media, fun selfie filters have come into tremendous mainstream use affecting the functioning of facial biometric systems as well as image recognition systems. These filters vary from beautification filters and Augmented Reality (AR)-based filters to filters that modify facial landmarks. Hence, there is a need to assess the impact of such filters on the performance of existing face recognition systems. The limitation associated with existing solutions is that these solutions focus more on the beautification filters. However, the current AR-based filters and filters which distort facial key points are in vogue recently and make the faces highly unrecognizable even to the naked eye. Also, the filters considered are mostly obsolete with limited variations. To mitigate these limitations, we aim to perform a holistic impact analysis of the latest filters and propose an user recognition model with the filtered images. We have utilized a benchmark dataset for baseline images, and applied the latest filters over them to generate a beautified/filtered dataset. Next, we have introduced a model FaceFilterNet for beautified user recognition. In this framework, we also utilize our model to comment on various attributes of the person including age, gender, and ethnicity. In addition, we have also presented a filter-wise impact analysis on face recognition, age estimation, gender, and ethnicity prediction. The proposed method affirms the efficacy of our dataset with an accuracy of 87.25% and an optimal accuracy for facial attribute analysis.
☆ Struggle with Adversarial Defense? Try Diffusion
Adversarial attacks induce misclassification by introducing subtle perturbations. Recently, diffusion models are applied to the image classifiers to improve adversarial robustness through adversarial training or by purifying adversarial noise. However, diffusion-based adversarial training often encounters convergence challenges and high computational expenses. Additionally, diffusion-based purification inevitably causes data shift and is deemed susceptible to stronger adaptive attacks. To tackle these issues, we propose the Truth Maximization Diffusion Classifier (TMDC), a generative Bayesian classifier that builds upon pre-trained diffusion models and the Bayesian theorem. Unlike data-driven classifiers, TMDC, guided by Bayesian principles, utilizes the conditional likelihood from diffusion models to determine the class probabilities of input images, thereby insulating against the influences of data shift and the limitations of adversarial training. Moreover, to enhance TMDC's resilience against more potent adversarial attacks, we propose an optimization strategy for diffusion classifiers. This strategy involves post-training the diffusion model on perturbed datasets with ground-truth labels as conditions, guiding the diffusion model to learn the data distribution and maximizing the likelihood under the ground-truth labels. The proposed method achieves state-of-the-art performance on the CIFAR10 dataset against heavy white-box attacks and strong adaptive attacks. Specifically, TMDC achieves robust accuracies of 82.81% against $l_{\infty}$ norm-bounded perturbations and 86.05% against $l_{2}$ norm-bounded perturbations, respectively, with $\epsilon=0.05$.
☆ Guided Masked Self-Distillation Modeling for Distributed Multimedia Sensor Event Analysis
Observations with distributed sensors are essential in analyzing a series of human and machine activities (referred to as 'events' in this paper) in complex and extensive real-world environments. This is because the information obtained from a single sensor is often missing or fragmented in such an environment; observations from multiple locations and modalities should be integrated to analyze events comprehensively. However, a learning method has yet to be established to extract joint representations that effectively combine such distributed observations. Therefore, we propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling. The basic idea of Guided-MELD is to learn to supplement the information from the masked sensor with information from other sensors needed to detect the event. Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information obtained by the sensors without being overly dependent on any specific sensors. To validate the effectiveness of the proposed method in novel tasks of distributed multimedia sensor event analysis, we recorded two new datasets that fit the problem setting: MM-Store and MM-Office. These datasets consist of human activities in a convenience store and an office, recorded using distributed cameras and microphones. Experimental results on these datasets show that the proposed Guided-MELD improves event tagging and detection performance and outperforms conventional inter-sensor relationship modeling methods. Furthermore, the proposed method performed robustly even when sensors were reduced.
comment: 13page, 7figure, under review
☆ Practical Region-level Attack against Segment Anything Models
Segment Anything Models (SAM) have made significant advancements in image segmentation, allowing users to segment target portions of an image with a single click (i.e., user prompt). Given its broad applications, the robustness of SAM against adversarial attacks is a critical concern. While recent works have explored adversarial attacks against a pre-defined prompt/click, their threat model is not yet realistic: (1) they often assume the user-click position is known to the attacker (point-based attack), and (2) they often operate under a white-box setting with limited transferability. In this paper, we propose a more practical region-level attack where attackers do not need to know the precise user prompt. The attack remains effective as the user clicks on any point on the target object in the image, hiding the object from SAM. Also, by adapting a spectrum transformation method, we make the attack more transferable under a black-box setting. Both control experiments and testing against real-world SAM services confirm its effectiveness.
☆ MonoPatchNeRF: Improving Neural Radiance Fields with Patch-based Monocular Guidance
The latest regularized Neural Radiance Field (NeRF) approaches produce poor geometry and view extrapolation for multiview stereo (MVS) benchmarks such as ETH3D. In this paper, we aim to create 3D models that provide accurate geometry and view synthesis, partially closing the large geometric performance gap between NeRF and traditional MVS methods. We propose a patch-based approach that effectively leverages monocular surface normal and relative depth predictions. The patch-based ray sampling also enables the appearance regularization of normalized cross-correlation (NCC) and structural similarity (SSIM) between randomly sampled virtual and training views. We further show that "density restrictions" based on sparse structure-from-motion points can help greatly improve geometric accuracy with a slight drop in novel view synthesis metrics. Our experiments show 4x the performance of RegNeRF and 8x that of FreeNeRF on average F1@2cm for ETH3D MVS benchmark, suggesting a fruitful research direction to improve the geometric accuracy of NeRF-based models, and sheds light on a potential future approach to enable NeRF-based optimization to eventually outperform traditional MVS.
comment: 26 pages, 15 figures
☆ Simulation of a Vision Correction Display System
Eyes serve as our primary sensory organs, responsible for processing up to 80\% of our sensory input. However, common visual aberrations like myopia and hyperopia affect a significant portion of the global population. This paper focuses on simulating a Vision Correction Display (VCD) to enhance the visual experience of individuals with various visual impairments. Utilising Blender, we digitally model the functionality of a VCD in correcting refractive errors such as myopia and hyperopia. With these simulations we can see potential improvements in visual acuity and comfort. These simulations provide valuable insights for the design and development of future VCD technologies, ultimately advancing accessibility and usability for individuals with visual challenges.
☆ IFViT: Interpretable Fixed-Length Representation for Fingerprint Matching via Vision Transformer
Determining dense feature points on fingerprints used in constructing deep fixed-length representations for accurate matching, particularly at the pixel level, is of significant interest. To explore the interpretability of fingerprint matching, we propose a multi-stage interpretable fingerprint matching network, namely Interpretable Fixed-length Representation for Fingerprint Matching via Vision Transformer (IFViT), which consists of two primary modules. The first module, an interpretable dense registration module, establishes a Vision Transformer (ViT)-based Siamese Network to capture long-range dependencies and the global context in fingerprint pairs. It provides interpretable dense pixel-wise correspondences of feature points for fingerprint alignment and enhances the interpretability in the subsequent matching stage. The second module takes into account both local and global representations of the aligned fingerprint pair to achieve an interpretable fixed-length representation extraction and matching. It employs the ViTs trained in the first module with the additional fully connected layer and retrains them to simultaneously produce the discriminative fixed-length representation and interpretable dense pixel-wise correspondences of feature points. Extensive experimental results on diverse publicly available fingerprint databases demonstrate that the proposed framework not only exhibits superior performance on dense registration and matching but also significantly promotes the interpretability in deep fixed-length representations-based fingerprint matching.
comment: ready to submit to IEEE Transactions on Information Forensics and Security (TIFS)
☆ Enhancing Traffic Safety with Parallel Dense Video Captioning for End-to-End Event Analysis
This paper introduces our solution for Track 2 in AI City Challenge 2024. The task aims to solve traffic safety description and analysis with the dataset of Woven Traffic Safety (WTS), a real-world Pedestrian-Centric Traffic Video Dataset for Fine-grained Spatial-Temporal Understanding. Our solution mainly focuses on the following points: 1) To solve dense video captioning, we leverage the framework of dense video captioning with parallel decoding (PDVC) to model visual-language sequences and generate dense caption by chapters for video. 2) Our work leverages CLIP to extract visual features to more efficiently perform cross-modality training between visual and textual representations. 3) We conduct domain-specific model adaptation to mitigate domain shift problem that poses recognition challenge in video understanding. 4) Moreover, we leverage BDD-5K captioned videos to conduct knowledge transfer for better understanding WTS videos and more accurate captioning. Our solution has yielded on the test set, achieving 6th place in the competition. The open source code will be available at https://github.com/UCF-SST-Lab/AICity2024CVPRW
☆ Improving Continuous Sign Language Recognition with Adapted Image Models
The increase of web-scale weakly labelled image-text pairs have greatly facilitated the development of large-scale vision-language models (e.g., CLIP), which have shown impressive generalization performance over a series of downstream tasks. However, the massive model size and scarcity of available data limit their applications to fine-tune the whole model in downstream tasks. Besides, fully fine-tuning the model easily forgets the generic essential knowledge acquired in the pretraining stage and overfits the downstream data. To enable high efficiency when adapting these large vision-language models (e.g., CLIP) to performing continuous sign language recognition (CSLR) while preserving their generalizability, we propose a novel strategy (AdaptSign). Especially, CLIP is adopted as the visual backbone to extract frame-wise features whose parameters are fixed, and a set of learnable modules are introduced to model spatial sign variations or capture temporal sign movements. The introduced additional modules are quite lightweight, only owning 3.2% extra computations with high efficiency. The generic knowledge acquired in the pretraining stage is well-preserved in the frozen CLIP backbone in this process. Extensive experiments show that despite being efficient, AdaptSign is able to demonstrate superior performance across a series of CSLR benchmarks including PHOENIX14, PHOENIX14-T, CSL-Daily and CSL compared to existing methods. Visualizations show that AdaptSign could learn to dynamically pay major attention to the informative spatial regions and cross-frame trajectories in sign videos.
☆ A Mutual Inclusion Mechanism for Precise Boundary Segmentation in Medical Images
In medical imaging, accurate image segmentation is crucial for quantifying diseases, assessing prognosis, and evaluating treatment outcomes. However, existing methods lack an in-depth integration of global and local features, failing to pay special attention to abnormal regions and boundary details in medical images. To this end, we present a novel deep learning-based approach, MIPC-Net, for precise boundary segmentation in medical images. Our approach, inspired by radiologists' working patterns, features two distinct modules: (i) \textbf{Mutual Inclusion of Position and Channel Attention (MIPC) module}: To enhance the precision of boundary segmentation in medical images, we introduce the MIPC module, which enhances the focus on channel information when extracting position features and vice versa; (ii) \textbf{GL-MIPC-Residue}: To improve the restoration of medical images, we propose the GL-MIPC-Residue, a global residual connection that enhances the integration of the encoder and decoder by filtering out invalid information and restoring the most effective information lost during the feature extraction process. We evaluate the performance of the proposed model using metrics such as Dice coefficient (DSC) and Hausdorff Distance (HD) on three publicly accessible datasets: Synapse, ISIC2018-Task, and Segpc. Our ablation study shows that each module contributes to improving the quality of segmentation results. Furthermore, with the assistance of both modules, our approach outperforms state-of-the-art methods across all metrics on the benchmark datasets, notably achieving a 2.23mm reduction in HD on the Synapse dataset, strongly evidencing our model's enhanced capability for precise image boundary segmentation. Codes will be available at https://github.com/SUN-1024/MIPC-Net.
☆ Scaling (Down) CLIP: A Comprehensive Analysis of Data, Architecture, and Training Strategies
This paper investigates the performance of the Contrastive Language-Image Pre-training (CLIP) when scaled down to limited computation budgets. We explore CLIP along three dimensions: data, architecture, and training strategies. With regards to data, we demonstrate the significance of high-quality training data and show that a smaller dataset of high-quality data can outperform a larger dataset with lower quality. We also examine how model performance varies with different dataset sizes, suggesting that smaller ViT models are better suited for smaller datasets, while larger models perform better on larger datasets with fixed compute. Additionally, we provide guidance on when to choose a CNN-based architecture or a ViT-based architecture for CLIP training. We compare four CLIP training strategies - SLIP, FLIP, CLIP, and CLIP+Data Augmentation - and show that the choice of training strategy depends on the available compute resource. Our analysis reveals that CLIP+Data Augmentation can achieve comparable performance to CLIP using only half of the training data. This work provides practical insights into how to effectively train and deploy CLIP models, making them more accessible and affordable for practical use in various applications.
☆ Tackling Ambiguity from Perspective of Uncertainty Inference and Affinity Diversification for Weakly Supervised Semantic Segmentation
Weakly supervised semantic segmentation (WSSS) with image-level labels intends to achieve dense tasks without laborious annotations. However, due to the ambiguous contexts and fuzzy regions, the performance of WSSS, especially the stages of generating Class Activation Maps (CAMs) and refining pseudo masks, widely suffers from ambiguity while being barely noticed by previous literature. In this work, we propose UniA, a unified single-staged WSSS framework, to efficiently tackle this issue from the perspective of uncertainty inference and affinity diversification, respectively. When activating class objects, we argue that the false activation stems from the bias to the ambiguous regions during the feature extraction. Therefore, we design a more robust feature representation with a probabilistic Gaussian distribution and introduce the uncertainty estimation to avoid the bias. A distribution loss is particularly proposed to supervise the process, which effectively captures the ambiguity and models the complex dependencies among features. When refining pseudo labels, we observe that the affinity from the prevailing refinement methods intends to be similar among ambiguities. To this end, an affinity diversification module is proposed to promote diversity among semantics. A mutual complementing refinement is proposed to initially rectify the ambiguous affinity with multiple inferred pseudo labels. More importantly, a contrastive affinity loss is further designed to diversify the relations among unrelated semantics, which reliably propagates the diversity into the whole feature representations and helps generate better pseudo masks. Extensive experiments are conducted on PASCAL VOC, MS COCO, and medical ACDC datasets, which validate the efficiency of UniA tackling ambiguity and the superiority over recent single-staged or even most multi-staged competitors.
☆ Adapting CNNs for Fisheye Cameras without Retraining
The majority of image processing approaches assume images are in or can be rectified to a perspective projection. However, in many applications it is beneficial to use non conventional cameras, such as fisheye cameras, that have a larger field of view (FOV). The issue arises that these large-FOV images can't be rectified to a perspective projection without significant cropping of the original image. To address this issue we propose Rectified Convolutions (RectConv); a new approach for adapting pre-trained convolutional networks to operate with new non-perspective images, without any retraining. Replacing the convolutional layers of the network with RectConv layers allows the network to see both rectified patches and the entire FOV. We demonstrate RectConv adapting multiple pre-trained networks to perform segmentation and detection on fisheye imagery from two publicly available datasets. Our approach requires no additional data or training, and operates directly on the native image as captured from the camera. We believe this work is a step toward adapting the vast resources available for perspective images to operate across a broad range of camera geometries.
comment: Project page: https://roboticimaging.org/Projects/RectConv/
☆ Measuring Domain Shifts using Deep Learning Remote Photoplethysmography Model Similarity
Domain shift differences between training data for deep learning models and the deployment context can result in severe performance issues for models which fail to generalize. We study the domain shift problem under the context of remote photoplethysmography (rPPG), a technique for video-based heart rate inference. We propose metrics based on model similarity which may be used as a measure of domain shift, and we demonstrate high correlation between these metrics and empirical performance. One of the proposed metrics with viable correlations, DS-diff, does not assume access to the ground truth of the target domain, i.e. it may be applied to in-the-wild data. To that end, we investigate a model selection problem in which ground truth results for the evaluation domain is not known, demonstrating a 13.9% performance improvement over the average case baseline.
☆ Pay Attention to Your Neighbours: Training-Free Open-Vocabulary Semantic Segmentation
Despite the significant progress in deep learning for dense visual recognition problems, such as semantic segmentation, traditional methods are constrained by fixed class sets. Meanwhile, vision-language foundation models, such as CLIP, have showcased remarkable effectiveness in numerous zero-shot image-level tasks, owing to their robust generalizability. Recently, a body of work has investigated utilizing these models in open-vocabulary semantic segmentation (OVSS). However, existing approaches often rely on impractical supervised pre-training or access to additional pre-trained networks. In this work, we propose a strong baseline for training-free OVSS, termed Neighbour-Aware CLIP (NACLIP), representing a straightforward adaptation of CLIP tailored for this scenario. Our method enforces localization of patches in the self-attention of CLIP's vision transformer which, despite being crucial for dense prediction tasks, has been overlooked in the OVSS literature. By incorporating design choices favouring segmentation, our approach significantly improves performance without requiring additional data, auxiliary pre-trained networks, or extensive hyperparameter tuning, making it highly practical for real-world applications. Experiments are performed on 8 popular semantic segmentation benchmarks, yielding state-of-the-art performance on most scenarios. Our code is publicly available at https://github.com/sinahmr/NACLIP .
♻ ☆ LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models
Large Multimodal Models (LMMs) have shown significant reasoning capabilities by connecting a visual encoder and a large language model. LMMs typically use a fixed amount of visual tokens, such as the penultimate layer features in the CLIP visual encoder, as the prefix content. Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which increase the number of visual tokens significantly. However, due to the design of the Transformer architecture, computational costs associated with these models tend to increase quadratically with the number of input tokens. To tackle this problem, we explore a token reduction mechanism and find, similar to prior work, that many visual tokens are spatially redundant. Based on this, we propose PruMerge, a novel adaptive visual token reduction approach, which largely reduces the number of visual tokens while maintaining comparable model performance. We first select the unpruned visual tokens based on their similarity to class tokens and spatial tokens. We then cluster the pruned tokens based on key similarity and merge the clustered tokens with the unpruned tokens to supplement their information. Empirically, when applied to LLaVA-1.5, our approach can compress the visual tokens by 18 times on average, and achieve comparable performance across diverse visual question-answering and reasoning tasks. Code and checkpoints are at https://llava-prumerge.github.io/.
comment: Project page: https://llava-prumerge.github.io/
♻ ☆ FloCoDe: Unbiased Dynamic Scene Graph Generation with Temporal Consistency and Correlation Debiasing CVPR 2024
Dynamic scene graph generation (SGG) from videos requires not only a comprehensive understanding of objects across scenes but also a method to capture the temporal motions and interactions with different objects. Moreover, the long-tailed distribution of visual relationships is a crucial bottleneck for most dynamic SGG methods. This is because many of them focus on capturing spatio-temporal context using complex architectures, leading to the generation of biased scene graphs. To address these challenges, we propose FloCoDe: Flow-aware Temporal Consistency and Correlation Debiasing with uncertainty attenuation for unbiased dynamic scene graphs. FloCoDe employs feature warping using flow to detect temporally consistent objects across frames. To address the long-tail issue of visual relationships, we propose correlation debiasing and a label correlation-based loss to learn unbiased relation representations for long-tailed classes. Specifically, we propose to incorporate label correlations using contrastive loss to capture commonly co-occurring relations, which aids in learning robust representations for long-tailed classes. Further, we adopt the uncertainty attenuation-based classifier framework to handle noisy annotations in the SGG data. Extensive experimental evaluation shows a performance gain as high as 4.1%, demonstrating the superiority of generating more unbiased scene graphs.
comment: Accepted at CVPR 2024 SG2RL, 11 pages, 5 tables, 4 figures
♻ ☆ PromptSync: Bridging Domain Gaps in Vision-Language Models through Class-Aware Prototype Alignment and Discrimination CVPR 2024
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tuning to adapt the model to unseen domains, but they overlooked the issue of imbalanced class distributions. In this study, we explicitly address this problem by employing class-aware prototype alignment weighted by mean class probabilities obtained for the test sample and filtered augmented views. Additionally, we ensure that the class probabilities are as accurate as possible by performing prototype discrimination using contrastive learning. The combination of alignment and discriminative loss serves as a geometric regularizer, preventing the prompt representation from collapsing onto a single class and effectively bridging the distribution gap between the source and test domains. Our method, named PromptSync, synchronizes the prompts for each test sample on both the text and vision branches of the V-L model. In empirical evaluations on the domain generalization benchmark, our method outperforms previous best methods by 2.33% in overall performance, by 1% in base-to-novel generalization, and by 2.84% in cross-dataset transfer tasks.
comment: Accepted at CVPR 2024 LIMIT, 12 pages, 8 Tables, 2 Figures
♻ ☆ WonderJourney: Going from Anywhere to Everywhere
We introduce WonderJourney, a modularized framework for perpetual 3D scene generation. Unlike prior work on view generation that focuses on a single type of scenes, we start at any user-provided location (by a text description or an image) and generate a journey through a long sequence of diverse yet coherently connected 3D scenes. We leverage an LLM to generate textual descriptions of the scenes in this journey, a text-driven point cloud generation pipeline to make a compelling and coherent sequence of 3D scenes, and a large VLM to verify the generated scenes. We show compelling, diverse visual results across various scene types and styles, forming imaginary "wonderjourneys". Project website: https://kovenyu.com/WonderJourney/
comment: Project website with video results: https://kovenyu.com/WonderJourney/
♻ ☆ ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification ICASSP 2024
Multi-label image classification presents a challenging task in many domains, including computer vision and medical imaging. Recent advancements have introduced graph-based and transformer-based methods to improve performance and capture label dependencies. However, these methods often include complex modules that entail heavy computation and lack interpretability. In this paper, we propose Probabilistic Multi-label Contrastive Learning (ProbMCL), a novel framework to address these challenges in multi-label image classification tasks. Our simple yet effective approach employs supervised contrastive learning, in which samples that share enough labels with an anchor image based on a decision threshold are introduced as a positive set. This structure captures label dependencies by pulling positive pair embeddings together and pushing away negative samples that fall below the threshold. We enhance representation learning by incorporating a mixture density network into contrastive learning and generating Gaussian mixture distributions to explore the epistemic uncertainty of the feature encoder. We validate the effectiveness of our framework through experimentation with datasets from the computer vision and medical imaging domains. Our method outperforms the existing state-of-the-art methods while achieving a low computational footprint on both datasets. Visualization analyses also demonstrate that ProbMCL-learned classifiers maintain a meaningful semantic topology.
comment: This paper has been accepted for the ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ A Change Detection Reality Check
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of-the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
♻ ☆ Generalization in diffusion models arises from geometry-adaptive harmonic representations ICLR
Deep neural networks (DNNs) trained for image denoising are able to generate high-quality samples with score-based reverse diffusion algorithms. These impressive capabilities seem to imply an escape from the curse of dimensionality, but recent reports of memorization of the training set raise the question of whether these networks are learning the "true" continuous density of the data. Here, we show that two DNNs trained on non-overlapping subsets of a dataset learn nearly the same score function, and thus the same density, when the number of training images is large enough. In this regime of strong generalization, diffusion-generated images are distinct from the training set, and are of high visual quality, suggesting that the inductive biases of the DNNs are well-aligned with the data density. We analyze the learned denoising functions and show that the inductive biases give rise to a shrinkage operation in a basis adapted to the underlying image. Examination of these bases reveals oscillating harmonic structures along contours and in homogeneous regions. We demonstrate that trained denoisers are inductively biased towards these geometry-adaptive harmonic bases since they arise not only when the network is trained on photographic images, but also when it is trained on image classes supported on low-dimensional manifolds for which the harmonic basis is suboptimal. Finally, we show that when trained on regular image classes for which the optimal basis is known to be geometry-adaptive and harmonic, the denoising performance of the networks is near-optimal.
comment: Accepted for oral presentation at ICLR, Vienna, May 2024
♻ ☆ A novel Fourier neural operator framework for classification of multi-sized images: Application to three dimensional digital porous media
Fourier neural operators (FNOs) are invariant with respect to the size of input images, and thus images with any size can be fed into FNO-based frameworks without any modification of network architectures, in contrast to traditional convolutional neural networks (CNNs). Leveraging the advantage of FNOs, we propose a novel deep-learning framework for classifying images with varying sizes. Particularly, we simultaneously train the proposed network on multi-sized images. As a practical application, we consider the problem of predicting the label (e.g., permeability) of three-dimensional digital porous media. To construct the framework, an intuitive approach is to connect FNO layers to a classifier using adaptive max pooling. First, we show that this approach is only effective for porous media with fixed sizes, whereas it fails for porous media of varying sizes. To overcome this limitation, we introduce our approach: instead of using adaptive max pooling, we use static max pooling with the size of channel width of FNO layers. Since the channel width of the FNO layers is independent of input image size, the introduced framework can handle multi-sized images during training. We show the effectiveness of the introduced framework and compare its performance with the intuitive approach through the example of the classification of three-dimensional digital porous media of varying sizes.
♻ ☆ View-Consistent 3D Editing with Gaussian Splatting
The advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes.
comment: 25 pages
♻ ☆ SpikeNVS: Enhancing Novel View Synthesis from Blurry Images via Spike Camera
One of the most critical factors in achieving sharp Novel View Synthesis (NVS) using neural field methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) is the quality of the training images. However, Conventional RGB cameras are susceptible to motion blur. In contrast, neuromorphic cameras like event and spike cameras inherently capture more comprehensive temporal information, which can provide a sharp representation of the scene as additional training data. Recent methods have explored the integration of event cameras to improve the quality of NVS. The event-RGB approaches have some limitations, such as high training costs and the inability to work effectively in the background. Instead, our study introduces a new method that uses the spike camera to overcome these limitations. By considering texture reconstruction from spike streams as ground truth, we design the Texture from Spike (TfS) loss. Since the spike camera relies on temporal integration instead of temporal differentiation used by event cameras, our proposed TfS loss maintains manageable training costs. It handles foreground objects with backgrounds simultaneously. We also provide a real-world dataset captured with our spike-RGB camera system to facilitate future research endeavors. We conduct extensive experiments using synthetic and real-world datasets to demonstrate that our design can enhance novel view synthesis across NeRF and 3DGS. The code and dataset will be made available for public access.
♻ ☆ Identifying Important Group of Pixels using Interactions CVPR 2024
To better understand the behavior of image classifiers, it is useful to visualize the contribution of individual pixels to the model prediction. In this study, we propose a method, MoXI ($\textbf{Mo}$del e$\textbf{X}$planation by $\textbf{I}$nteractions), that efficiently and accurately identifies a group of pixels with high prediction confidence. The proposed method employs game-theoretic concepts, Shapley values and interactions, taking into account the effects of individual pixels and the cooperative influence of pixels on model confidence. Theoretical analysis and experiments demonstrate that our method better identifies the pixels that are highly contributing to the model outputs than widely-used visualization by Grad-CAM, Attention rollout, and Shapley value. While prior studies have suffered from the exponential computational cost in the computation of Shapley value and interactions, we show that this can be reduced to quadratic cost for our task. The code is available at https://github.com/KosukeSumiyasu/MoXI.
comment: CVPR 2024
♻ ☆ FoodLMM: A Versatile Food Assistant using Large Multi-modal Model
Large Multi-modal Models (LMMs) have made impressive progress in many vision-language tasks. Nevertheless, the performance of general LMMs in specific domains is still far from satisfactory. This paper proposes FoodLMM, a versatile food assistant based on LMMs with various capabilities, including food recognition, ingredient recognition, recipe generation, nutrition estimation, food segmentation and multi-round conversation. To facilitate FoodLMM to deal with tasks beyond pure text output, we introduce a series of novel task-specific tokens and heads, enabling the model to predict food nutritional values and multiple segmentation masks. We adopt a two-stage training strategy. In the first stage, we utilize multiple public food benchmarks for multi-task learning by leveraging the instruct-following paradigm. In the second stage, we construct a multi-round conversation dataset and a reasoning segmentation dataset to fine-tune the model, enabling it to conduct professional dialogues and generate segmentation masks based on complex reasoning in the food domain. Our fine-tuned FoodLMM achieves state-of-the-art results across several food benchmarks. We will make our code, models and datasets publicly available.
♻ ☆ Transformer based Pluralistic Image Completion with Reduced Information Loss
Transformer based methods have achieved great success in image inpainting recently. However, we find that these solutions regard each pixel as a token, thus suffering from an information loss issue from two aspects: 1) They downsample the input image into much lower resolutions for efficiency consideration. 2) They quantize $256^3$ RGB values to a small number (such as 512) of quantized color values. The indices of quantized pixels are used as tokens for the inputs and prediction targets of the transformer. To mitigate these issues, we propose a new transformer based framework called "PUT". Specifically, to avoid input downsampling while maintaining computation efficiency, we design a patch-based auto-encoder P-VQVAE. The encoder converts the masked image into non-overlapped patch tokens and the decoder recovers the masked regions from the inpainted tokens while keeping the unmasked regions unchanged. To eliminate the information loss caused by input quantization, an Un-quantized Transformer is applied. It directly takes features from the P-VQVAE encoder as input without any quantization and only regards the quantized tokens as prediction targets. Furthermore, to make the inpainting process more controllable, we introduce semantic and structural conditions as extra guidance. Extensive experiments show that our method greatly outperforms existing transformer based methods on image fidelity and achieves much higher diversity and better fidelity than state-of-the-art pluralistic inpainting methods on complex large-scale datasets (e.g., ImageNet). Codes are available at https://github.com/liuqk3/PUT.
comment: Accepted by TPAMI (2024). arXiv admin note: text overlap with arXiv:2205.05076
♻ ☆ WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space
Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.
♻ ☆ Toward Reliable Human Pose Forecasting with Uncertainty
Recently, there has been an arms race of pose forecasting methods aimed at solving the spatio-temporal task of predicting a sequence of future 3D poses of a person given a sequence of past observed ones. However, the lack of unified benchmarks and limited uncertainty analysis have hindered progress in the field. To address this, we first develop an open-source library for human pose forecasting, including multiple models, supporting several datasets, and employing standardized evaluation metrics, with the aim of promoting research and moving toward a unified and consistent evaluation. Second, we devise two types of uncertainty in the problem to increase performance and convey better trust: 1) we propose a method for modeling aleatoric uncertainty by using uncertainty priors to inject knowledge about the pattern of uncertainty. This focuses the capacity of the model in the direction of more meaningful supervision while reducing the number of learned parameters and improving stability; 2) we introduce a novel approach for quantifying the epistemic uncertainty of any model through clustering and measuring the entropy of its assignments. Our experiments demonstrate up to $25\%$ improvements in forecasting at short horizons, with no loss on longer horizons on Human3.6M, AMSS, and 3DPW datasets, and better performance in uncertainty estimation. The code is available online at https://github.com/vita-epfl/UnPOSed.
comment: Published in RA-L 2024
♻ ☆ Efficient Masked Face Recognition Method during the COVID-19 Pandemic
The coronavirus disease (COVID-19) is an unparalleled crisis leading to a huge number of casualties and security problems. In order to reduce the spread of coronavirus, people often wear masks to protect themselves. This makes face recognition a very difficult task since certain parts of the face are hidden. A primary focus of researchers during the ongoing coronavirus pandemic is to come up with suggestions to handle this problem through rapid and efficient solutions. In this paper, we propose a reliable method based on occlusion removal and deep learning-based features in order to address the problem of the masked face recognition process. The first step is to remove the masked face region. Next, we apply three pre-trained deep Convolutional Neural Networks (CNN) namely, VGG-16, AlexNet, and ResNet-50, and use them to extract deep features from the obtained regions (mostly eyes and forehead regions). The Bag-of-features paradigm is then applied to the feature maps of the last convolutional layer in order to quantize them and to get a slight representation comparing to the fully connected layer of classical CNN. Finally, Multilayer Perceptron (MLP) is applied for the classification process. Experimental results on Real-World-Masked-Face-Dataset show high recognition performance compared to other state-of-the-art methods.
♻ ☆ Impacts of Color and Texture Distortions on Earth Observation Data in Deep Learning
Land cover classification and change detection are two important applications of remote sensing and Earth observation (EO) that have benefited greatly from the advances of deep learning. Convolutional and transformer-based U-net models are the state-of-the-art architectures for these tasks, and their performances have been boosted by an increased availability of large-scale annotated EO datasets. However, the influence of different visual characteristics of the input EO data on a model's predictions is not well understood. In this work we systematically examine model sensitivities with respect to several color- and texture-based distortions on the input EO data during inference, given models that have been trained without such distortions. We conduct experiments with multiple state-of-the-art segmentation networks for land cover classification and show that they are in general more sensitive to texture than to color distortions. Beyond revealing intriguing characteristics of widely used land cover classification models, our results can also be used to guide the development of more robust models within the EO domain.
♻ ☆ Vision Transformers Need Registers
Transformers have recently emerged as a powerful tool for learning visual representations. In this paper, we identify and characterize artifacts in feature maps of both supervised and self-supervised ViT networks. The artifacts correspond to high-norm tokens appearing during inference primarily in low-informative background areas of images, that are repurposed for internal computations. We propose a simple yet effective solution based on providing additional tokens to the input sequence of the Vision Transformer to fill that role. We show that this solution fixes that problem entirely for both supervised and self-supervised models, sets a new state of the art for self-supervised visual models on dense visual prediction tasks, enables object discovery methods with larger models, and most importantly leads to smoother feature maps and attention maps for downstream visual processing.
♻ ☆ Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Large-scale vision-and-language models, such as CLIP, are typically trained on web-scale data, which can introduce inappropriate content and lead to the development of unsafe and biased behavior. This, in turn, hampers their applicability in sensitive and trustworthy contexts and could raise significant concerns in their adoption. Our research introduces a novel approach to enhancing the safety of vision-and-language models by diminishing their sensitivity to NSFW (not safe for work) inputs. In particular, our methodology seeks to sever "toxic" linguistic and visual concepts, unlearning the linkage between unsafe linguistic or visual items and unsafe regions of the embedding space. We show how this can be done by fine-tuning a CLIP model on synthetic data obtained from a large language model trained to convert between safe and unsafe sentences, and a text-to-image generator. We conduct extensive experiments on the resulting embedding space for cross-modal retrieval, text-to-image, and image-to-text generation, where we show that our model can be remarkably employed with pre-trained generative models. Our source code and trained models are available at: https://github.com/aimagelab/safe-clip.
♻ ☆ Lightweight Deep Learning for Resource-Constrained Environments: A Survey
Over the past decade, the dominance of deep learning has prevailed across various domains of artificial intelligence, including natural language processing, computer vision, and biomedical signal processing. While there have been remarkable improvements in model accuracy, deploying these models on lightweight devices, such as mobile phones and microcontrollers, is constrained by limited resources. In this survey, we provide comprehensive design guidance tailored for these devices, detailing the meticulous design of lightweight models, compression methods, and hardware acceleration strategies. The principal goal of this work is to explore methods and concepts for getting around hardware constraints without compromising the model's accuracy. Additionally, we explore two notable paths for lightweight deep learning in the future: deployment techniques for TinyML and Large Language Models. Although these paths undoubtedly have potential, they also present significant challenges, encouraging research into unexplored areas.
comment: 40 pages
♻ ☆ Which Transformer to Favor: A Comparative Analysis of Efficiency in Vision Transformers
Transformers come with a high computational cost, yet their effectiveness in addressing problems in language and vision has sparked extensive research aimed at enhancing their efficiency. However, diverse experimental conditions, spanning multiple input domains, prevent a fair comparison based solely on reported results, posing challenges for model selection. To address this gap in comparability, we design a comprehensive benchmark of more than 30 models for image classification, evaluating key efficiency aspects, including accuracy, speed, and memory usage. This benchmark provides a standardized baseline across the landscape of efficiency-oriented transformers and our framework of analysis, based on Pareto optimality, reveals surprising insights. Despite claims of other models being more efficient, ViT remains Pareto optimal across multiple metrics. We observe that hybrid attention-CNN models exhibit remarkable inference memory- and parameter-efficiency. Moreover, our benchmark shows that using a larger model in general is more efficient than using higher resolution images. Thanks to our holistic evaluation, we provide a centralized resource for practitioners and researchers, facilitating informed decisions when selecting transformers or measuring progress of the development of efficient transformers.
♻ ☆ NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/wljungbergh/NeuroNCAP
♻ ☆ ZONE: Zero-Shot Instruction-Guided Local Editing CVPR 2024
Recent advances in vision-language models like Stable Diffusion have shown remarkable power in creative image synthesis and editing.However, most existing text-to-image editing methods encounter two obstacles: First, the text prompt needs to be carefully crafted to achieve good results, which is not intuitive or user-friendly. Second, they are insensitive to local edits and can irreversibly affect non-edited regions, leaving obvious editing traces. To tackle these problems, we propose a Zero-shot instructiON-guided local image Editing approach, termed ZONE. We first convert the editing intent from the user-provided instruction (e.g., "make his tie blue") into specific image editing regions through InstructPix2Pix. We then propose a Region-IoU scheme for precise image layer extraction from an off-the-shelf segment model. We further develop an edge smoother based on FFT for seamless blending between the layer and the image.Our method allows for arbitrary manipulation of a specific region with a single instruction while preserving the rest. Extensive experiments demonstrate that our ZONE achieves remarkable local editing results and user-friendliness, outperforming state-of-the-art methods. Code is available at https://github.com/lsl001006/ZONE.
comment: Accepted at CVPR 2024
♻ ☆ Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology
Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. Current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. In response, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based medical image retrieval. By benchmarking these models on a comprehensive dataset of 1.6 million 2D radiological images spanning four modalities and 161 pathologies, we identify weakly-supervised models as superior, achieving a P@1 of up to 0.594. This performance not only competes with a specialized model but does so without the need for fine-tuning. Our analysis further explores the challenges in retrieving pathological versus anatomical structures, indicating that accurate retrieval of pathological features presents greater difficulty. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning.
♻ ☆ DUFOMap: Efficient Dynamic Awareness Mapping
The dynamic nature of the real world is one of the main challenges in robotics. The first step in dealing with it is to detect which parts of the world are dynamic. A typical benchmark task is to create a map that contains only the static part of the world to support, for example, localization and planning. Current solutions are often applied in post-processing, where parameter tuning allows the user to adjust the setting for a specific dataset. In this paper, we propose DUFOMap, a novel dynamic awareness mapping framework designed for efficient online processing. Despite having the same parameter settings for all scenarios, it performs better or is on par with state-of-the-art methods. Ray casting is utilized to identify and classify fully observed empty regions. Since these regions have been observed empty, it follows that anything inside them at another time must be dynamic. Evaluation is carried out in various scenarios, including outdoor environments in KITTI and Argoverse 2, open areas on the KTH campus, and with different sensor types. DUFOMap outperforms the state of the art in terms of accuracy and computational efficiency. The source code, benchmarks, and links to the datasets utilized are provided. See https://kth-rpl.github.io/dufomap for more details.
comment: The first two authors hold equal contribution. 8 pages, 7 figures, project page https://kth-rpl.github.io/dufomap
♻ ☆ A Systematic Survey of Deep Learning-based Single-Image Super-Resolution
Single-image super-resolution (SISR) is an important task in image processing, which aims to enhance the resolution of imaging systems. Recently, SISR has made a huge leap and has achieved promising results with the help of deep learning (DL). In this survey, we give an overview of DL-based SISR methods and group them according to their design targets. Specifically, we first introduce the problem definition, research background, and the significance of SISR. Secondly, we introduce some related works, including benchmark datasets, upsampling methods, optimization objectives, and image quality assessment methods. Thirdly, we provide a detailed investigation of SISR and give some domain-specific applications of it. Fourthly, we present the reconstruction results of some classic SISR methods to intuitively know their performance. Finally, we discuss some issues that still exist in SISR and summarize some new trends and future directions. This is an exhaustive survey of SISR, which can help researchers better understand SISR and inspire more exciting research in this field. An investigation project for SISR is provided at https://github.com/CV-JunchengLi/SISR-Survey.
comment: 40 pages, 12 figures
♻ ☆ How is Visual Attention Influenced by Text Guidance? Database and Model
The analysis and prediction of visual attention have long been crucial tasks in the fields of computer vision and image processing. In practical applications, images are generally accompanied by various text descriptions, however, few studies have explored the influence of text descriptions on visual attention, let alone developed visual saliency prediction models considering text guidance. In this paper, we conduct a comprehensive study on text-guided image saliency (TIS) from both subjective and objective perspectives. Specifically, we construct a TIS database named SJTU-TIS, which includes 1200 text-image pairs and the corresponding collected eye-tracking data. Based on the established SJTU-TIS database, we analyze the influence of various text descriptions on visual attention. Then, to facilitate the development of saliency prediction models considering text influence, we construct a benchmark for the established SJTU-TIS database using state-of-the-art saliency models. Finally, considering the effect of text descriptions on visual attention, while most existing saliency models ignore this impact, we further propose a text-guided saliency (TGSal) prediction model, which extracts and integrates both image features and text features to predict the image saliency under various text-description conditions. Our proposed model significantly outperforms the state-of-the-art saliency models on both the SJTU-TIS database and the pure image saliency databases in terms of various evaluation metrics. The SJTU-TIS database and the code of the proposed TGSal model will be released at: https://github.com/IntMeGroup/TGSal.
♻ ☆ CoBra: Complementary Branch Fusing Class and Semantic Knowledge for Robust Weakly Supervised Semantic Segmentation
Leveraging semantically precise pseudo masks derived from image-level class knowledge for segmentation, namely image-level Weakly Supervised Semantic Segmentation (WSSS), still remains challenging. While Class Activation Maps (CAMs) using CNNs have steadily been contributing to the success of WSSS, the resulting activation maps often narrowly focus on class-specific parts (e.g., only face of human). On the other hand, recent works based on vision transformers (ViT) have shown promising results based on their self-attention mechanism to capture the semantic parts but fail in capturing complete class-specific details (e.g., entire body parts of human but also with a dog nearby). In this work, we propose Complementary Branch (CoBra), a novel dual branch framework consisting of two distinct architectures which provide valuable complementary knowledge of class (from CNN) and semantic (from ViT) to each branch. In particular, we learn Class-Aware Projection (CAP) for the CNN branch and Semantic-Aware Projection (SAP) for the ViT branch to explicitly fuse their complementary knowledge and facilitate a new type of extra patch-level supervision. Our model, through CoBra, fuses CNN and ViT's complementary outputs to create robust pseudo masks that integrate both class and semantic information effectively. Extensive experiments qualitatively and quantitatively investigate how CNN and ViT complement each other on the PASCAL VOC 2012 dataset, showing a state-of-the-art WSSS result. This includes not only the masks generated by our model, but also the segmentation results derived from utilizing these masks as pseudo labels.
♻ ☆ Rapid post-disaster infrastructure damage characterisation enabled by remote sensing and deep learning technologies -- a tiered approach
Critical infrastructure, such as transport networks and bridges, are systematically targeted during wars and suffer damage during extensive natural disasters because it is vital for enabling connectivity and transportation of people and goods, and hence, underpins national and international economic growth. Mass destruction of transport assets, in conjunction with minimal or no accessibility in the wake of natural and anthropogenic disasters, prevents us from delivering rapid recovery and adaptation. As a result, systemic operability is drastically reduced, leading to low levels of resilience. Thus, there is a need for rapid assessment of its condition to allow for informed decision-making for restoration prioritisation. A solution to this challenge is to use technology that enables stand-off observations. Nevertheless, no methods exist for automated characterisation of damage at multiple scales, i.e. regional (e.g., network), asset (e.g., bridges), and structural (e.g., road pavement) scales. We propose a methodology based on an integrated, multi-scale tiered approach to fill this capability gap. In doing so, we demonstrate how automated damage characterisation can be enabled by fit-for-purpose digital technologies. Next, the methodology is applied and validated to a case study in Ukraine that includes 17 bridges, damaged by human targeted interventions. From regional to component scale, we deploy technology to integrate assessments using Sentinel-1 SAR images, crowdsourced information, and high-resolution images for deep learning to facilitate automatic damage detection and characterisation. For the first time, the interferometric coherence difference and semantic segmentation of images were deployed in a tiered multi-scale approach to improve the reliability of damage characterisations at different scales.
comment: 43 pages; 20 figures
♻ ☆ Perceptual Assessment and Optimization of High Dynamic Range Image Rendering
High dynamic range (HDR) rendering has the ability to faithfully reproduce the wide luminance ranges in natural scenes, but how to accurately assess the rendering quality is relatively underexplored. Existing quality models are mostly designed for low dynamic range (LDR) images, and do not align well with human perception of HDR image quality. To fill this gap, we propose a family of HDR quality metrics, in which the key step is employing a simple inverse display model to decompose an HDR image into a stack of LDR images with varying exposures. Subsequently, these decomposed images are assessed through well-established LDR quality metrics. Our HDR quality models present three distinct benefits. First, they directly inherit the recent advancements of LDR quality metrics. Second, they do not rely on human perceptual data of HDR image quality for re-calibration. Third, they facilitate the alignment and prioritization of specific luminance ranges for more accurate and detailed quality assessment. Experimental results show that our HDR quality metrics consistently outperform existing models in terms of quality assessment on four HDR image quality datasets and perceptual optimization of HDR novel view synthesis.
♻ ☆ FairVision: Equitable Deep Learning for Eye Disease Screening via Fair Identity Scaling
Equity in AI for healthcare is crucial due to its direct impact on human well-being. Despite advancements in 2D medical imaging fairness, the fairness of 3D models remains underexplored, hindered by the small sizes of 3D fairness datasets. Since 3D imaging surpasses 2D imaging in SOTA clinical care, it is critical to understand the fairness of these 3D models. To address this research gap, we conduct the first comprehensive study on the fairness of 3D medical imaging models across multiple protected attributes. Our investigation spans both 2D and 3D models and evaluates fairness across five architectures on three common eye diseases, revealing significant biases across race, gender, and ethnicity. To alleviate these biases, we propose a novel fair identity scaling (FIS) method that improves both overall performance and fairness, outperforming various SOTA fairness methods. Moreover, we release Harvard-FairVision, the first large-scale medical fairness dataset with 30,000 subjects featuring both 2D and 3D imaging data and six demographic identity attributes. Harvard-FairVision provides labels for three major eye disorders affecting about 380 million people worldwide, serving as a valuable resource for both 2D and 3D fairness learning. Our code and dataset are publicly accessible at \url{https://ophai.hms.harvard.edu/datasets/harvard-fairvision30k}.
♻ ☆ Deep Learning-Based MR Image Re-parameterization SC
Magnetic resonance (MR) image re-parameterization refers to the process of generating via simulations of an MR image with a new set of MRI scanning parameters. Different parameter values generate distinct contrast between different tissues, helping identify pathologic tissue. Typically, more than one scan is required for diagnosis; however, acquiring repeated scans can be costly, time-consuming, and difficult for patients. Thus, using MR image re-parameterization to predict and estimate the contrast in these imaging scans can be an effective alternative. In this work, we propose a novel deep learning (DL) based convolutional model for MRI re-parameterization. Based on our preliminary results, DL-based techniques hold the potential to learn the non-linearities that govern the re-parameterization.
comment: A. Narang, A. Raj, M. Pop and M. Ebrahimi, "Deep Learning-Based MR Image Re-parameterization," 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 2023, pp. 536-541, doi: 10.1109/CSCE60160.2023.00094
♻ ☆ Graph Neural Networks in Vision-Language Image Understanding: A Survey
2D image understanding is a complex problem within computer vision, but it holds the key to providing human-level scene comprehension. It goes further than identifying the objects in an image, and instead, it attempts to understand the scene. Solutions to this problem form the underpinning of a range of tasks, including image captioning, visual question answering (VQA), and image retrieval. Graphs provide a natural way to represent the relational arrangement between objects in an image, and thus, in recent years graph neural networks (GNNs) have become a standard component of many 2D image understanding pipelines, becoming a core architectural component, especially in the VQA group of tasks. In this survey, we review this rapidly evolving field and we provide a taxonomy of graph types used in 2D image understanding approaches, a comprehensive list of the GNN models used in this domain, and a roadmap of future potential developments. To the best of our knowledge, this is the first comprehensive survey that covers image captioning, visual question answering, and image retrieval techniques that focus on using GNNs as the main part of their architecture.
comment: 20 pages, 5 figures, 5 tables
♻ ☆ DiffusionGAN3D: Boosting Text-guided 3D Generation and Domain Adaptation by Combining 3D GANs and Diffusion Priors CVPR2024
Text-guided domain adaptation and generation of 3D-aware portraits find many applications in various fields. However, due to the lack of training data and the challenges in handling the high variety of geometry and appearance, the existing methods for these tasks suffer from issues like inflexibility, instability, and low fidelity. In this paper, we propose a novel framework DiffusionGAN3D, which boosts text-guided 3D domain adaptation and generation by combining 3D GANs and diffusion priors. Specifically, we integrate the pre-trained 3D generative models (e.g., EG3D) and text-to-image diffusion models. The former provides a strong foundation for stable and high-quality avatar generation from text. And the diffusion models in turn offer powerful priors and guide the 3D generator finetuning with informative direction to achieve flexible and efficient text-guided domain adaptation. To enhance the diversity in domain adaptation and the generation capability in text-to-avatar, we introduce the relative distance loss and case-specific learnable triplane respectively. Besides, we design a progressive texture refinement module to improve the texture quality for both tasks above. Extensive experiments demonstrate that the proposed framework achieves excellent results in both domain adaptation and text-to-avatar tasks, outperforming existing methods in terms of generation quality and efficiency. The project homepage is at https://younglbw.github.io/DiffusionGAN3D-homepage/.
comment: Accepted by CVPR2024
♻ ☆ MC$^2$: Multi-concept Guidance for Customized Multi-concept Generation
Customized text-to-image generation aims to synthesize instantiations of user-specified concepts and has achieved unprecedented progress in handling individual concept. However, when extending to multiple customized concepts, existing methods exhibit limitations in terms of flexibility and fidelity, only accommodating the combination of limited types of models and potentially resulting in a mix of characteristics from different concepts. In this paper, we introduce the Multi-concept guidance for Multi-concept customization, termed MC$^2$, for improved flexibility and fidelity. MC$^2$ decouples the requirements for model architecture via inference time optimization, allowing the integration of various heterogeneous single-concept customized models. It adaptively refines the attention weights between visual and textual tokens, directing image regions to focus on their associated words while diminishing the impact of irrelevant ones. Extensive experiments demonstrate that MC$^2$ even surpasses previous methods that require additional training in terms of consistency with input prompt and reference images. Moreover, MC$^2$ can be extended to elevate the compositional capabilities of text-to-image generation, yielding appealing results. Code will be publicly available at https://github.com/JIANGJiaXiu/MC-2.
♻ ☆ FF-LOGO: Cross-Modality Point Cloud Registration with Feature Filtering and Local to Global Optimization ICRA
Cross-modality point cloud registration is confronted with significant challenges due to inherent differences in modalities between different sensors. We propose a cross-modality point cloud registration framework FF-LOGO: a cross-modality point cloud registration method with feature filtering and local-global optimization. The cross-modality feature correlation filtering module extracts geometric transformation-invariant features from cross-modality point clouds and achieves point selection by feature matching. We also introduce a cross-modality optimization process, including a local adaptive key region aggregation module and a global modality consistency fusion optimization module. Experimental results demonstrate that our two-stage optimization significantly improves the registration accuracy of the feature association and selection module. Our method achieves a substantial increase in recall rate compared to the current state-of-the-art methods on the 3DCSR dataset, improving from 40.59% to 75.74%. Our code will be available at https://github.com/wangmohan17/FFLOGO.
comment: Accepted by 2024 IEEE International Conference on Robotics and Automation (ICRA),7 pages, 2 figures
♻ ☆ DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks in a unified framework. DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content. Each stage is developed independently but they work seamlessly in a cascaded manner. In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results. For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details. Specifically, IRControlNet is trained based on specially produced condition images without distracting noisy content for stable generation performance. Moreover, we design a region-adaptive restoration guidance that can modify the denoising process during inference without model re-training, allowing users to balance realness and fidelity through a tunable guidance scale. Extensive experiments have demonstrated DiffBIR's superiority over state-of-the-art approaches for blind image super-resolution, blind face restoration and blind image denoising tasks on both synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR.
♻ ☆ RoadFormer: Duplex Transformer for RGB-Normal Semantic Road Scene Parsing
The recent advancements in deep convolutional neural networks have shown significant promise in the domain of road scene parsing. Nevertheless, the existing works focus primarily on freespace detection, with little attention given to hazardous road defects that could compromise both driving safety and comfort. In this paper, we introduce RoadFormer, a novel Transformer-based data-fusion network developed for road scene parsing. RoadFormer utilizes a duplex encoder architecture to extract heterogeneous features from both RGB images and surface normal information. The encoded features are subsequently fed into a novel heterogeneous feature synergy block for effective feature fusion and recalibration. The pixel decoder then learns multi-scale long-range dependencies from the fused and recalibrated heterogeneous features, which are subsequently processed by a Transformer decoder to produce the final semantic prediction. Additionally, we release SYN-UDTIRI, the first large-scale road scene parsing dataset that contains over 10,407 RGB images, dense depth images, and the corresponding pixel-level annotations for both freespace and road defects of different shapes and sizes. Extensive experimental evaluations conducted on our SYN-UDTIRI dataset, as well as on three public datasets, including KITTI road, CityScapes, and ORFD, demonstrate that RoadFormer outperforms all other state-of-the-art networks for road scene parsing. Specifically, RoadFormer ranks first on the KITTI road benchmark. Our source code, created dataset, and demo video are publicly available at mias.group/RoadFormer.
comment: 9 pages 7 figures. Accepted by Transactions on Intelligent Vehicles
♻ ☆ Accelerating ViT Inference on FPGA through Static and Dynamic Pruning
Vision Transformers (ViTs) have achieved state-of-the-art accuracy on various computer vision tasks. However, their high computational complexity prevents them from being applied to many real-world applications. Weight and token pruning are two well-known methods for reducing complexity: weight pruning reduces the model size and associated computational demands, while token pruning further dynamically reduces the computation based on the input. Combining these two techniques should significantly reduce computation complexity and model size; however, naively integrating them results in irregular computation patterns, leading to significant accuracy drops and difficulties in hardware acceleration. Addressing the above challenges, we propose a comprehensive algorithm-hardware codesign for accelerating ViT on FPGA through simultaneous pruning -combining static weight pruning and dynamic token pruning. For algorithm design, we systematically combine a hardware-aware structured block-pruning method for pruning model parameters and a dynamic token pruning method for removing unimportant token vectors. Moreover, we design a novel training algorithm to recover the model's accuracy. For hardware design, we develop a novel hardware accelerator for executing the pruned model. The proposed hardware design employs multi-level parallelism with load balancing strategy to efficiently deal with the irregular computation pattern led by the two pruning approaches. Moreover, we develop an efficient hardware mechanism for efficiently executing the on-the-fly token pruning.
comment: FCCM 2024
♻ ☆ Conv-Adapter: Exploring Parameter Efficient Transfer Learning for ConvNets
While parameter efficient tuning (PET) methods have shown great potential with transformer architecture on Natural Language Processing (NLP) tasks, their effectiveness with large-scale ConvNets is still under-studied on Computer Vision (CV) tasks. This paper proposes Conv-Adapter, a PET module designed for ConvNets. Conv-Adapter is light-weight, domain-transferable, and architecture-agnostic with generalized performance on different tasks. When transferring on downstream tasks, Conv-Adapter learns tasks-specific feature modulation to the intermediate representations of backbones while keeping the pre-trained parameters frozen. By introducing only a tiny amount of learnable parameters, e.g., only 3.5% full fine-tuning parameters of ResNet50. It can also be applied for transformer-based backbones. Conv-Adapter outperforms previous PET baseline methods and achieves comparable or surpasses the performance of full fine-tuning on 23 classification tasks of various domains. It also presents superior performance on the few-shot classification with an average margin of 3.39%. Beyond classification, Conv-Adapter can generalize to detection and segmentation tasks with more than 50% reduction of parameters but comparable performance to the traditional full fine-tuning.
♻ ☆ Robust Representation Learning with Self-Distillation for Domain Generalization
Despite the recent success of deep neural networks, there remains a need for effective methods to enhance domain generalization using vision transformers. In this paper, we propose a novel domain generalization technique called Robust Representation Learning with Self-Distillation (RRLD) comprising i) intermediate-block self-distillation and ii) augmentation-guided self-distillation to improve the generalization capabilities of transformer-based models on unseen domains. This approach enables the network to learn robust and general features that are invariant to different augmentations and domain shifts while effectively mitigating overfitting to source domains. To evaluate the effectiveness of our proposed method, we perform extensive experiments on PACS and OfficeHome benchmark datasets, as well as an industrial wafer semiconductor defect dataset. The results demonstrate that RRLD achieves robust and accurate generalization performance. We observe an average accuracy improvement in the range of 1.2% to 2.3% over the state-of-the-art on the three datasets.
comment: 6 pages
♻ ☆ EasyTrack: Efficient and Compact One-stream 3D Point Clouds Tracker
Most of 3D single object trackers (SOT) in point clouds follow the two-stream multi-stage 3D Siamese or motion tracking paradigms, which process the template and search area point clouds with two parallel branches, built on supervised point cloud backbones. In this work, beyond typical 3D Siamese or motion tracking, we propose a neat and compact one-stream transformer 3D SOT paradigm from the novel perspective, termed as \textbf{EasyTrack}, which consists of three special designs: 1) A 3D point clouds tracking feature pre-training module is developed to exploit the masked autoencoding for learning 3D point clouds tracking representations. 2) A unified 3D tracking feature learning and fusion network is proposed to simultaneously learns target-aware 3D features, and extensively captures mutual correlation through the flexible self-attention mechanism. 3) A target location network in the dense bird's eye view (BEV) feature space is constructed for target classification and regression. Moreover, we develop an enhanced version named EasyTrack++, which designs the center points interaction (CPI) strategy to reduce the ambiguous targets caused by the noise point cloud background information. The proposed EasyTrack and EasyTrack++ set a new state-of-the-art performance ($\textbf{18\%}$, $\textbf{40\%}$ and $\textbf{3\%}$ success gains) in KITTI, NuScenes, and Waymo while runing at \textbf{52.6fps} with few parameters (\textbf{1.3M}). The code will be available at https://github.com/KnightApple427/Easytrack.
♻ ☆ Universal Humanoid Motion Representations for Physics-Based Control ICLR 2024
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control. Due to the high dimensionality of humanoids and the inherent difficulties in reinforcement learning, prior methods have focused on learning skill embeddings for a narrow range of movement styles (e.g. locomotion, game characters) from specialized motion datasets. This limited scope hampers their applicability in complex tasks. We close this gap by significantly increasing the coverage of our motion representation space. To achieve this, we first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset. We then create our motion representation by distilling skills directly from the imitator. This is achieved by using an encoder-decoder structure with a variational information bottleneck. Additionally, we jointly learn a prior conditioned on proprioception (humanoid's own pose and velocities) to improve model expressiveness and sampling efficiency for downstream tasks. By sampling from the prior, we can generate long, stable, and diverse human motions. Using this latent space for hierarchical RL, we show that our policies solve tasks using human-like behavior. We demonstrate the effectiveness of our motion representation by solving generative tasks (e.g. strike, terrain traversal) and motion tracking using VR controllers.
comment: ICLR 2024 Spotlight. Project page: https://zhengyiluo.github.io/PULSE/
♻ ☆ Eye-gaze Guided Multi-modal Alignment Framework for Radiology
In multi-modal frameworks, the alignment of cross-modal features presents a significant challenge. The predominant approach in multi-modal pre-training emphasizes either global or local alignment between modalities, utilizing extensive datasets. This bottom-up driven method often suffers from a lack of interpretability, a critical concern in radiology. Previous studies have integrated high-level labels in medical images or text, but these still rely on manual annotation, a costly and labor-intensive process. Our work introduces a novel approach by using eye-gaze data, collected synchronously by radiologists during diagnostic evaluations. This data, indicating radiologists' focus areas, naturally links chest X-rays to diagnostic texts. We propose the Eye-gaze Guided Multi-modal Alignment (EGMA) framework to harness eye-gaze data for better alignment of image and text features, aiming to reduce reliance on manual annotations and thus cut training costs. Our model demonstrates robust performance, outperforming other state-of-the-art methods in zero-shot classification and retrieval tasks. The incorporation of easily-obtained eye-gaze data during routine radiological diagnoses signifies a step towards minimizing manual annotation dependency. Additionally, we explore the impact of varying amounts of eye-gaze data on model performance, highlighting the feasibility and utility of integrating this auxiliary data into multi-modal pre-training.
comment: 12 pages, 4 figures
♻ ☆ A Technique for Classifying Static Gestures Using UWB Radar
Our paper presents a robust framework for UWB-based static gesture recognition, leveraging proprietary UWB radar sensor technology. Extensive data collection efforts were undertaken to compile datasets containing five commonly used gestures. Our approach involves a comprehensive data pre-processing pipeline that encompasses outlier handling, aspect ratio-preserving resizing, and false-color image transformation. Both CNN and MobileNet models were trained on the processed images. Remarkably, our best-performing model achieved an accuracy of 96.78%. Additionally, we developed a user-friendly GUI framework to assess the model's system resource usage and processing times, which revealed low memory utilization and real-time task completion in under one second. This research marks a significant step towards enhancing static gesture recognition using UWB technology, promising practical applications in various domains.
comment: This is not a technical research paper, but an excerpt of what was applied during a funded project for the promotion of Open Science
♻ ☆ ChangeNet: Multi-Temporal Asymmetric Change Detection Dataset ICASSP 2024
Change Detection (CD) has been attracting extensive interests with the availability of bi-temporal datasets. However, due to the huge cost of multi-temporal images acquisition and labeling, existing change detection datasets are small in quantity, short in temporal, and low in practicability. Therefore, a large-scale practical-oriented dataset covering wide temporal phases is urgently needed to facilitate the community. To this end, the ChangeNet dataset is presented especially for multi-temporal change detection, along with the new task of "Asymmetric Change Detection". Specifically, ChangeNet consists of 31,000 multi-temporal images pairs, a wide range of complex scenes from 100 cities, and 6 pixel-level annotated categories, which is far superior to all the existing change detection datasets including LEVIR-CD, WHU Building CD, etc.. In addition, ChangeNet contains amounts of real-world perspective distortions in different temporal phases on the same areas, which is able to promote the practical application of change detection algorithms. The ChangeNet dataset is suitable for both binary change detection (BCD) and semantic change detection (SCD) tasks. Accordingly, we benchmark the ChangeNet dataset on six BCD methods and two SCD methods, and extensive experiments demonstrate its challenges and great significance. The dataset is available at https://github.com/jankyee/ChangeNet.
comment: Accepted to ICASSP 2024 Oral/Lecture
♻ ☆ Comment-aided Video-Language Alignment via Contrastive Pre-training for Short-form Video Humor Detection ICMR 2024
The growing importance of multi-modal humor detection within affective computing correlates with the expanding influence of short-form video sharing on social media platforms. In this paper, we propose a novel two-branch hierarchical model for short-form video humor detection (SVHD), named Comment-aided Video-Language Alignment (CVLA) via data-augmented multi-modal contrastive pre-training. Notably, our CVLA not only operates on raw signals across various modal channels but also yields an appropriate multi-modal representation by aligning the video and language components within a consistent semantic space. The experimental results on two humor detection datasets, including DY11k and UR-FUNNY, demonstrate that CVLA dramatically outperforms state-of-the-art and several competitive baseline approaches. Our dataset, code and model release at https://github.com/yliu-cs/CVLA.
comment: Accepted by ICMR 2024
♻ ☆ CosalPure: Learning Concept from Group Images for Robust Co-Saliency Detection CVPR 2024
Co-salient object detection (CoSOD) aims to identify the common and salient (usually in the foreground) regions across a given group of images. Although achieving significant progress, state-of-the-art CoSODs could be easily affected by some adversarial perturbations, leading to substantial accuracy reduction. The adversarial perturbations can mislead CoSODs but do not change the high-level semantic information (e.g., concept) of the co-salient objects. In this paper, we propose a novel robustness enhancement framework by first learning the concept of the co-salient objects based on the input group images and then leveraging this concept to purify adversarial perturbations, which are subsequently fed to CoSODs for robustness enhancement. Specifically, we propose CosalPure containing two modules, i.e., group-image concept learning and concept-guided diffusion purification. For the first module, we adopt a pre-trained text-to-image diffusion model to learn the concept of co-salient objects within group images where the learned concept is robust to adversarial examples. For the second module, we map the adversarial image to the latent space and then perform diffusion generation by embedding the learned concept into the noise prediction function as an extra condition. Our method can effectively alleviate the influence of the SOTA adversarial attack containing different adversarial patterns, including exposure and noise. The extensive results demonstrate that our method could enhance the robustness of CoSODs significantly.
comment: This paper is accepted by CVPR 2024
♻ ☆ RDFC-GAN: RGB-Depth Fusion CycleGAN for Indoor Depth Completion CVPR 2022
Raw depth images captured in indoor scenarios frequently exhibit extensive missing values due to the inherent limitations of the sensors and environments. For example, transparent materials frequently elude detection by depth sensors; surfaces may introduce measurement inaccuracies due to their polished textures, extended distances, and oblique incidence angles from the sensor. The presence of incomplete depth maps imposes significant challenges for subsequent vision applications, prompting the development of numerous depth completion techniques to mitigate this problem. Numerous methods excel at reconstructing dense depth maps from sparse samples, but they often falter when faced with extensive contiguous regions of missing depth values, a prevalent and critical challenge in indoor environments. To overcome these challenges, we design a novel two-branch end-to-end fusion network named RDFC-GAN, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map. The first branch employs an encoder-decoder structure, by adhering to the Manhattan world assumption and utilizing normal maps from RGB-D information as guidance, to regress the local dense depth values from the raw depth map. The other branch applies an RGB-depth fusion CycleGAN, adept at translating RGB imagery into detailed, textured depth maps while ensuring high fidelity through cycle consistency. We fuse the two branches via adaptive fusion modules named W-AdaIN and train the model with the help of pseudo depth maps. Comprehensive evaluations on NYU-Depth V2 and SUN RGB-D datasets show that our method significantly enhances depth completion performance particularly in realistic indoor settings.
comment: Haowen Wang and Zhengping Che are with equal contributions. Paper accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). An earlier version has been accepted by CVPR 2022 (arXiv:2203.10856). arXiv admin note: text overlap with arXiv:2203.10856
♻ ☆ HICO-DET-SG and V-COCO-SG: New Data Splits for Evaluating the Systematic Generalization Performance of Human-Object Interaction Detection Models
Human-Object Interaction (HOI) detection is a task to localize humans and objects in an image and predict the interactions in human-object pairs. In real-world scenarios, HOI detection models need systematic generalization, i.e., generalization to novel combinations of objects and interactions, because the train data are expected to cover a limited portion of all possible combinations. To evaluate the systematic generalization performance of HOI detection models, we created two new sets of HOI detection data splits named HICO-DET-SG and V-COCO-SG based on the HICO-DET and V-COCO datasets, respectively. When evaluated on the new data splits, HOI detection models with various characteristics performed much more poorly than when evaluated on the original splits. This shows that systematic generalization is a challenging goal in HOI detection. By analyzing the evaluation results, we also gain insights for improving the systematic generalization performance and identify four possible future research directions. We hope that our new data splits and presented analysis will encourage further research on systematic generalization in HOI detection.
comment: 19 pages, 3 figures, 4 tables
Information Retrieval 16
☆ A Conceptual Framework for Conversational Search and Recommendation: Conceptualizing Agent-Human Interactions During the Conversational Search Process
The conversational search task aims to enable a user to resolve information needs via natural language dialogue with an agent. In this paper, we aim to develop a conceptual framework of the actions and intents of users and agents explaining how these actions enable the user to explore the search space and resolve their information need. We outline the different actions and intents, before discussing key decision points in the conversation where the agent needs to decide how to steer the conversational search process to a successful and/or satisfactory conclusion. Essentially, this paper provides a conceptualization of the conversational search process between an agent and user, which provides a framework and a starting point for research, development and evaluation of conversational search agents.
☆ Accessibility in Information Retrieval
This paper introduces the concept of accessibility from the field of transportation planning and adopts it within the context of Information Retrieval (IR). An analogy is drawn between the fields, which motivates the development of document accessibility measures for IR systems. Considering the accessibility of documents within a collection given an IR System provides a different perspective on the analysis and evaluation of such systems which could be used to inform the design, tuning and management of current and future IR systems.
☆ Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
☆ Toward FAIR Semantic Publishing of Research Dataset Metadata in the Open Research Knowledge Graph
Search engines these days can serve datasets as search results. Datasets get picked up by search technologies based on structured descriptions on their official web pages, informed by metadata ontologies such as the Dataset content type of schema.org. Despite this promotion of the content type dataset as a first-class citizen of search results, a vast proportion of datasets, particularly research datasets, still need to be made discoverable and, therefore, largely remain unused. This is due to the sheer volume of datasets released every day and the inability of metadata to reflect a dataset's content and context accurately. This work seeks to improve this situation for a specific class of datasets, namely research datasets, which are the result of research endeavors and are accompanied by a scholarly publication. We propose the ORKG-Dataset content type, a specialized branch of the Open Research Knowledge Graoh (ORKG) platform, which provides descriptive information and a semantic model for research datasets, integrating them with their accompanying scholarly publications. This work aims to establish a standardized framework for recording and reporting research datasets within the ORKG-Dataset content type. This, in turn, increases research dataset transparency on the web for their improved discoverability and applied use. In this paper, we present a proposal -- the minimum FAIR, comparable, semantic description of research datasets in terms of salient properties of their supporting publication. We design a specific application of the ORKG-Dataset semantic model based on 40 diverse research datasets on scientific information extraction.
comment: 8 pages, 1 figure, published in the Joint Proceedings of the Onto4FAIR 2023 Workshops
☆ Large-Scale Multi-Domain Recommendation: an Automatic Domain Feature Extraction and Personalized Integration Framework
Feed recommendation is currently the mainstream mode for many real-world applications (e.g., TikTok, Dianping), it is usually necessary to model and predict user interests in multiple scenarios (domains) within and even outside the application. Multi-domain learning is a typical solution in this regard. While considerable efforts have been made in this regard, there are still two long-standing challenges: (1) Accurately depicting the differences among domains using domain features is crucial for enhancing the performance of each domain. However, manually designing domain features and models for numerous domains can be a laborious task. (2) Users typically have limited impressions in only a few domains. Extracting features automatically from other domains and leveraging them to improve the predictive capabilities of each domain has consistently posed a challenging problem. In this paper, we propose an Automatic Domain Feature Extraction and Personalized Integration (DFEI) framework for the large-scale multi-domain recommendation. The framework automatically transforms the behavior of each individual user into an aggregation of all user behaviors within the domain, which serves as the domain features. Unlike offline feature engineering methods, the extracted domain features are higher-order representations and directly related to the target label. Besides, by personalized integration of domain features from other domains for each user and the innovation in the training mode, the DFEI framework can yield more accurate conversion identification. Experimental results on both public and industrial datasets, consisting of over 20 domains, clearly demonstrate that the proposed framework achieves significantly better performance compared with SOTA baselines. Furthermore, we have released the source code of the proposed framework at https://github.com/xidongbo/DFEI.
comment: 8 pages
☆ Improving Health Question Answering with Reliable and Time-Aware Evidence Retrieval NAACL 2024
In today's digital world, seeking answers to health questions on the Internet is a common practice. However, existing question answering (QA) systems often rely on using pre-selected and annotated evidence documents, thus making them inadequate for addressing novel questions. Our study focuses on the open-domain QA setting, where the key challenge is to first uncover relevant evidence in large knowledge bases. By utilizing the common retrieve-then-read QA pipeline and PubMed as a trustworthy collection of medical research documents, we answer health questions from three diverse datasets. We modify different retrieval settings to observe their influence on the QA pipeline's performance, including the number of retrieved documents, sentence selection process, the publication year of articles, and their number of citations. Our results reveal that cutting down on the amount of retrieved documents and favoring more recent and highly cited documents can improve the final macro F1 score up to 10%. We discuss the results, highlight interesting examples, and outline challenges for future research, like managing evidence disagreement and crafting user-friendly explanations.
comment: Accepted to NAACL 2024 (Findings)
☆ Collaborative-Enhanced Prediction of Spending on Newly Downloaded Mobile Games under Consumption Uncertainty WWW 2024
With the surge in mobile gaming, accurately predicting user spending on newly downloaded games has become paramount for maximizing revenue. However, the inherently unpredictable nature of user behavior poses significant challenges in this endeavor. To address this, we propose a robust model training and evaluation framework aimed at standardizing spending data to mitigate label variance and extremes, ensuring stability in the modeling process. Within this framework, we introduce a collaborative-enhanced model designed to predict user game spending without relying on user IDs, thus ensuring user privacy and enabling seamless online training. Our model adopts a unique approach by separately representing user preferences and game features before merging them as input to the spending prediction module. Through rigorous experimentation, our approach demonstrates notable improvements over production models, achieving a remarkable \textbf{17.11}\% enhancement on offline data and an impressive \textbf{50.65}\% boost in an online A/B test. In summary, our contributions underscore the importance of stable model training frameworks and the efficacy of collaborative-enhanced models in predicting user spending behavior in mobile gaming.
comment: 10 pages,6 figures, WWW 2024 Industry Track, with three accept, two weak accept scores
☆ Reducing hallucination in structured outputs via Retrieval-Augmented Generation NAACL 2024
A common and fundamental limitation of Generative AI (GenAI) is its propensity to hallucinate. While large language models (LLM) have taken the world by storm, without eliminating or at least reducing hallucinations, real-world GenAI systems may face challenges in user adoption. In the process of deploying an enterprise application that produces workflows based on natural language requirements, we devised a system leveraging Retrieval Augmented Generation (RAG) to greatly improve the quality of the structured output that represents such workflows. Thanks to our implementation of RAG, our proposed system significantly reduces hallucinations in the output and improves the generalization of our LLM in out-of-domain settings. In addition, we show that using a small, well-trained retriever encoder can reduce the size of the accompanying LLM, thereby making deployments of LLM-based systems less resource-intensive.
comment: To be presented at NAACL 2024. 11 pages and 4 figures
☆ LazyDP: Co-Designing Algorithm-Software for Scalable Training of Differentially Private Recommendation Models
Differential privacy (DP) is widely being employed in the industry as a practical standard for privacy protection. While private training of computer vision or natural language processing applications has been studied extensively, the computational challenges of training of recommender systems (RecSys) with DP have not been explored. In this work, we first present our detailed characterization of private RecSys training using DP-SGD, root-causing its several performance bottlenecks. Specifically, we identify DP-SGD's noise sampling and noisy gradient update stage to suffer from a severe compute and memory bandwidth limitation, respectively, causing significant performance overhead in training private RecSys. Based on these findings, we propose LazyDP, an algorithm-software co-design that addresses the compute and memory challenges of training RecSys with DP-SGD. Compared to a state-of-the-art DP-SGD training system, we demonstrate that LazyDP provides an average 119x training throughput improvement while also ensuring mathematically equivalent, differentially private RecSys models to be trained.
☆ Measuring the Predictability of Recommender Systems using Structural Complexity Metrics WWW-24
Recommender systems (RS) are central to the filtering and curation of online content. These algorithms predict user ratings for unseen items based on past preferences. Despite their importance, the innate predictability of RS has received limited attention. This study introduces data-driven metrics to measure the predictability of RS based on the structural complexity of the user-item rating matrix. A low predictability score indicates complex and unpredictable user-item interactions, while a high predictability score reveals less complex patterns with predictive potential. We propose two strategies that use singular value decomposition (SVD) and matrix factorization (MF) to measure structural complexity. By perturbing the data and evaluating the prediction of the perturbed version, we explore the structural consistency indicated by the SVD singular vectors. The assumption is that a random perturbation of highly structured data does not change its structure. Empirical results show a high correlation between our metrics and the accuracy of the best-performing prediction algorithms on real data sets.
comment: Accepted at WWW-24 Workshop: DCAI Data-centric Artificial Intelligence
☆ The Elephant in the Room: Rethinking the Usage of Pre-trained Language Model in Sequential Recommendation
Sequential recommendation (SR) has seen significant advancements with the help of Pre-trained Language Models (PLMs). Some PLM-based SR models directly use PLM to encode user historical behavior's text sequences to learn user representations, while there is seldom an in-depth exploration of the capability and suitability of PLM in behavior sequence modeling. In this work, we first conduct extensive model analyses between PLMs and PLM-based SR models, discovering great underutilization and parameter redundancy of PLMs in behavior sequence modeling. Inspired by this, we explore different lightweight usages of PLMs in SR, aiming to maximally stimulate the ability of PLMs for SR while satisfying the efficiency and usability demands of practical systems. We discover that adopting behavior-tuned PLMs for item initializations of conventional ID-based SR models is the most economical framework of PLM-based SR, which would not bring in any additional inference cost but could achieve a dramatic performance boost compared with the original version. Extensive experiments on five datasets show that our simple and universal framework leads to significant improvement compared to classical SR and SOTA PLM-based SR models without additional inference costs.
comment: 10 pages
☆ Exploring Contrastive Learning for Long-Tailed Multi-Label Text Classification
Learning an effective representation in multi-label text classification (MLTC) is a significant challenge in NLP. This challenge arises from the inherent complexity of the task, which is shaped by two key factors: the intricate connections between labels and the widespread long-tailed distribution of the data. To overcome this issue, one potential approach involves integrating supervised contrastive learning with classical supervised loss functions. Although contrastive learning has shown remarkable performance in multi-class classification, its impact in the multi-label framework has not been thoroughly investigated. In this paper, we conduct an in-depth study of supervised contrastive learning and its influence on representation in MLTC context. We emphasize the importance of considering long-tailed data distributions to build a robust representation space, which effectively addresses two critical challenges associated with contrastive learning that we identify: the "lack of positives" and the "attraction-repulsion imbalance". Building on this insight, we introduce a novel contrastive loss function for MLTC. It attains Micro-F1 scores that either match or surpass those obtained with other frequently employed loss functions, and demonstrates a significant improvement in Macro-F1 scores across three multi-label datasets.
comment: 14 pages, 2 figures
♻ ☆ Leveraging Foundation Models for Content-Based Medical Image Retrieval in Radiology
Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. Current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. In response, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based medical image retrieval. By benchmarking these models on a comprehensive dataset of 1.6 million 2D radiological images spanning four modalities and 161 pathologies, we identify weakly-supervised models as superior, achieving a P@1 of up to 0.594. This performance not only competes with a specialized model but does so without the need for fine-tuning. Our analysis further explores the challenges in retrieving pathological versus anatomical structures, indicating that accurate retrieval of pathological features presents greater difficulty. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning.
♻ ☆ Rethinking Cross-Domain Sequential Recommendation under Open-World Assumptions
Cross-Domain Sequential Recommendation (CDSR) methods aim to tackle the data sparsity and cold-start problems present in Single-Domain Sequential Recommendation (SDSR). Existing CDSR works design their elaborate structures relying on overlapping users to propagate the cross-domain information. However, current CDSR methods make closed-world assumptions, assuming fully overlapping users across multiple domains and that the data distribution remains unchanged from the training environment to the test environment. As a result, these methods typically result in lower performance on online real-world platforms due to the data distribution shifts. To address these challenges under open-world assumptions, we design an \textbf{A}daptive \textbf{M}ulti-\textbf{I}nterest \textbf{D}ebiasing framework for cross-domain sequential recommendation (\textbf{AMID}), which consists of a multi-interest information module (\textbf{MIM}) and a doubly robust estimator (\textbf{DRE}). Our framework is adaptive for open-world environments and can improve the model of most off-the-shelf single-domain sequential backbone models for CDSR. Our MIM establishes interest groups that consider both overlapping and non-overlapping users, allowing us to effectively explore user intent and explicit interest. To alleviate biases across multiple domains, we developed the DRE for the CDSR methods. We also provide a theoretical analysis that demonstrates the superiority of our proposed estimator in terms of bias and tail bound, compared to the IPS estimator used in previous work.
♻ ☆ Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models
Parameter Efficient Fine-Tuning (PEFT) methods have been extensively utilized in Large Language Models (LLMs) to improve the down-streaming tasks without the cost of fine-tuing the whole LLMs. Recent studies have shown how to effectively use PEFT for fine-tuning LLMs in ranking tasks with convincing performance; there are some limitations, including the learned prompt being fixed for different documents, overfitting to specific tasks, and low adaptation ability. In this paper, we introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak the information of the true queries to LLMs and then make the generation of true queries from input documents much easier. Specifically, we utilize the query to extract the top-$k$ tokens from concatenated documents, serving as contextual clues. We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents, guiding the LLMs to generate more document-specific synthetic queries, thereby further improving the reranking performance. Extensive experiments are conducted on four public datasets, demonstrating the effectiveness of our proposed approach.
♻ ☆ Retrieval Augmented Generation using Engineering Design Knowledge
Large-language Models (LLMs) need to adopt Retrieval-Augmented Generation (RAG) to generate factual responses that are better suited to knowledge-based applications in the design process. We present a data-driven method to identify explicit facts of the form - head entity :: relationship :: tail entity from patented artefact descriptions. We train roBERTa Transformer-based sequence classification models using our proprietary dataset of 44,227 sentences. Upon classifying tokens in a sentence as entities or relationships, our method uses another classifier to identify specific relationship tokens for a given pair of entities. We compare the performances against linear classifiers and Graph Neural Networks (GNNs) that both incorporate BERT Transformer-based token embeddings to predict associations among the entities and relationships. We apply our method to 4,870 fan system related patents and populate a knowledge base that constitutes around 3 million facts. Using the knowledge base, we demonstrate retrieving generalisable and specific domain knowledge for contextualising LLMs.
Machine Learning 100
Pre-training Small Base LMs with Fewer Tokens
We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
comment: 15 pages, 6 figures, 10 tables
☆ Is ChatGPT Transforming Academics' Writing Style?
Based on one million arXiv papers submitted from May 2018 to January 2024, we assess the textual density of ChatGPT's writing style in their abstracts by means of a statistical analysis of word frequency changes. Our model is calibrated and validated on a mixture of real abstracts and ChatGPT-modified abstracts (simulated data) after a careful noise analysis. We find that ChatGPT is having an increasing impact on arXiv abstracts, especially in the field of computer science, where the fraction of ChatGPT-revised abstracts is estimated to be approximately 35%, if we take the output of one of the simplest prompts, "revise the following sentences", as a baseline. We conclude with an analysis of both positive and negative aspects of the penetration of ChatGPT into academics' writing style.
comment: 15 pages, 19 figures
☆ Regularized Gradient Clipping Provably Trains Wide and Deep Neural Networks
In this work, we instantiate a regularized form of the gradient clipping algorithm and prove that it can converge to the global minima of deep neural network loss functions provided that the net is of sufficient width. We present empirical evidence that our theoretically founded regularized gradient clipping algorithm is also competitive with the state-of-the-art deep-learning heuristics. Hence the algorithm presented here constitutes a new approach to rigorous deep learning. The modification we do to standard gradient clipping is designed to leverage the PL* condition, a variant of the Polyak-Lojasiewicz inequality which was recently proven to be true for various neural networks for any depth within a neighborhood of the initialisation.
comment: 16 pages, 4 figures
☆ Hyperbolic Delaunay Geometric Alignment
Hyperbolic machine learning is an emerging field aimed at representing data with a hierarchical structure. However, there is a lack of tools for evaluation and analysis of the resulting hyperbolic data representations. To this end, we propose Hyperbolic Delaunay Geometric Alignment (HyperDGA) -- a similarity score for comparing datasets in a hyperbolic space. The core idea is counting the edges of the hyperbolic Delaunay graph connecting datapoints across the given sets. We provide an empirical investigation on synthetic and real-life biological data and demonstrate that HyperDGA outperforms the hyperbolic version of classical distances between sets. Furthermore, we showcase the potential of HyperDGA for evaluating latent representations inferred by a Hyperbolic Variational Auto-Encoder.
☆ Sliding down the stairs: how correlated latent variables accelerate learning with neural networks
Neural networks extract features from data using stochastic gradient descent (SGD). In particular, higher-order input cumulants (HOCs) are crucial for their performance. However, extracting information from the $p$th cumulant of $d$-dimensional inputs is computationally hard: the number of samples required to recover a single direction from an order-$p$ tensor (tensor PCA) using online SGD grows as $d^{p-1}$, which is prohibitive for high-dimensional inputs. This result raises the question of how neural networks extract relevant directions from the HOCs of their inputs efficiently. Here, we show that correlations between latent variables along the directions encoded in different input cumulants speed up learning from higher-order correlations. We show this effect analytically by deriving nearly sharp thresholds for the number of samples required by a single neuron to weakly-recover these directions using online SGD from a random start in high dimensions. Our analytical results are confirmed in simulations of two-layer neural networks and unveil a new mechanism for hierarchical learning in neural networks.
☆ Generating Synthetic Time Series Data for Cyber-Physical Systems
Data augmentation is an important facilitator of deep learning applications in the time series domain. A gap is identified in the literature, demonstrating sparse exploration of the transformer, the dominant sequence model, for data augmentation in time series. A architecture hybridizing several successful priors is put forth and tested using a powerful time domain similarity metric. Results suggest the challenge of this domain, and several valuable directions for future work.
☆ Small Models Are (Still) Effective Cross-Domain Argument Extractors ACL
Effective ontology transfer has been a major goal of recent work on event argument extraction (EAE). Two methods in particular -- question answering (QA) and template infilling (TI) -- have emerged as promising approaches to this problem. However, detailed explorations of these techniques' ability to actually enable this transfer are lacking. In this work, we provide such a study, exploring zero-shot transfer using both techniques on six major EAE datasets at both the sentence and document levels. Further, we challenge the growing reliance on LLMs for zero-shot extraction, showing that vastly smaller models trained on an appropriate source ontology can yield zero-shot performance superior to that of GPT-3.5 or GPT-4.
comment: ACL Rolling Review Short Paper
☆ Enhancing Autonomous Vehicle Training with Language Model Integration and Critical Scenario Generation
This paper introduces CRITICAL, a novel closed-loop framework for autonomous vehicle (AV) training and testing. CRITICAL stands out for its ability to generate diverse scenarios, focusing on critical driving situations that target specific learning and performance gaps identified in the Reinforcement Learning (RL) agent. The framework achieves this by integrating real-world traffic dynamics, driving behavior analysis, surrogate safety measures, and an optional Large Language Model (LLM) component. It is proven that the establishment of a closed feedback loop between the data generation pipeline and the training process can enhance the learning rate during training, elevate overall system performance, and augment safety resilience. Our evaluations, conducted using the Proximal Policy Optimization (PPO) and the HighwayEnv simulation environment, demonstrate noticeable performance improvements with the integration of critical case generation and LLM analysis, indicating CRITICAL's potential to improve the robustness of AV systems and streamline the generation of critical scenarios. This ultimately serves to hasten the development of AV agents, expand the general scope of RL training, and ameliorate validation efforts for AV safety.
comment: 7 pages, 5 figures
☆ Mitigating Receiver Impact on Radio Frequency Fingerprint Identification via Domain Adaptation
Radio Frequency Fingerprint Identification (RFFI), which exploits non-ideal hardware-induced unique distortion resident in the transmit signals to identify an emitter, is emerging as a means to enhance the security of communication systems. Recently, machine learning has achieved great success in developing state-of-the-art RFFI models. However, few works consider cross-receiver RFFI problems, where the RFFI model is trained and deployed on different receivers. Due to altered receiver characteristics, direct deployment of RFFI model on a new receiver leads to significant performance degradation. To address this issue, we formulate the cross-receiver RFFI as a model adaptation problem, which adapts the trained model to unlabeled signals from a new receiver. We first develop a theoretical generalization error bound for the adaptation model. Motivated by the bound, we propose a novel method to solve the cross-receiver RFFI problem, which includes domain alignment and adaptive pseudo-labeling. The former aims at finding a feature space where both domains exhibit similar distributions, effectively reducing the domain discrepancy. Meanwhile, the latter employs a dynamic pseudo-labeling scheme to implicitly transfer the label information from the labeled receiver to the new receiver. Experimental results indicate that the proposed method can effectively mitigate the receiver impact and improve the cross-receiver RFFI performance.
comment: Accepted by IEEE Internet of Things Journal
☆ Scalability in Building Component Data Annotation: Enhancing Facade Material Classification with Synthetic Data
Computer vision models trained on Google Street View images can create material cadastres. However, current approaches need manually annotated datasets that are difficult to obtain and often have class imbalance. To address these challenges, this paper fine-tuned a Swin Transformer model on a synthetic dataset generated with DALL-E and compared the performance to a similar manually annotated dataset. Although manual annotation remains the gold standard, the synthetic dataset performance demonstrates a reasonable alternative. The findings will ease annotation needed to develop material cadastres, offering architects insights into opportunities for material reuse, thus contributing to the reduction of demolition waste.
comment: 10 pages, 6 figures, submitted to 2024 European Conference of Computing in Construction
☆ RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs
State-of-the-art large language models (LLMs) have become indispensable tools for various tasks. However, training LLMs to serve as effective assistants for humans requires careful consideration. A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences and mitigate issues like toxicity and hallucinations. Yet, an understanding of RLHF for LLMs is largely entangled with initial design choices that popularized the method and current research focuses on augmenting those choices rather than fundamentally improving the framework. In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals, dedicating substantial focus to the core component of RLHF -- the reward model. Our study investigates modeling choices, caveats of function approximation, and their implications on RLHF training algorithms, highlighting the underlying assumptions made about the expressivity of reward. Our analysis improves the understanding of the role of reward models and methods for their training, concurrently revealing limitations of the current methodology. We characterize these limitations, including incorrect generalization, model misspecification, and the sparsity of feedback, along with their impact on the performance of a language model. The discussion and analysis are substantiated by a categorical review of current literature, serving as a reference for researchers and practitioners to understand the challenges of RLHF and build upon existing efforts.
☆ Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking
Contrastive learning has gained widespread adoption for retrieval tasks due to its minimal requirement for manual annotations. However, popular contrastive frameworks typically learn from binary relevance, making them ineffective at incorporating direct fine-grained rankings. In this paper, we curate a large-scale dataset featuring detailed relevance scores for each query-document pair to facilitate future research and evaluation. Subsequently, we propose Generalized Contrastive Learning for Multi-Modal Retrieval and Ranking (GCL), which is designed to learn from fine-grained rankings beyond binary relevance scores. Our results show that GCL achieves a 94.5% increase in NDCG@10 for in-domain and 26.3 to 48.8% increases for cold-start evaluations, all relative to the CLIP baseline and involving ground truth rankings.
☆ Advancing Forest Fire Prevention: Deep Reinforcement Learning for Effective Firebreak Placement
Over the past decades, the increase in both frequency and intensity of large-scale wildfires due to climate change has emerged as a significant natural threat. The pressing need to design resilient landscapes capable of withstanding such disasters has become paramount, requiring the development of advanced decision-support tools. Existing methodologies, including Mixed Integer Programming, Stochastic Optimization, and Network Theory, have proven effective but are hindered by computational demands, limiting their applicability. In response to this challenge, we propose using artificial intelligence techniques, specifically Deep Reinforcement Learning, to address the complex problem of firebreak placement in the landscape. We employ value-function based approaches like Deep Q-Learning, Double Deep Q-Learning, and Dueling Double Deep Q-Learning. Utilizing the Cell2Fire fire spread simulator combined with Convolutional Neural Networks, we have successfully implemented a computational agent capable of learning firebreak locations within a forest environment, achieving good results. Furthermore, we incorporate a pre-training loop, initially teaching our agent to mimic a heuristic-based algorithm and observe that it consistently exceeds the performance of these solutions. Our findings underscore the immense potential of Deep Reinforcement Learning for operational research challenges, especially in fire prevention. Our approach demonstrates convergence with highly favorable results in problem instances as large as 40 x 40 cells, marking a significant milestone in applying Reinforcement Learning to this critical issue. To the best of our knowledge, this study represents a pioneering effort in using Reinforcement Learning to address the aforementioned problem, offering promising perspectives in fire prevention and landscape management
comment: 20 pages, 15 figures
☆ Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations
Data assimilation (DA), as an indispensable component within contemporary Numerical Weather Prediction (NWP) systems, plays a crucial role in generating the analysis that significantly impacts forecast performance. Nevertheless, the development of an efficient DA system poses significant challenges, particularly in establishing intricate relationships between the background data and the vast amount of multi-source observation data within limited time windows in operational settings. To address these challenges, researchers design complex pre-processing methods for each observation type, leveraging approximate modeling and the power of super-computing clusters to expedite solutions. The emergence of deep learning (DL) models has been a game-changer, offering unified multi-modal modeling, enhanced nonlinear representation capabilities, and superior parallelization. These advantages have spurred efforts to integrate DL models into various domains of weather modeling. Remarkably, DL models have shown promise in matching, even surpassing, the forecast accuracy of leading operational NWP models worldwide. This success motivates the exploration of DL-based DA frameworks tailored for weather forecasting models. In this study, we introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations. By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance. Furthermore, through a series of single-observation experiments, Fuxi-DA has been validated against established atmospheric physics, demonstrating its consistency and reliability.
☆ Online Safety Analysis for LLMs: a Benchmark, an Assessment, and a Path Forward
While Large Language Models (LLMs) have seen widespread applications across numerous fields, their limited interpretability poses concerns regarding their safe operations from multiple aspects, e.g., truthfulness, robustness, and fairness. Recent research has started developing quality assurance methods for LLMs, introducing techniques such as offline detector-based or uncertainty estimation methods. However, these approaches predominantly concentrate on post-generation analysis, leaving the online safety analysis for LLMs during the generation phase an unexplored area. To bridge this gap, we conduct in this work a comprehensive evaluation of the effectiveness of existing online safety analysis methods on LLMs. We begin with a pilot study that validates the feasibility of detecting unsafe outputs in the early generation process. Following this, we establish the first publicly available benchmark of online safety analysis for LLMs, including a broad spectrum of methods, models, tasks, datasets, and evaluation metrics. Utilizing this benchmark, we extensively analyze the performance of state-of-the-art online safety analysis methods on both open-source and closed-source LLMs. This analysis reveals the strengths and weaknesses of individual methods and offers valuable insights into selecting the most appropriate method based on specific application scenarios and task requirements. Furthermore, we also explore the potential of using hybridization methods, i.e., combining multiple methods to derive a collective safety conclusion, to enhance the efficacy of online safety analysis for LLMs. Our findings indicate a promising direction for the development of innovative and trustworthy quality assurance methodologies for LLMs, facilitating their reliable deployments across diverse domains.
☆ Adversarial Imitation Learning via Boosting ICLR 2024
Adversarial imitation learning (AIL) has stood out as a dominant framework across various imitation learning (IL) applications, with Discriminator Actor Critic (DAC) (Kostrikov et al.,, 2019) demonstrating the effectiveness of off-policy learning algorithms in improving sample efficiency and scalability to higher-dimensional observations. Despite DAC's empirical success, the original AIL objective is on-policy and DAC's ad-hoc application of off-policy training does not guarantee successful imitation (Kostrikov et al., 2019; 2020). Follow-up work such as ValueDICE (Kostrikov et al., 2020) tackles this issue by deriving a fully off-policy AIL objective. Instead in this work, we develop a novel and principled AIL algorithm via the framework of boosting. Like boosting, our new algorithm, AILBoost, maintains an ensemble of properly weighted weak learners (i.e., policies) and trains a discriminator that witnesses the maximum discrepancy between the distributions of the ensemble and the expert policy. We maintain a weighted replay buffer to represent the state-action distribution induced by the ensemble, allowing us to train discriminators using the entire data collected so far. In the weighted replay buffer, the contribution of the data from older policies are properly discounted with the weight computed based on the boosting framework. Empirically, we evaluate our algorithm on both controller state-based and pixel-based environments from the DeepMind Control Suite. AILBoost outperforms DAC on both types of environments, demonstrating the benefit of properly weighting replay buffer data for off-policy training. On state-based environments, DAC outperforms ValueDICE and IQ-Learn (Gary et al., 2021), achieving competitive performance with as little as one expert trajectory.
comment: 19 pages, 7 figures, 4 tables, 3 algorithms, ICLR 2024
☆ Efficient Interactive LLM Serving with Proxy Model-based Sequence Length Prediction
Large language models (LLMs) have been driving a new wave of interactive AI applications across numerous domains. However, efficiently serving LLM inference requests is challenging due to their unpredictable execution times originating from the autoregressive nature of generative models. Existing LLM serving systems exploit first-come-first-serve (FCFS) scheduling, suffering from head-of-line blocking issues. To address the non-deterministic nature of LLMs and enable efficient interactive LLM serving, we present a speculative shortest-job-first (SSJF) scheduler that uses a light proxy model to predict LLM output sequence lengths. Our open-source SSJF implementation does not require changes to memory management or batching strategies. Evaluations on real-world datasets and production workload traces show that SSJF reduces average job completion times by 30.5-39.6% and increases throughput by 2.2-3.6x compared to FCFS schedulers, across no batching, dynamic batching, and continuous batching settings.
comment: Accepted at AIOps'24
Dataset Reset Policy Optimization for RLHF
Reinforcement Learning (RL) from Human Preference-based feedback is a popular paradigm for fine-tuning generative models, which has produced impressive models such as GPT-4 and Claude3 Opus. This framework often consists of two steps: learning a reward model from an offline preference dataset followed by running online RL to optimize the learned reward model. In this work, leveraging the idea of reset, we propose a new RLHF algorithm with provable guarantees. Motivated by the fact that offline preference dataset provides informative states (i.e., data that is preferred by the labelers), our new algorithm, Dataset Reset Policy Optimization (DR-PO), integrates the existing offline preference dataset into the online policy training procedure via dataset reset: it directly resets the policy optimizer to the states in the offline dataset, instead of always starting from the initial state distribution. In theory, we show that DR-PO learns to perform at least as good as any policy that is covered by the offline dataset under general function approximation with finite sample complexity. In experiments, we demonstrate that on both the TL;DR summarization and the Anthropic Helpful Harmful (HH) dataset, the generation from DR-PO is better than that from Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO), under the metric of GPT4 win-rate. Code for this work can be found at https://github.com/Cornell-RL/drpo.
comment: 28 pages, 6 tables, 3 Figures, 3 Algorithms
☆ Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
In this paper, we have expanded the current status of semantic communication limited to processing one task to a more general system that can handle multiple tasks concurrently. In pursuit of this, we first introduced our definition of the "semantic source", enabling the interpretation of multiple semantics based on a single observation. A semantic encoder design is then introduced, featuring the division of the encoder into a common unit and multiple specific units enabling cooperative multi-task processing. Simulation results demonstrate the effectiveness of the proposed semantic source and the system design. Our approach employs information maximization (infomax) and end-to-end design principles.
comment: This work has been submitted to the IEEE Wireless Communications Letters
☆ Decoding AI: The inside story of data analysis in ChatGPT
As a result of recent advancements in generative AI, the field of Data Science is prone to various changes. This review critically examines the Data Analysis (DA) capabilities of ChatGPT assessing its performance across a wide range of tasks. While DA provides researchers and practitioners with unprecedented analytical capabilities, it is far from being perfect, and it is important to recognize and address its limitations.
comment: 15 pages with figures and appendix
☆ Combining Statistical Depth and Fermat Distance for Uncertainty Quantification
We measure the Out-of-domain uncertainty in the prediction of Neural Networks using a statistical notion called ``Lens Depth'' (LD) combined with Fermat Distance, which is able to capture precisely the ``depth'' of a point with respect to a distribution in feature space, without any assumption about the form of distribution. Our method has no trainable parameter. The method is applicable to any classification model as it is applied directly in feature space at test time and does not intervene in training process. As such, it does not impact the performance of the original model. The proposed method gives excellent qualitative result on toy datasets and can give competitive or better uncertainty estimation on standard deep learning datasets compared to strong baseline methods.
comment: 12 pages
☆ TSLANet: Rethinking Transformers for Time Series Representation Learning
Time series data, characterized by its intrinsic long and short-range dependencies, poses a unique challenge across analytical applications. While Transformer-based models excel at capturing long-range dependencies, they face limitations in noise sensitivity, computational efficiency, and overfitting with smaller datasets. In response, we introduce a novel Time Series Lightweight Adaptive Network (TSLANet), as a universal convolutional model for diverse time series tasks. Specifically, we propose an Adaptive Spectral Block, harnessing Fourier analysis to enhance feature representation and to capture both long-term and short-term interactions while mitigating noise via adaptive thresholding. Additionally, we introduce an Interactive Convolution Block and leverage self-supervised learning to refine the capacity of TSLANet for decoding complex temporal patterns and improve its robustness on different datasets. Our comprehensive experiments demonstrate that TSLANet outperforms state-of-the-art models in various tasks spanning classification, forecasting, and anomaly detection, showcasing its resilience and adaptability across a spectrum of noise levels and data sizes. The code is available at \url{https://github.com/emadeldeen24/TSLANet}
☆ OTTER: Improving Zero-Shot Classification via Optimal Transport
Popular zero-shot models suffer due to artifacts inherited from pretraining. A particularly detrimental artifact, caused by unbalanced web-scale pretraining data, is mismatched label distribution. Existing approaches that seek to repair the label distribution are not suitable in zero-shot settings, as they have incompatible requirements such as access to labeled downstream task data or knowledge of the true label balance in the pretraining distribution. We sidestep these challenges and introduce a simple and lightweight approach to adjust pretrained model predictions via optimal transport. Our technique requires only an estimate of the label distribution of a downstream task. Theoretically, we characterize the improvement produced by our procedure under certain mild conditions and provide bounds on the error caused by misspecification. Empirically, we validate our method in a wide array of zero-shot image and text classification tasks, improving accuracy by 4.8% and 15.9% on average, and beating baselines like Prior Matching -- often by significant margins -- in 17 out of 21 datasets.
comment: 29 pages
☆ On the Independence Assumption in Neurosymbolic Learning
State-of-the-art neurosymbolic learning systems use probabilistic reasoning to guide neural networks towards predictions that conform to logical constraints over symbols. Many such systems assume that the probabilities of the considered symbols are conditionally independent given the input to simplify learning and reasoning. We study and criticise this assumption, highlighting how it can hinder optimisation and prevent uncertainty quantification. We prove that loss functions bias conditionally independent neural networks to become overconfident in their predictions. As a result, they are unable to represent uncertainty over multiple valid options. Furthermore, we prove that these loss functions are difficult to optimise: they are non-convex, and their minima are usually highly disconnected. Our theoretical analysis gives the foundation for replacing the conditional independence assumption and designing more expressive neurosymbolic probabilistic models.
comment: 11 pages, 8 appendix pages, 9 figures
☆ A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations
In this work, we propose a novel backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations (BSDEs), where the deep neural network (DNN) models are trained not only on the inputs and labels but also the differentials of the corresponding labels. This is motivated by the fact that differential deep learning can provide an efficient approximation of the labels and their derivatives with respect to inputs. The BSDEs are reformulated as differential deep learning problems by using Malliavin calculus. The Malliavin derivatives of solution to a BSDE satisfy themselves another BSDE, resulting thus in a system of BSDEs. Such formulation requires the estimation of the solution, its gradient, and the Hessian matrix, represented by the triple of processes $\left(Y, Z, \Gamma\right).$ All the integrals within this system are discretized by using the Euler-Maruyama method. Subsequently, DNNs are employed to approximate the triple of these unknown processes. The DNN parameters are backwardly optimized at each time step by minimizing a differential learning type loss function, which is defined as a weighted sum of the dynamics of the discretized BSDE system, with the first term providing the dynamics of the process $Y$ and the other the process $Z$. An error analysis is carried out to show the convergence of the proposed algorithm. Various numerical experiments up to $50$ dimensions are provided to demonstrate the high efficiency. Both theoretically and numerically, it is demonstrated that our proposed scheme is more efficient compared to other contemporary deep learning-based methodologies, especially in the computation of the process $\Gamma$.
comment: 40 pages, 5 figures, 5 tables
☆ Lightweight Multi-System Multivariate Interconnection and Divergence Discovery
Identifying outlier behavior among sensors and subsystems is essential for discovering faults and facilitating diagnostics in large systems. At the same time, exploring large systems with numerous multivariate data sets is challenging. This study presents a lightweight interconnection and divergence discovery mechanism (LIDD) to identify abnormal behavior in multi-system environments. The approach employs a multivariate analysis technique that first estimates the similarity heatmaps among the sensors for each system and then applies information retrieval algorithms to provide relevant multi-level interconnection and discrepancy details. Our experiment on the readout systems of the Hadron Calorimeter of the Compact Muon Solenoid (CMS) experiment at CERN demonstrates the effectiveness of the proposed method. Our approach clusters readout systems and their sensors consistent with the expected calorimeter interconnection configurations, while capturing unusual behavior in divergent clusters and estimating their root causes.
comment: 8 pages, 12 figures
☆ Federated Optimization with Doubly Regularized Drift Correction
Federated learning is a distributed optimization paradigm that allows training machine learning models across decentralized devices while keeping the data localized. The standard method, FedAvg, suffers from client drift which can hamper performance and increase communication costs over centralized methods. Previous works proposed various strategies to mitigate drift, yet none have shown uniformly improved communication-computation trade-offs over vanilla gradient descent. In this work, we revisit DANE, an established method in distributed optimization. We show that (i) DANE can achieve the desired communication reduction under Hessian similarity constraints. Furthermore, (ii) we present an extension, DANE+, which supports arbitrary inexact local solvers and has more freedom to choose how to aggregate the local updates. We propose (iii) a novel method, FedRed, which has improved local computational complexity and retains the same communication complexity compared to DANE/DANE+. This is achieved by using doubly regularized drift correction.
☆ Anti-Byzantine Attacks Enabled Vehicle Selection for Asynchronous Federated Learning in Vehicular Edge Computing
In vehicle edge computing (VEC), asynchronous federated learning (AFL) is used, where the edge receives a local model and updates the global model, effectively reducing the global aggregation latency.Due to different amounts of local data,computing capabilities and locations of the vehicles, renewing the global model with same weight is inappropriate.The above factors will affect the local calculation time and upload time of the local model, and the vehicle may also be affected by Byzantine attacks, leading to the deterioration of the vehicle data. However, based on deep reinforcement learning (DRL), we can consider these factors comprehensively to eliminate vehicles with poor performance as much as possible and exclude vehicles that have suffered Byzantine attacks before AFL. At the same time, when aggregating AFL, we can focus on those vehicles with better performance to improve the accuracy and safety of the system. In this paper, we proposed a vehicle selection scheme based on DRL in VEC. In this scheme, vehicle s mobility, channel conditions with temporal variations, computational resources with temporal variations, different data amount, transmission channel status of vehicles as well as Byzantine attacks were taken into account.Simulation results show that the proposed scheme effectively improves the safety and accuracy of the global model.
comment: This paper has been accepted by China Communications.The source code has been released at:https://github.com/giongwu86/By-AFLDDPG
☆ An improved tabular data generator with VAE-GMM integration
The rising use of machine learning in various fields requires robust methods to create synthetic tabular data. Data should preserve key characteristics while addressing data scarcity challenges. Current approaches based on Generative Adversarial Networks, such as the state-of-the-art CTGAN model, struggle with the complex structures inherent in tabular data. These data often contain both continuous and discrete features with non-Gaussian distributions. Therefore, we propose a novel Variational Autoencoder (VAE)-based model that addresses these limitations. Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture. This avoids the limitations imposed by assuming a strictly Gaussian latent space, allowing for a more accurate representation of the underlying data distribution during data generation. Furthermore, our model offers enhanced flexibility by allowing the use of various differentiable distributions for individual features, making it possible to handle both continuous and discrete data types. We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones, based on their resemblance and utility. This evaluation demonstrates significant outperformance against CTGAN and TVAE, establishing its potential as a valuable tool for generating synthetic tabular data in various domains, particularly in healthcare.
comment: 7 pages, 3 figures
☆ SIR-RL: Reinforcement Learning for Optimized Policy Control during Epidemiological Outbreaks in Emerging Market and Developing Economies
The outbreak of COVID-19 has highlighted the intricate interplay between public health and economic stability on a global scale. This study proposes a novel reinforcement learning framework designed to optimize health and economic outcomes during pandemics. The framework leverages the SIR model, integrating both lockdown measures (via a stringency index) and vaccination strategies to simulate disease dynamics. The stringency index, indicative of the severity of lockdown measures, influences both the spread of the disease and the economic health of a country. Developing nations, which bear a disproportionate economic burden under stringent lockdowns, are the primary focus of our study. By implementing reinforcement learning, we aim to optimize governmental responses and strike a balance between the competing costs associated with public health and economic stability. This approach also enhances transparency in governmental decision-making by establishing a well-defined reward function for the reinforcement learning agent. In essence, this study introduces an innovative and ethical strategy to navigate the challenge of balancing public health and economic stability amidst infectious disease outbreaks.
comment: 27 pages, 12 figures
☆ AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
Large language models (LLMs) are increasingly capable of completing knowledge intensive tasks by recalling information from a static pretraining corpus. Here we are concerned with LLMs in the context of evolving data requirements. For instance: batches of new data that are introduced periodically; subsets of data with user-based access controls; or requirements on dynamic removal of documents with guarantees that associated knowledge cannot be recalled. We wish to satisfy these requirements while at the same time ensuring a model does not forget old information when new data becomes available. To address these issues, we introduce AdapterSwap, a training and inference scheme that organizes knowledge from a data collection into a set of low-rank adapters, which are dynamically composed during inference. Our experiments demonstrate AdapterSwap's ability to support efficient continual learning, while also enabling organizations to have fine-grained control over data access and deletion.
☆ Seismic First Break Picking in a Higher Dimension Using Deep Graph Learning
Contemporary automatic first break (FB) picking methods typically analyze 1D signals, 2D source gathers, or 3D source-receiver gathers. Utilizing higher-dimensional data, such as 2D or 3D, incorporates global features, improving the stability of local picking. Despite the benefits, high-dimensional data requires structured input and increases computational demands. Addressing this, we propose a novel approach using deep graph learning called DGL-FB, constructing a large graph to efficiently extract information. In this graph, each seismic trace is represented as a node, connected by edges that reflect similarities. To manage the size of the graph, we develop a subgraph sampling technique to streamline model training and inference. Our proposed framework, DGL-FB, leverages deep graph learning for FB picking. It encodes subgraphs into global features using a deep graph encoder. Subsequently, the encoded global features are combined with local node signals and fed into a ResUNet-based 1D segmentation network for FB detection. Field survey evaluations of DGL-FB show superior accuracy and stability compared to a 2D U-Net-based benchmark method.
☆ Complexity of Probabilistic Reasoning for Neurosymbolic Classification Techniques
Neurosymbolic artificial intelligence is a growing field of research aiming to combine neural network learning capabilities with the reasoning abilities of symbolic systems. Informed multi-label classification is a sub-field of neurosymbolic AI which studies how to leverage prior knowledge to improve neural classification systems. A well known family of neurosymbolic techniques for informed classification use probabilistic reasoning to integrate this knowledge during learning, inference or both. Therefore, the asymptotic complexity of probabilistic reasoning is of cardinal importance to assess the scalability of such techniques. However, this topic is rarely tackled in the neurosymbolic literature, which can lead to a poor understanding of the limits of probabilistic neurosymbolic techniques. In this paper, we introduce a formalism for informed supervised classification tasks and techniques. We then build upon this formalism to define three abstract neurosymbolic techniques based on probabilistic reasoning. Finally, we show computational complexity results on several representation languages for prior knowledge commonly found in the neurosymbolic literature.
comment: 21 pages, 5 figures
☆ Learning representations of learning representations
The ICLR conference is unique among the top machine learning conferences in that all submitted papers are openly available. Here we present the ICLR dataset consisting of abstracts of all 24 thousand ICLR submissions from 2017-2024 with meta-data, decision scores, and custom keyword-based labels. We find that on this dataset, bag-of-words representation outperforms most dedicated sentence transformer models in terms of $k$NN classification accuracy, and the top performing language models barely outperform TF-IDF. We see this as a challenge for the NLP community. Furthermore, we use the ICLR dataset to study how the field of machine learning has changed over the last seven years, finding some improvement in gender balance. Using a 2D embedding of the abstracts' texts, we describe a shift in research topics from 2017 to 2024 and identify hedgehogs and foxes among the authors with the highest number of ICLR submissions.
☆ Data-Driven Preference Sampling for Pareto Front Learning IJCNN'24
Pareto front learning is a technique that introduces preference vectors in a neural network to approximate the Pareto front. Previous Pareto front learning methods have demonstrated high performance in approximating simple Pareto fronts. These methods often sample preference vectors from a fixed Dirichlet distribution. However, no fixed sampling distribution can be adapted to diverse Pareto fronts. Efficiently sampling preference vectors and accurately estimating the Pareto front is a challenge. To address this challenge, we propose a data-driven preference vector sampling framework for Pareto front learning. We utilize the posterior information of the objective functions to adjust the parameters of the sampling distribution flexibly. In this manner, the proposed method can sample preference vectors from the location of the Pareto front with a high probability. Moreover, we design the distribution of the preference vector as a mixture of Dirichlet distributions to improve the performance of the model in disconnected Pareto fronts. Extensive experiments validate the superiority of the proposed method compared with state-of-the-art algorithms.
comment: International Joint Conference on Neural Network (IJCNN'24)
☆ NC-TTT: A Noise Contrastive Approach for Test-Time Training
Despite their exceptional performance in vision tasks, deep learning models often struggle when faced with domain shifts during testing. Test-Time Training (TTT) methods have recently gained popularity by their ability to enhance the robustness of models through the addition of an auxiliary objective that is jointly optimized with the main task. Being strictly unsupervised, this auxiliary objective is used at test time to adapt the model without any access to labels. In this work, we propose Noise-Contrastive Test-Time Training (NC-TTT), a novel unsupervised TTT technique based on the discrimination of noisy feature maps. By learning to classify noisy views of projected feature maps, and then adapting the model accordingly on new domains, classification performance can be recovered by an important margin. Experiments on several popular test-time adaptation baselines demonstrate the advantages of our method compared to recent approaches for this task. The code can be found at:https://github.com/GustavoVargasHakim/NCTTT.git
☆ Graph data augmentation with Gromow-Wasserstein Barycenters
Graphs are ubiquitous in various fields, and deep learning methods have been successful applied in graph classification tasks. However, building large and diverse graph datasets for training can be expensive. While augmentation techniques exist for structured data like images or numerical data, the augmentation of graph data remains challenging. This is primarily due to the complex and non-Euclidean nature of graph data. In this paper, it has been proposed a novel augmentation strategy for graphs that operates in a non-Euclidean space. This approach leverages graphon estimation, which models the generative mechanism of networks sequences. Computational results demonstrate the effectiveness of the proposed augmentation framework in improving the performance of graph classification models. Additionally, using a non-Euclidean distance, specifically the Gromow-Wasserstein distance, results in better approximations of the graphon. This framework also provides a means to validate different graphon estimation approaches, particularly in real-world scenarios where the true graphon is unknown.
comment: 6 pages, 3 figures
Self-Supervised k-Space Regularization for Motion-Resolved Abdominal MRI Using Neural Implicit k-Space Representation
Neural implicit k-space representations have shown promising results for dynamic MRI at high temporal resolutions. Yet, their exclusive training in k-space limits the application of common image regularization methods to improve the final reconstruction. In this work, we introduce the concept of parallel imaging-inspired self-consistency (PISCO), which we incorporate as novel self-supervised k-space regularization enforcing a consistent neighborhood relationship. At no additional data cost, the proposed regularization significantly improves neural implicit k-space reconstructions on simulated data. Abdominal in-vivo reconstructions using PISCO result in enhanced spatio-temporal image quality compared to state-of-the-art methods. Code is available at https://github.com/vjspi/PISCO-NIK.
comment: Under Review
☆ Learning to Rebalance Multi-Modal Optimization by Adaptively Masking Subnetworks
Multi-modal learning aims to enhance performance by unifying models from various modalities but often faces the "modality imbalance" problem in real data, leading to a bias towards dominant modalities and neglecting others, thereby limiting its overall effectiveness. To address this challenge, the core idea is to balance the optimization of each modality to achieve a joint optimum. Existing approaches often employ a modal-level control mechanism for adjusting the update of each modal parameter. However, such a global-wise updating mechanism ignores the different importance of each parameter. Inspired by subnetwork optimization, we explore a uniform sampling-based optimization strategy and find it more effective than global-wise updating. According to the findings, we further propose a novel importance sampling-based, element-wise joint optimization method, called Adaptively Mask Subnetworks Considering Modal Significance(AMSS). Specifically, we incorporate mutual information rates to determine the modal significance and employ non-uniform adaptive sampling to select foreground subnetworks from each modality for parameter updates, thereby rebalancing multi-modal learning. Additionally, we demonstrate the reliability of the AMSS strategy through convergence analysis. Building upon theoretical insights, we further enhance the multi-modal mask subnetwork strategy using unbiased estimation, referred to as AMSS+. Extensive experiments reveal the superiority of our approach over comparison methods.
comment: 17 pages;6 figures
☆ Toward a Theory of Tokenization in LLMs
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple $k^{\text{th}}$-order Markov processes for $k > 1$, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from $k^{\text{th}}$-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
comment: 58 pages, 10 figures
☆ Uncertainty Aware Tropical Cyclone Wind Speed Estimation from Satellite Data
Deep neural networks (DNNs) have been successfully applied to earth observation (EO) data and opened new research avenues. Despite the theoretical and practical advances of these techniques, DNNs are still considered black box tools and by default are designed to give point predictions. However, the majority of EO applications demand reliable uncertainty estimates that can support practitioners in critical decision making tasks. This work provides a theoretical and quantitative comparison of existing uncertainty quantification methods for DNNs applied to the task of wind speed estimation in satellite imagery of tropical cyclones. We provide a detailed evaluation of predictive uncertainty estimates from state-of-the-art uncertainty quantification (UQ) methods for DNNs. We find that predictive uncertainties can be utilized to further improve accuracy and analyze the predictive uncertainties of different methods across storm categories.
☆ Multi-Step Traffic Prediction for Multi-Period Planning in Optical Networks
A multi-period planning framework is proposed that exploits multi-step ahead traffic predictions to address service overprovisioning and improve adaptability to traffic changes, while ensuring the necessary quality-of-service (QoS) levels. An encoder-decoder deep learning model is initially leveraged for multi-step ahead prediction by analyzing real-traffic traces. This information is then exploited by multi-period planning heuristics to efficiently utilize available network resources while minimizing undesired service disruptions (caused due to lightpath re-allocations), with these heuristics outperforming a single-step ahead prediction approach.
☆ A Large Scale Survey of Motivation in Software Development and Analysis of its Validity
Context: Motivation is known to improve performance. In software development in particular, there has been considerable interest in the motivation of contributors to open source. Objective: We identify 11 motivators from the literature (enjoying programming, ownership of code, learning, self use, etc.), and evaluate their relative effect on motivation. Since motivation is an internal subjective feeling, we also analyze the validity of the answers. Method: We conducted a survey with 66 questions on motivation which was completed by 521 developers. Most of the questions used an 11 point scale. We evaluated the validity of the answers validity by comparing related questions, comparing to actual behavior on GitHub, and comparison with the same developer in a follow up survey. Results: Validity problems include moderate correlations between answers to related questions, as well as self promotion and mistakes in the answers. Despite these problems, predictive analysis, investigating how diverse motivators influence the probability of high motivation, provided valuable insights. The correlations between the different motivators are low, implying their independence. High values in all 11 motivators predict increased probability of high motivation. In addition, improvement analysis shows that an increase in most motivators predicts an increase in general motivation.
☆ Collaborative-Enhanced Prediction of Spending on Newly Downloaded Mobile Games under Consumption Uncertainty WWW 2024
With the surge in mobile gaming, accurately predicting user spending on newly downloaded games has become paramount for maximizing revenue. However, the inherently unpredictable nature of user behavior poses significant challenges in this endeavor. To address this, we propose a robust model training and evaluation framework aimed at standardizing spending data to mitigate label variance and extremes, ensuring stability in the modeling process. Within this framework, we introduce a collaborative-enhanced model designed to predict user game spending without relying on user IDs, thus ensuring user privacy and enabling seamless online training. Our model adopts a unique approach by separately representing user preferences and game features before merging them as input to the spending prediction module. Through rigorous experimentation, our approach demonstrates notable improvements over production models, achieving a remarkable \textbf{17.11}\% enhancement on offline data and an impressive \textbf{50.65}\% boost in an online A/B test. In summary, our contributions underscore the importance of stable model training frameworks and the efficacy of collaborative-enhanced models in predicting user spending behavior in mobile gaming.
comment: 10 pages,6 figures, WWW 2024 Industry Track, with three accept, two weak accept scores
☆ Study of Emotion Concept Formation by Integrating Vision, Physiology, and Word Information using Multilayered Multimodal Latent Dirichlet Allocation
How are emotions formed? Through extensive debate and the promulgation of diverse theories , the theory of constructed emotion has become prevalent in recent research on emotions. According to this theory, an emotion concept refers to a category formed by interoceptive and exteroceptive information associated with a specific emotion. An emotion concept stores past experiences as knowledge and can predict unobserved information from acquired information. Therefore, in this study, we attempted to model the formation of emotion concepts using a constructionist approach from the perspective of the constructed emotion theory. Particularly, we constructed a model using multilayered multimodal latent Dirichlet allocation , which is a probabilistic generative model. We then trained the model for each subject using vision, physiology, and word information obtained from multiple people who experienced different visual emotion-evoking stimuli. To evaluate the model, we verified whether the formed categories matched human subjectivity and determined whether unobserved information could be predicted via categories. The verification results exceeded chance level, suggesting that emotion concept formation can be explained by the proposed model.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. We would like to thank Professor Takayuki Nagai for useful discussions
☆ Convolutional neural network classification of cancer cytopathology images: taking breast cancer as an example
Breast cancer is a relatively common cancer among gynecological cancers. Its diagnosis often relies on the pathology of cells in the lesion. The pathological diagnosis of breast cancer not only requires professionals and time, but also sometimes involves subjective judgment. To address the challenges of dependence on pathologists expertise and the time-consuming nature of achieving accurate breast pathological image classification, this paper introduces an approach utilizing convolutional neural networks (CNNs) for the rapid categorization of pathological images, aiming to enhance the efficiency of breast pathological image detection. And the approach enables the rapid and automatic classification of pathological images into benign and malignant groups. The methodology involves utilizing a convolutional neural network (CNN) model leveraging the Inceptionv3 architecture and transfer learning algorithm for extracting features from pathological images. Utilizing a neural network with fully connected layers and employing the SoftMax function for image classification. Additionally, the concept of image partitioning is introduced to handle high-resolution images. To achieve the ultimate classification outcome, the classification probabilities of each image block are aggregated using three algorithms: summation, product, and maximum. Experimental validation was conducted on the BreaKHis public dataset, resulting in accuracy rates surpassing 0.92 across all four magnification coefficients (40X, 100X, 200X, and 400X). It demonstrates that the proposed method effectively enhances the accuracy in classifying pathological images of breast cancer.
☆ Transfer Learning Study of Motion Transformer-based Trajectory Predictions
Trajectory planning in autonomous driving is highly dependent on predicting the emergent behavior of other road users. Learning-based methods are currently showing impressive results in simulation-based challenges, with transformer-based architectures technologically leading the way. Ultimately, however, predictions are needed in the real world. In addition to the shifts from simulation to the real world, many vehicle- and country-specific shifts, i.e. differences in sensor systems, fusion and perception algorithms as well as traffic rules and laws, are on the agenda. Since models that can cover all system setups and design domains at once are not yet foreseeable, model adaptation plays a central role. Therefore, a simulation-based study on transfer learning techniques is conducted on basis of a transformer-based model. Furthermore, the study aims to provide insights into possible trade-offs between computational time and performance to support effective transfers into the real world.
comment: Accepted to be published as part of the 2024 IEEE Intelligent Vehicles Symposium (IV), Jeju Shinhwa World, Jeju Island, Korea, June 2-5, 2024
☆ Relational Prompt-based Pre-trained Language Models for Social Event Detection
Social Event Detection (SED) aims to identify significant events from social streams, and has a wide application ranging from public opinion analysis to risk management. In recent years, Graph Neural Network (GNN) based solutions have achieved state-of-the-art performance. However, GNN-based methods often struggle with noisy and missing edges between messages, affecting the quality of learned message embedding. Moreover, these methods statically initialize node embedding before training, which, in turn, limits the ability to learn from message texts and relations simultaneously. In this paper, we approach social event detection from a new perspective based on Pre-trained Language Models (PLMs), and present RPLM_SED (Relational prompt-based Pre-trained Language Models for Social Event Detection). We first propose a new pairwise message modeling strategy to construct social messages into message pairs with multi-relational sequences. Secondly, a new multi-relational prompt-based pairwise message learning mechanism is proposed to learn more comprehensive message representation from message pairs with multi-relational prompts using PLMs. Thirdly, we design a new clustering constraint to optimize the encoding process by enhancing intra-cluster compactness and inter-cluster dispersion, making the message representation more distinguishable. We evaluate the RPLM_SED on three real-world datasets, demonstrating that the RPLM_SED model achieves state-of-the-art performance in offline, online, low-resource, and long-tail distribution scenarios for social event detection tasks.
comment: ACM TOIS Under Review
☆ Balanced Mixed-Type Tabular Data Synthesis with Diffusion Models
Diffusion models have emerged as a robust framework for various generative tasks, such as image and audio synthesis, and have also demonstrated a remarkable ability to generate mixed-type tabular data comprising both continuous and discrete variables. However, current approaches to training diffusion models on mixed-type tabular data tend to inherit the imbalanced distributions of features present in the training dataset, which can result in biased sampling. In this research, we introduce a fair diffusion model designed to generate balanced data on sensitive attributes. We present empirical evidence demonstrating that our method effectively mitigates the class imbalance in training data while maintaining the quality of the generated samples. Furthermore, we provide evidence that our approach outperforms existing methods for synthesizing tabular data in terms of performance and fairness.
☆ Agile and versatile bipedal robot tracking control through reinforcement learning
The remarkable athletic intelligence displayed by humans in complex dynamic movements such as dancing and gymnastics suggests that the balance mechanism in biological beings is decoupled from specific movement patterns. This decoupling allows for the execution of both learned and unlearned movements under certain constraints while maintaining balance through minor whole-body coordination. To replicate this balance ability and body agility, this paper proposes a versatile controller for bipedal robots. This controller achieves ankle and body trajectory tracking across a wide range of gaits using a single small-scale neural network, which is based on a model-based IK solver and reinforcement learning. We consider a single step as the smallest control unit and design a universally applicable control input form suitable for any single-step variation. Highly flexible gait control can be achieved by combining these minimal control units with high-level policy through our extensible control interface. To enhance the trajectory-tracking capability of our controller, we utilize a three-stage training curriculum. After training, the robot can move freely between target footholds at varying distances and heights. The robot can also maintain static balance without repeated stepping to adjust posture. Finally, we evaluate the tracking accuracy of our controller on various bipedal tasks, and the effectiveness of our control framework is verified in the simulation environment.
♻ ☆ A Dynamical Model of Neural Scaling Laws
On a variety of tasks, the performance of neural networks predictably improves with training time, dataset size and model size across many orders of magnitude. This phenomenon is known as a neural scaling law. Of fundamental importance is the compute-optimal scaling law, which reports the performance as a function of units of compute when choosing model sizes optimally. We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization. This reproduces many observations about neural scaling laws. First, our model makes a prediction about why the scaling of performance with training time and with model size have different power law exponents. Consequently, the theory predicts an asymmetric compute-optimal scaling rule where the number of training steps are increased faster than model parameters, consistent with recent empirical observations. Second, it has been observed that early in training, networks converge to their infinite-width dynamics at a rate $1/\textit{width}$ but at late time exhibit a rate $\textit{width}^{-c}$, where $c$ depends on the structure of the architecture and task. We show that our model exhibits this behavior. Lastly, our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
comment: Updated Appendix with new SGD section, more ensembling verification, and connection to timescale/eigenvalue densities
♻ ☆ ProbMCL: Simple Probabilistic Contrastive Learning for Multi-label Visual Classification ICASSP 2024
Multi-label image classification presents a challenging task in many domains, including computer vision and medical imaging. Recent advancements have introduced graph-based and transformer-based methods to improve performance and capture label dependencies. However, these methods often include complex modules that entail heavy computation and lack interpretability. In this paper, we propose Probabilistic Multi-label Contrastive Learning (ProbMCL), a novel framework to address these challenges in multi-label image classification tasks. Our simple yet effective approach employs supervised contrastive learning, in which samples that share enough labels with an anchor image based on a decision threshold are introduced as a positive set. This structure captures label dependencies by pulling positive pair embeddings together and pushing away negative samples that fall below the threshold. We enhance representation learning by incorporating a mixture density network into contrastive learning and generating Gaussian mixture distributions to explore the epistemic uncertainty of the feature encoder. We validate the effectiveness of our framework through experimentation with datasets from the computer vision and medical imaging domains. Our method outperforms the existing state-of-the-art methods while achieving a low computational footprint on both datasets. Visualization analyses also demonstrate that ProbMCL-learned classifiers maintain a meaningful semantic topology.
comment: This paper has been accepted for the ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ Leap: molecular synthesisability scoring with intermediates
Assessing whether a molecule can be synthesised is a primary task in drug discovery. It enables computational chemists to filter for viable compounds or bias molecular generative models. The notion of synthesisability is dynamic as it evolves depending on the availability of key compounds. A common approach in drug discovery involves exploring the chemical space surrounding synthetically-accessible intermediates. This strategy improves the synthesisability of the derived molecules due to the availability of key intermediates. Existing synthesisability scoring methods such as SAScore, SCScore and RAScore, cannot condition on intermediates dynamically. Our approach, Leap, is a GPT-2 model trained on the depth, or longest linear path, of predicted synthesis routes that allows information on the availability of key intermediates to be included at inference time. We show that Leap surpasses all other scoring methods by at least 5% on AUC score when identifying synthesisable molecules, and can successfully adapt predicted scores when presented with a relevant intermediate compound.
comment: New Frontiers of AI for Drug Discovery and Development workshop paper
♻ ☆ Incremental Extractive Opinion Summarization Using Cover Trees
Extractive opinion summarization involves automatically producing a summary of text about an entity (e.g., a product's reviews) by extracting representative sentences that capture prevalent opinions in the review set. Typically, in online marketplaces user reviews accumulate over time, and opinion summaries need to be updated periodically to provide customers with up-to-date information. In this work, we study the task of extractive opinion summarization in an incremental setting, where the underlying review set evolves over time. Many of the state-of-the-art extractive opinion summarization approaches are centrality-based, such as CentroidRank (Radev et al., 2004; Chowdhury et al., 2022). CentroidRank performs extractive summarization by selecting a subset of review sentences closest to the centroid in the representation space as the summary. However, these methods are not capable of operating efficiently in an incremental setting, where reviews arrive one at a time. In this paper, we present an efficient algorithm for accurately computing the CentroidRank summaries in an incremental setting. Our approach, CoverSumm, relies on indexing review representations in a cover tree and maintaining a reservoir of candidate summary review sentences. CoverSumm's efficacy is supported by a theoretical and empirical analysis of running time. Empirically, on a diverse collection of data (both real and synthetically created to illustrate scaling considerations), we demonstrate that CoverSumm is up to 36x faster than baseline methods, and capable of adapting to nuanced changes in data distribution. We also conduct human evaluations of the generated summaries and find that CoverSumm is capable of producing informative summaries consistent with the underlying review set.
comment: Accepted at TMLR
♻ ☆ A Change Detection Reality Check
In recent years, there has been an explosion of proposed change detection deep learning architectures in the remote sensing literature. These approaches claim to offer state-of-the-art performance on different standard benchmark datasets. However, has the field truly made significant progress? In this paper we perform experiments which conclude a simple U-Net segmentation baseline without training tricks or complicated architectural changes is still a top performer for the task of change detection.
♻ ☆ The Impact of Variable Ordering on Bayesian Network Structure Learning
Causal Bayesian Networks provide an important tool for reasoning under uncertainty with potential application to many complex causal systems. Structure learning algorithms that can tell us something about the causal structure of these systems are becoming increasingly important. In the literature, the validity of these algorithms is often tested for sensitivity over varying sample sizes, hyper-parameters, and occasionally objective functions. In this paper, we show that the order in which the variables are read from data can have much greater impact on the accuracy of the algorithm than these factors. Because the variable ordering is arbitrary, any significant effect it has on learnt graph accuracy is concerning, and this raises questions about the validity of the results produced by algorithms that are sensitive to, but have not been assessed against, different variable orderings.
♻ ☆ Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations
The difficult problem of relating the static structure of glassy liquids and their dynamics is a good target for Machine Learning, an approach which excels at finding complex patterns hidden in data. Indeed, this approach is currently a hot topic in the glassy liquids community, where the state of the art consists in Graph Neural Networks (GNNs), which have great expressive power but are heavy models and lack interpretability. Inspired by recent advances in the field of Machine Learning group-equivariant representations, we build a GNN that learns a robust representation of the glass' static structure by constraining it to preserve the roto-translation (SE(3)) equivariance. We show that this constraint significantly improves the predictive power at comparable or reduced number of parameters but most importantly, improves the ability to generalize to unseen temperatures. While remaining a Deep network, our model has improved interpretability compared to other GNNs, as the action of our basic convolution layer relates directly to well-known rotation-invariant expert features. Through transfer-learning experiments displaying unprecedented performance, we demonstrate that our network learns a robust representation, which allows us to push forward the idea of a learned structural order parameter for glasses.
comment: Submitted to SciPost. 15 pages, 9 figures plus references and 4 pages of appendix
♻ ☆ Generalization in diffusion models arises from geometry-adaptive harmonic representations ICLR
Deep neural networks (DNNs) trained for image denoising are able to generate high-quality samples with score-based reverse diffusion algorithms. These impressive capabilities seem to imply an escape from the curse of dimensionality, but recent reports of memorization of the training set raise the question of whether these networks are learning the "true" continuous density of the data. Here, we show that two DNNs trained on non-overlapping subsets of a dataset learn nearly the same score function, and thus the same density, when the number of training images is large enough. In this regime of strong generalization, diffusion-generated images are distinct from the training set, and are of high visual quality, suggesting that the inductive biases of the DNNs are well-aligned with the data density. We analyze the learned denoising functions and show that the inductive biases give rise to a shrinkage operation in a basis adapted to the underlying image. Examination of these bases reveals oscillating harmonic structures along contours and in homogeneous regions. We demonstrate that trained denoisers are inductively biased towards these geometry-adaptive harmonic bases since they arise not only when the network is trained on photographic images, but also when it is trained on image classes supported on low-dimensional manifolds for which the harmonic basis is suboptimal. Finally, we show that when trained on regular image classes for which the optimal basis is known to be geometry-adaptive and harmonic, the denoising performance of the networks is near-optimal.
comment: Accepted for oral presentation at ICLR, Vienna, May 2024
♻ ☆ Multi-Task Learning for Routing Problem with Cross-Problem Zero-Shot Generalization
Vehicle routing problems (VRPs), which can be found in numerous real-world applications, have been an important research topic for several decades. Recently, the neural combinatorial optimization (NCO) approach that leverages a learning-based model to solve VRPs without manual algorithm design has gained substantial attention. However, current NCO methods typically require building one model for each routing problem, which significantly hinders their practical application for real-world industry problems with diverse attributes. In this work, we make the first attempt to tackle the crucial challenge of cross-problem generalization. In particular, we formulate VRPs as different combinations of a set of shared underlying attributes and solve them simultaneously via a single model through attribute composition. In this way, our proposed model can successfully solve VRPs with unseen attribute combinations in a zero-shot generalization manner. Extensive experiments are conducted on eleven VRP variants, benchmark datasets, and industry logistic scenarios. The results show that the unified model demonstrates superior performance in the eleven VRPs, reducing the average gap to around 5% from over 20% in the existing approach and achieving a significant performance boost on benchmark datasets as well as a real-world logistics application. The source code is included in https://github.com/FeiLiu36/MTNCO.
♻ ☆ Rethinking How to Evaluate Language Model Jailbreak
Large language models (LLMs) have become increasingly integrated with various applications. To ensure that LLMs do not generate unsafe responses, they are aligned with safeguards that specify what content is restricted. However, such alignment can be bypassed to produce prohibited content using a technique commonly referred to as jailbreak. Different systems have been proposed to perform the jailbreak automatically. These systems rely on evaluation methods to determine whether a jailbreak attempt is successful. However, our analysis reveals that current jailbreak evaluation methods have two limitations. (1) Their objectives lack clarity and do not align with the goal of identifying unsafe responses. (2) They oversimplify the jailbreak result as a binary outcome, successful or not. In this paper, we propose three metrics, safeguard violation, informativeness, and relative truthfulness, to evaluate language model jailbreak. Additionally, we demonstrate how these metrics correlate with the goal of different malicious actors. To compute these metrics, we introduce a multifaceted approach that extends the natural language generation evaluation method after preprocessing the response. We evaluate our metrics on a benchmark dataset produced from three malicious intent datasets and three jailbreak systems. The benchmark dataset is labeled by three annotators. We compare our multifaceted approach with three existing jailbreak evaluation methods. Experiments demonstrate that our multifaceted evaluation outperforms existing methods, with F1 scores improving on average by 17% compared to existing baselines. Our findings motivate the need to move away from the binary view of the jailbreak problem and incorporate a more comprehensive evaluation to ensure the safety of the language model.
♻ ☆ Re-evaluating the Need for Multimodal Signals in Unsupervised Grammar Induction NAACL
Are multimodal inputs necessary for grammar induction? Recent work has shown that multimodal training inputs can improve grammar induction. However, these improvements are based on comparisons to weak text-only baselines that were trained on relatively little textual data. To determine whether multimodal inputs are needed in regimes with large amounts of textual training data, we design a stronger text-only baseline, which we refer to as LC-PCFG. LC-PCFG is a C-PFCG that incorporates em-beddings from text-only large language models (LLMs). We use a fixed grammar family to directly compare LC-PCFG to various multi-modal grammar induction methods. We compare performance on four benchmark datasets. LC-PCFG provides an up to 17% relative improvement in Corpus-F1 compared to state-of-the-art multimodal grammar induction methods. LC-PCFG is also more computationally efficient, providing an up to 85% reduction in parameter count and 8.8x reduction in training time compared to multimodal approaches. These results suggest that multimodal inputs may not be necessary for grammar induction, and emphasize the importance of strong vision-free baselines for evaluating the benefit of multimodal approaches.
comment: NAACL Findings 2024
♻ ☆ RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features
Kernel methods provide a flexible and theoretically grounded approach to nonlinear and nonparametric learning. While memory and run-time requirements hinder their applicability to large datasets, many low-rank kernel approximations, such as random Fourier features, were recently developed to scale up such kernel methods. However, these scalable approaches are based on approximations of isotropic kernels, which cannot remove the influence of irrelevant features. In this work, we design random Fourier features for a family of automatic relevance determination (ARD) kernels, and introduce RFFNet, a new large-scale kernel method that learns the kernel relevances' on the fly via first-order stochastic optimization. We present an effective initialization scheme for the method's non-convex objective function, evaluate if hard-thresholding RFFNet's learned relevances yield a sensible rule for variable selection, and perform an extensive ablation study of RFFNet's components. Numerical validation on simulated and real-world data shows that our approach has a small memory footprint and run-time, achieves low prediction error, and effectively identifies relevant features, thus leading to more interpretable solutions. We supply users with an efficient, PyTorch-based library, that adheres to the scikit-learn standard API and code for fully reproducing our results.
comment: New datasets, ablation studies, and discussion of method's components. 45 pages, 11 figures
♻ ☆ Approximate Stein Classes for Truncated Density Estimation ICML 2023
Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.
comment: Accepted to ICML 2023
♻ ☆ Identifying Important Group of Pixels using Interactions CVPR 2024
To better understand the behavior of image classifiers, it is useful to visualize the contribution of individual pixels to the model prediction. In this study, we propose a method, MoXI ($\textbf{Mo}$del e$\textbf{X}$planation by $\textbf{I}$nteractions), that efficiently and accurately identifies a group of pixels with high prediction confidence. The proposed method employs game-theoretic concepts, Shapley values and interactions, taking into account the effects of individual pixels and the cooperative influence of pixels on model confidence. Theoretical analysis and experiments demonstrate that our method better identifies the pixels that are highly contributing to the model outputs than widely-used visualization by Grad-CAM, Attention rollout, and Shapley value. While prior studies have suffered from the exponential computational cost in the computation of Shapley value and interactions, we show that this can be reduced to quadratic cost for our task. The code is available at https://github.com/KosukeSumiyasu/MoXI.
comment: CVPR 2024
♻ ☆ Beyond Bayesian Model Averaging over Paths in Probabilistic Programs with Stochastic Support AISTATS
The posterior in probabilistic programs with stochastic support decomposes as a weighted sum of the local posterior distributions associated with each possible program path. We show that making predictions with this full posterior implicitly performs a Bayesian model averaging (BMA) over paths. This is potentially problematic, as BMA weights can be unstable due to model misspecification or inference approximations, leading to sub-optimal predictions in turn. To remedy this issue, we propose alternative mechanisms for path weighting: one based on stacking and one based on ideas from PAC-Bayes. We show how both can be implemented as a cheap post-processing step on top of existing inference engines. In our experiments, we find them to be more robust and lead to better predictions compared to the default BMA weights.
comment: Accepted at the 27th International Conference on Artificial Intelligence and Statistics (AISTATS) 2024
♻ ☆ Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.
♻ ☆ Harnessing the Power of Large Language Model for Uncertainty Aware Graph Processing
Handling graph data is one of the most difficult tasks. Traditional techniques, such as those based on geometry and matrix factorization, rely on assumptions about the data relations that become inadequate when handling large and complex graph data. On the other hand, deep learning approaches demonstrate promising results in handling large graph data, but they often fall short of providing interpretable explanations. To equip the graph processing with both high accuracy and explainability, we introduce a novel approach that harnesses the power of a large language model (LLM), enhanced by an uncertainty-aware module to provide a confidence score on the generated answer. We experiment with our approach on two graph processing tasks: few-shot knowledge graph completion and graph classification. Our results demonstrate that through parameter efficient fine-tuning, the LLM surpasses state-of-the-art algorithms by a substantial margin across ten diverse benchmark datasets. Moreover, to address the challenge of explainability, we propose an uncertainty estimation based on perturbation, along with a calibration scheme to quantify the confidence scores of the generated answers. Our confidence measure achieves an AUC of 0.8 or higher on seven out of the ten datasets in predicting the correctness of the answer generated by LLM.
comment: Because my organization does not allow members to privately upload papers to arXiv, I am requesting a withdrawal of my submission
♻ ☆ On the Minimax Regret in Online Ranking with Top-k Feedback
In online ranking, a learning algorithm sequentially ranks a set of items and receives feedback on its ranking in the form of relevance scores. Since obtaining relevance scores typically involves human annotation, it is of great interest to consider a partial feedback setting where feedback is restricted to the top-$k$ items in the rankings. Chaudhuri and Tewari [2017] developed a framework to analyze online ranking algorithms with top $k$ feedback. A key element in their work was the use of techniques from partial monitoring. In this paper, we further investigate online ranking with top $k$ feedback and solve some open problems posed by Chaudhuri and Tewari [2017]. We provide a full characterization of minimax regret rates with the top $k$ feedback model for all $k$ and for the following ranking performance measures: Pairwise Loss, Discounted Cumulative Gain, and Precision@n. In addition, we give an efficient algorithm that achieves the minimax regret rate for Precision@n.
♻ ☆ Multimodal Learning for Materials
Artificial intelligence is transforming computational materials science, improving the prediction of material properties, and accelerating the discovery of novel materials. Recently, publicly available material data repositories have grown rapidly. This growth encompasses not only more materials, but also a greater variety and quantity of their associated properties. Existing machine learning efforts in materials science focus primarily on single-modality tasks, i.e., relationships between materials and a single physical property, thus not taking advantage of the rich and multimodal set of material properties. Here, we introduce Multimodal Learning for Materials (MultiMat), which enables self-supervised multi-modality training of foundation models for materials. We demonstrate our framework's potential using data from the Materials Project database on multiple axes: (i) MultiMat achieves state-of-the-art performance for challenging material property prediction tasks; (ii) MultiMat enables novel and accurate material discovery via latent space similarity, enabling screening for stable materials with desired properties; and (iii) MultiMat encodes interpretable emergent features that may provide novel scientific insights.
comment: 11 pages, 4 figures
♻ ☆ A Quadratic Synchronization Rule for Distributed Deep Learning ICLR'24
In distributed deep learning with data parallelism, synchronizing gradients at each training step can cause a huge communication overhead, especially when many nodes work together to train large models. Local gradient methods, such as Local SGD, address this issue by allowing workers to compute locally for $H$ steps without synchronizing with others, hence reducing communication frequency. While $H$ has been viewed as a hyperparameter to trade optimization efficiency for communication cost, recent research indicates that setting a proper $H$ value can lead to generalization improvement. Yet, selecting a proper $H$ is elusive. This work proposes a theory-grounded method for determining $H$, named the Quadratic Synchronization Rule (QSR), which recommends dynamically setting $H$ in proportion to $\frac{1}{\eta^2}$ as the learning rate $\eta$ decays over time. Extensive ImageNet experiments on ResNet and ViT show that local gradient methods with QSR consistently improve the test accuracy over other synchronization strategies. Compared with the standard data parallel training, QSR enables Local AdamW on ViT-B to cut the training time on 16 or 64 GPUs down from 26.7 to 20.2 hours or from 8.6 to 5.5 hours and, at the same time, achieves $1.16\%$ or $0.84\%$ higher top-1 validation accuracy.
comment: camera-ready version for ICLR'24
♻ ☆ Solving Parametric PDEs with Radial Basis Functions and Deep Neural Networks
We propose the POD-DNN, a novel algorithm leveraging deep neural networks (DNNs) along with radial basis functions (RBFs) in the context of the proper orthogonal decomposition (POD) reduced basis method (RBM), aimed at approximating the parametric mapping of parametric partial differential equations on irregular domains. The POD-DNN algorithm capitalizes on the low-dimensional characteristics of the solution manifold for parametric equations, alongside the inherent offline-online computational strategy of RBM and DNNs. In numerical experiments, POD-DNN demonstrates significantly accelerated computation speeds during the online phase. Compared to other algorithms that utilize RBF without integrating DNNs, POD-DNN substantially improves the computational speed in the online inference process. Furthermore, under reasonable assumptions, we have rigorously derived upper bounds on the complexity of approximating parametric mappings with POD-DNN, thereby providing a theoretical analysis of the algorithm's empirical performance.
♻ ☆ Unsupervised Learning of Group Invariant and Equivariant Representations
Equivariant neural networks, whose hidden features transform according to representations of a group G acting on the data, exhibit training efficiency and an improved generalisation performance. In this work, we extend group invariant and equivariant representation learning to the field of unsupervised deep learning. We propose a general learning strategy based on an encoder-decoder framework in which the latent representation is separated in an invariant term and an equivariant group action component. The key idea is that the network learns to encode and decode data to and from a group-invariant representation by additionally learning to predict the appropriate group action to align input and output pose to solve the reconstruction task. We derive the necessary conditions on the equivariant encoder, and we present a construction valid for any G, both discrete and continuous. We describe explicitly our construction for rotations, translations and permutations. We test the validity and the robustness of our approach in a variety of experiments with diverse data types employing different network architectures.
♻ ☆ Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning. Here, the idea is to reduce the variance of the low-sample CATE estimation by a (potentially constrained) low-dimensional representation. However, low-dimensional representations can lose information about the observed confounders and thus lead to bias, because of which the validity of representation learning for CATE estimation is typically violated. In this paper, we propose a new, representation-agnostic refutation framework for estimating bounds on the representation-induced confounding bias that comes from dimensionality reduction (or other constraints on the representations) in CATE estimation. First, we establish theoretically under which conditions CATE is non-identifiable given low-dimensional (constrained) representations. Second, as our remedy, we propose a neural refutation framework which performs partial identification of CATE or, equivalently, aims at estimating lower and upper bounds of the representation-induced confounding bias. We demonstrate the effectiveness of our bounds in a series of experiments. In sum, our refutation framework is of direct relevance in practice where the validity of CATE estimation is of importance.
♻ ☆ Calibration of Continual Learning Models CVPR 2024
Continual Learning (CL) focuses on maximizing the predictive performance of a model across a non-stationary stream of data. Unfortunately, CL models tend to forget previous knowledge, thus often underperforming when compared with an offline model trained jointly on the entire data stream. Given that any CL model will eventually make mistakes, it is of crucial importance to build calibrated CL models: models that can reliably tell their confidence when making a prediction. Model calibration is an active research topic in machine learning, yet to be properly investigated in CL. We provide the first empirical study of the behavior of calibration approaches in CL, showing that CL strategies do not inherently learn calibrated models. To mitigate this issue, we design a continual calibration approach that improves the performance of post-processing calibration methods over a wide range of different benchmarks and CL strategies. CL does not necessarily need perfect predictive models, but rather it can benefit from reliable predictive models. We believe our study on continual calibration represents a first step towards this direction.
comment: Accepted at CLVISION workshop, CVPR 2024
♻ ☆ Adversarially Robust Spiking Neural Networks Through Conversion
Spiking neural networks (SNNs) provide an energy-efficient alternative to a variety of artificial neural network (ANN) based AI applications. As the progress in neuromorphic computing with SNNs expands their use in applications, the problem of adversarial robustness of SNNs becomes more pronounced. To the contrary of the widely explored end-to-end adversarial training based solutions, we address the limited progress in scalable robust SNN training methods by proposing an adversarially robust ANN-to-SNN conversion algorithm. Our method provides an efficient approach to embrace various computationally demanding robust learning objectives that have been proposed for ANNs. During a post-conversion robust finetuning phase, our method adversarially optimizes both layer-wise firing thresholds and synaptic connectivity weights of the SNN to maintain transferred robustness gains from the pre-trained ANN. We perform experimental evaluations in a novel setting proposed to rigorously assess the robustness of SNNs, where numerous adaptive adversarial attacks that account for the spike-based operation dynamics are considered. Results show that our approach yields a scalable state-of-the-art solution for adversarially robust deep SNNs with low-latency.
comment: Transactions on Machine Learning Research (TMLR), 2024
♻ ☆ Contrastive Graph Pooling for Explainable Classification of Brain Networks
Functional magnetic resonance imaging (fMRI) is a commonly used technique to measure neural activation. Its application has been particularly important in identifying underlying neurodegenerative conditions such as Parkinson's, Alzheimer's, and Autism. Recent analysis of fMRI data models the brain as a graph and extracts features by graph neural networks (GNNs). However, the unique characteristics of fMRI data require a special design of GNN. Tailoring GNN to generate effective and domain-explainable features remains challenging. In this paper, we propose a contrastive dual-attention block and a differentiable graph pooling method called ContrastPool to better utilize GNN for brain networks, meeting fMRI-specific requirements. We apply our method to 5 resting-state fMRI brain network datasets of 3 diseases and demonstrate its superiority over state-of-the-art baselines. Our case study confirms that the patterns extracted by our method match the domain knowledge in neuroscience literature, and disclose direct and interesting insights. Our contributions underscore the potential of ContrastPool for advancing the understanding of brain networks and neurodegenerative conditions. The source code is available at https://github.com/AngusMonroe/ContrastPool.
♻ ☆ Enhancing MAP-Elites with Multiple Parallel Evolution Strategies
With the development of fast and massively parallel evaluations in many domains, Quality-Diversity (QD) algorithms, that already proved promising in a large range of applications, have seen their potential multiplied. However, we have yet to understand how to best use a large number of evaluations as using them for random variations alone is not always effective. High-dimensional search spaces are a typical situation where random variations struggle to effectively search. Another situation is uncertain settings where solutions can appear better than they truly are and naively evaluating more solutions might mislead QD algorithms. In this work, we propose MAP-Elites-Multi-ES (MEMES), a novel QD algorithm based on Evolution Strategies (ES) designed to exploit fast parallel evaluations more effectively. MEMES maintains multiple (up to 100) simultaneous ES processes, each with its own independent objective and reset mechanism designed for QD optimisation, all on just a single GPU. We show that MEMES outperforms both gradient-based and mutation-based QD algorithms on black-box optimisation and QD-Reinforcement-Learning tasks, demonstrating its benefit across domains. Additionally, our approach outperforms sampling-based QD methods in uncertain domains when given the same evaluation budget. Overall, MEMES generates reproducible solutions that are high-performing and diverse through large-scale ES optimisation on easily accessible hardware.
♻ ☆ Deep Classifier Mimicry without Data Access
Access to pre-trained models has recently emerged as a standard across numerous machine learning domains. Unfortunately, access to the original data the models were trained on may not equally be granted. This makes it tremendously challenging to fine-tune, compress models, adapt continually, or to do any other type of data-driven update. We posit that original data access may however not be required. Specifically, we propose Contrastive Abductive Knowledge Extraction (CAKE), a model-agnostic knowledge distillation procedure that mimics deep classifiers without access to the original data. To this end, CAKE generates pairs of noisy synthetic samples and diffuses them contrastively toward a model's decision boundary. We empirically corroborate CAKE's effectiveness using several benchmark datasets and various architectural choices, paving the way for broad application.
comment: 11 pages main, 4 figures, 2 tables, 4 pages appendix
♻ ☆ Kernel-Based Testing for Single-Cell Differential Analysis
Single-cell technologies offer insights into molecular feature distributions, but comparing them poses challenges. We propose a kernel-testing framework for non-linear cell-wise distribution comparison, analyzing gene expression and epigenomic modifications. Our method allows feature-wise and global transcriptome/epigenome comparisons, revealing cell population heterogeneities. Using a classifier based on embedding variability, we identify transitions in cell states, overcoming limitations of traditional single-cell analysis. Applied to single-cell ChIP-Seq data, our approach identifies untreated breast cancer cells with an epigenomic profile resembling persister cells. This demonstrates the effectiveness of kernel testing in uncovering subtle population variations that might be missed by other methods.
♻ ☆ Incremental Learning with Concept Drift Detection and Prototype-based Embeddings for Graph Stream Classification
Data stream mining aims at extracting meaningful knowledge from continually evolving data streams, addressing the challenges posed by nonstationary environments, particularly, concept drift which refers to a change in the underlying data distribution over time. Graph structures offer a powerful modelling tool to represent complex systems, such as, critical infrastructure systems and social networks. Learning from graph streams becomes a necessity to understand the dynamics of graph structures and to facilitate informed decision-making. This work introduces a novel method for graph stream classification which operates under the general setting where a data generating process produces graphs with varying nodes and edges over time. The method uses incremental learning for continual model adaptation, selecting representative graphs (prototypes) for each class, and creating graph embeddings. Additionally, it incorporates a loss-based concept drift detection mechanism to recalculate graph prototypes when drift is detected.
comment: IEEE World Congress on Computational Intelligence (WCCI) 2024; Keywords: graph streams, concept drift, incremental learning, graph prototypes, nonstationary environments
♻ ☆ Box Facets and Cut Facets of Lifted Multicut Polytopes
The lifted multicut problem is a combinatorial optimization problem whose feasible solutions relate one-to-one to the decompositions of a graph $G = (V, E)$. Given an augmentation $\widehat{G} = (V, E \cup F)$ of $G$ and given costs $c \in \mathbb{R}^{E \cup F}$, the objective is to minimize the sum of those $c_{uw}$ with $uw \in E \cup F$ for which $u$ and $w$ are in distinct components. For $F = \emptyset$, the problem specializes to the multicut problem, and for $E = \tbinom{V}{2}$ to the clique partitioning problem. We study a binary linear program formulation of the lifted multicut problem. More specifically, we contribute to the analysis of the associated lifted multicut polytopes: Firstly, we establish a necessary, sufficient and efficiently decidable condition for a lower box inequality to define a facet. Secondly, we show that deciding whether a cut inequality of the binary linear program defines a facet is NP-hard.
comment: 10 pages, 5 figures
♻ ☆ Calibration-Aware Bayesian Learning
Deep learning models, including modern systems like large language models, are well known to offer unreliable estimates of the uncertainty of their decisions. In order to improve the quality of the confidence levels, also known as calibration, of a model, common approaches entail the addition of either data-dependent or data-independent regularization terms to the training loss. Data-dependent regularizers have been recently introduced in the context of conventional frequentist learning to penalize deviations between confidence and accuracy. In contrast, data-independent regularizers are at the core of Bayesian learning, enforcing adherence of the variational distribution in the model parameter space to a prior density. The former approach is unable to quantify epistemic uncertainty, while the latter is severely affected by model misspecification. In light of the limitations of both methods, this paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs), that applies both regularizers while optimizing over a variational distribution as in Bayesian learning. Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
comment: submitted for conference publication
♻ ☆ Explaining the Machine Learning Solution of the Ising Model
As powerful as machine learning (ML) techniques are in solving problems involving data with large dimensionality, explaining the results from the fitted parameters remains a challenging task of utmost importance, especially in physics applications. This work shows how this can be accomplished for the ferromagnetic Ising model, the main target of several ML studies in statistical physics. Here it is demonstrated that the successful unsupervised identification of the phases and order parameter by principal component analysis, a common method in those studies, detects that the magnetization per spin has its greatest variation with the temperature, the actual control parameter of the phase transition. Then, by using a neural network (NN) without hidden layers (the simplest possible) and informed by the symmetry of the Hamiltonian, an explanation is provided for the strategy used in finding the supervised learning solution for the critical temperature of the model's continuous phase transition. This allows the prediction of the minimal extension of the NN to solve the problem when the symmetry is not known, which becomes also explainable. These results pave the way to a physics-informed explainable generalized framework, enabling the extraction of physical laws and principles from the parameters of the models.
comment: 10 pages, 3 figures, updated to include the unsupervised learning of phases with PCA
♻ ☆ Impacts of Color and Texture Distortions on Earth Observation Data in Deep Learning
Land cover classification and change detection are two important applications of remote sensing and Earth observation (EO) that have benefited greatly from the advances of deep learning. Convolutional and transformer-based U-net models are the state-of-the-art architectures for these tasks, and their performances have been boosted by an increased availability of large-scale annotated EO datasets. However, the influence of different visual characteristics of the input EO data on a model's predictions is not well understood. In this work we systematically examine model sensitivities with respect to several color- and texture-based distortions on the input EO data during inference, given models that have been trained without such distortions. We conduct experiments with multiple state-of-the-art segmentation networks for land cover classification and show that they are in general more sensitive to texture than to color distortions. Beyond revealing intriguing characteristics of widely used land cover classification models, our results can also be used to guide the development of more robust models within the EO domain.
♻ ☆ Few-Shot Cross-System Anomaly Trace Classification for Microservice-based systems
Microservice-based systems (MSS) may experience failures in various fault categories due to their complex and dynamic nature. To effectively handle failures, AIOps tools utilize trace-based anomaly detection and root cause analysis. In this paper, we propose a novel framework for few-shot abnormal trace classification for MSS. Our framework comprises two main components: (1) Multi-Head Attention Autoencoder for constructing system-specific trace representations, which enables (2) Transformer Encoder-based Model-Agnostic Meta-Learning to perform effective and efficient few-shot learning for abnormal trace classification. The proposed framework is evaluated on two representative MSS, Trainticket and OnlineBoutique, with open datasets. The results show that our framework can adapt the learned knowledge to classify new, unseen abnormal traces of novel fault categories both within the same system it was initially trained on and even in the different MSS. Within the same MSS, our framework achieves an average accuracy of 93.26\% and 85.2\% across 50 meta-testing tasks for Trainticket and OnlineBoutique, respectively, when provided with 10 instances for each task. In a cross-system context, our framework gets an average accuracy of 92.19\% and 84.77\% for the same meta-testing tasks of the respective system, also with 10 instances provided for each task. Our work demonstrates the applicability of achieving few-shot abnormal trace classification for MSS and shows how it can enable cross-system adaptability. This opens an avenue for building more generalized AIOps tools that require less system-specific data labeling for anomaly detection and root cause analysis.
comment: 12 pages
♻ ☆ Differentiable All-pole Filters for Time-varying Audio Systems
Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-to-end training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by re-expressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within any audio system containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code available and provide the trained audio effect and synth models in a VST plugin at https://christhetree.github.io/all_pole_filters/.
comment: Submitted to DAFx 2024
♻ ☆ Lightweight Deep Learning for Resource-Constrained Environments: A Survey
Over the past decade, the dominance of deep learning has prevailed across various domains of artificial intelligence, including natural language processing, computer vision, and biomedical signal processing. While there have been remarkable improvements in model accuracy, deploying these models on lightweight devices, such as mobile phones and microcontrollers, is constrained by limited resources. In this survey, we provide comprehensive design guidance tailored for these devices, detailing the meticulous design of lightweight models, compression methods, and hardware acceleration strategies. The principal goal of this work is to explore methods and concepts for getting around hardware constraints without compromising the model's accuracy. Additionally, we explore two notable paths for lightweight deep learning in the future: deployment techniques for TinyML and Large Language Models. Although these paths undoubtedly have potential, they also present significant challenges, encouraging research into unexplored areas.
comment: 40 pages
♻ ☆ Unraveling the Impact of Initial Choices and In-Loop Interventions on Learning Dynamics in Autonomous Scanning Probe Microscopy
The current focus in Autonomous Experimentation (AE) is on developing robust workflows to conduct the AE effectively. This entails the need for well-defined approaches to guide the AE process, including strategies for hyperparameter tuning and high-level human interventions within the workflow loop. This paper presents a comprehensive analysis of the influence of initial experimental conditions and in-loop interventions on the learning dynamics of Deep Kernel Learning (DKL) within the realm of AE in Scanning Probe Microscopy. We explore the concept of 'seed effect', where the initial experiment setup has a substantial impact on the subsequent learning trajectory. Additionally, we introduce an approach of the seed point interventions in AE allowing the operator to influence the exploration process. Using a dataset from Piezoresponse Force Microscopy (PFM) on PbTiO3 thin films, we illustrate the impact of the 'seed effect' and in-loop seed interventions on the effectiveness of DKL in predicting material properties. The study highlights the importance of initial choices and adaptive interventions in optimizing learning rates and enhancing the efficiency of automated material characterization. This work offers valuable insights into designing more robust and effective AE workflows in microscopy with potential applications across various characterization techniques. The analysis code that supports the funding is publicly available at https://github.com/Slautin/2024_Seed_effect_DKL_BO.
comment: 24 pages, 11 figures
♻ ☆ Which Transformer to Favor: A Comparative Analysis of Efficiency in Vision Transformers
Transformers come with a high computational cost, yet their effectiveness in addressing problems in language and vision has sparked extensive research aimed at enhancing their efficiency. However, diverse experimental conditions, spanning multiple input domains, prevent a fair comparison based solely on reported results, posing challenges for model selection. To address this gap in comparability, we design a comprehensive benchmark of more than 30 models for image classification, evaluating key efficiency aspects, including accuracy, speed, and memory usage. This benchmark provides a standardized baseline across the landscape of efficiency-oriented transformers and our framework of analysis, based on Pareto optimality, reveals surprising insights. Despite claims of other models being more efficient, ViT remains Pareto optimal across multiple metrics. We observe that hybrid attention-CNN models exhibit remarkable inference memory- and parameter-efficiency. Moreover, our benchmark shows that using a larger model in general is more efficient than using higher resolution images. Thanks to our holistic evaluation, we provide a centralized resource for practitioners and researchers, facilitating informed decisions when selecting transformers or measuring progress of the development of efficient transformers.
♻ ☆ Properties of Discrete Sliced Wasserstein Losses
The Sliced Wasserstein (SW) distance has become a popular alternative to the Wasserstein distance for comparing probability measures. Widespread applications include image processing, domain adaptation and generative modelling, where it is common to optimise some parameters in order to minimise SW, which serves as a loss function between discrete probability measures (since measures admitting densities are numerically unattainable). All these optimisation problems bear the same sub-problem, which is minimising the Sliced Wasserstein energy. In this paper we study the properties of $\mathcal{E}: Y \longmapsto \mathrm{SW}_2^2(\gamma_Y, \gamma_Z)$, i.e. the SW distance between two uniform discrete measures with the same amount of points as a function of the support $Y \in \mathbb{R}^{n \times d}$ of one of the measures. We investigate the regularity and optimisation properties of this energy, as well as its Monte-Carlo approximation $\mathcal{E}_p$ (estimating the expectation in SW using only $p$ samples) and show convergence results on the critical points of $\mathcal{E}_p$ to those of $\mathcal{E}$, as well as an almost-sure uniform convergence and a uniform Central Limit result on the process $\mathcal{E}_p(Y)$. Finally, we show that in a certain sense, Stochastic Gradient Descent methods minimising $\mathcal{E}$ and $\mathcal{E}_p$ converge towards (Clarke) critical points of these energies.
♻ ☆ Be Bayesian by Attachments to Catch More Uncertainty
Bayesian Neural Networks (BNNs) have become one of the promising approaches for uncertainty estimation due to the solid theorical foundations. However, the performance of BNNs is affected by the ability of catching uncertainty. Instead of only seeking the distribution of neural network weights by in-distribution (ID) data, in this paper, we propose a new Bayesian Neural Network with an Attached structure (ABNN) to catch more uncertainty from out-of-distribution (OOD) data. We first construct a mathematical description for the uncertainty of OOD data according to the prior distribution, and then develop an attached Bayesian structure to integrate the uncertainty of OOD data into the backbone network. ABNN is composed of an expectation module and several distribution modules. The expectation module is a backbone deep network which focuses on the original task, and the distribution modules are mini Bayesian structures which serve as attachments of the backbone. In particular, the distribution modules aim at extracting the uncertainty from both ID and OOD data. We further provide theoretical analysis for the convergence of ABNN, and experimentally validate its superiority by comparing with some state-of-the-art uncertainty estimation methods Code will be made available.
♻ ☆ Short vs. Long-term Coordination of Drones: When Distributed Optimization Meets Deep Reinforcement Learning
Swarms of autonomous interactive drones, with the support of recharging technology, can provide compelling sensing capabilities in Smart Cities, such as traffic monitoring and disaster response. This paper aims to deliver a novel coordination solution for the cost-effective navigation, sensing, and recharging of drones. Existing approaches, such as deep reinforcement learning (DRL), offer long-term adaptability, but lack energy efficiency, resilience, and flexibility in dynamic environments. Therefore, this paper proposes a novel approach where each drone independently determines its flying direction and recharging place using DRL, while adapting navigation and sensing through distributed optimization, which improves energy-efficiency during sensing tasks. Furthermore, drones efficiently exchange information while retaining decision-making autonomy via a structured tree communication model. Extensive experimentation with datasets generated from realistic urban mobility underscores an outstanding performance of the proposed solution compared to state-of-the-art methods. Significant new insights show that long-term methods optimize scarce drone resource for traffic management, while the integration of short-term methods is crucial for advising on charging policies and maintaining battery safety.
comment: This work has been submitted to the IEEE Transactions on Systems, Man and Cybernetics: Systems for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ The Curious Price of Distributional Robustness in Reinforcement Learning with a Generative Model
This paper investigates model robustness in reinforcement learning (RL) to reduce the sim-to-real gap in practice. We adopt the framework of distributionally robust Markov decision processes (RMDPs), aimed at learning a policy that optimizes the worst-case performance when the deployed environment falls within a prescribed uncertainty set around the nominal MDP. Despite recent efforts, the sample complexity of RMDPs remained mostly unsettled regardless of the uncertainty set in use. It was unclear if distributional robustness bears any statistical consequences when benchmarked against standard RL. Assuming access to a generative model that draws samples based on the nominal MDP, we characterize the sample complexity of RMDPs when the uncertainty set is specified via either the total variation (TV) distance or $\chi^2$ divergence. The algorithm studied here is a model-based method called {\em distributionally robust value iteration}, which is shown to be near-optimal for the full range of uncertainty levels. Somewhat surprisingly, our results uncover that RMDPs are not necessarily easier or harder to learn than standard MDPs. The statistical consequence incurred by the robustness requirement depends heavily on the size and shape of the uncertainty set: in the case w.r.t.~the TV distance, the minimax sample complexity of RMDPs is always smaller than that of standard MDPs; in the case w.r.t.~the $\chi^2$ divergence, the sample complexity of RMDPs can often far exceed the standard MDP counterpart.
comment: Neural Information Processing Systems (2023)
♻ ☆ Viewing the process of generating counterfactuals as a source of knowledge: a new approach for explaining classifiers
There are now many explainable AI methods for understanding the decisions of a machine learning model. Among these are those based on counterfactual reasoning, which involve simulating features changes and observing the impact on the prediction. This article proposes to view this simulation process as a source of creating a certain amount of knowledge that can be stored to be used, later, in different ways. This process is illustrated in the additive model and, more specifically, in the case of the naive Bayes classifier, whose interesting properties for this purpose are shown.
comment: 8 pages
♻ ☆ Neural Likelihood Approximation for Integer Valued Time Series Data
Stochastic processes defined on integer valued state spaces are popular within the physical and biological sciences. These models are necessary for capturing the dynamics of small systems where the individual nature of the populations cannot be ignored and stochastic effects are important. The inference of the parameters of such models, from time series data, is challenging due to intractability of the likelihood. To work at all, current simulation based inference methods require the generation of realisations of the model conditional on the data, which can be both tricky to implement and computationally expensive. In this paper we instead construct a neural likelihood approximation that can be trained using unconditional simulation of the underlying model, which is much simpler. We demonstrate our method by performing inference on a number of ecological and epidemiological models, showing that we can accurately approximate the true posterior while achieving significant computational speed ups compared to current best methods.
♻ ☆ Graph Neural Networks in Vision-Language Image Understanding: A Survey
2D image understanding is a complex problem within computer vision, but it holds the key to providing human-level scene comprehension. It goes further than identifying the objects in an image, and instead, it attempts to understand the scene. Solutions to this problem form the underpinning of a range of tasks, including image captioning, visual question answering (VQA), and image retrieval. Graphs provide a natural way to represent the relational arrangement between objects in an image, and thus, in recent years graph neural networks (GNNs) have become a standard component of many 2D image understanding pipelines, becoming a core architectural component, especially in the VQA group of tasks. In this survey, we review this rapidly evolving field and we provide a taxonomy of graph types used in 2D image understanding approaches, a comprehensive list of the GNN models used in this domain, and a roadmap of future potential developments. To the best of our knowledge, this is the first comprehensive survey that covers image captioning, visual question answering, and image retrieval techniques that focus on using GNNs as the main part of their architecture.
comment: 20 pages, 5 figures, 5 tables
♻ ☆ Efficient Graph Laplacian Estimation by Proximal Newton AISTATS
The Laplacian-constrained Gaussian Markov Random Field (LGMRF) is a common multivariate statistical model for learning a weighted sparse dependency graph from given data. This graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix, subject to Laplacian structural constraints, with a sparsity-inducing penalty term. This paper aims to solve this learning problem accurately and efficiently. First, since the commonly used $\ell_1$-norm penalty is inappropriate in this setting and may lead to a complete graph, we employ the nonconvex minimax concave penalty (MCP), which promotes sparse solutions with lower estimation bias. Second, as opposed to existing first-order methods for this problem, we develop a second-order proximal Newton approach to obtain an efficient solver, utilizing several algorithmic features, such as using Conjugate Gradients, preconditioning, and splitting to active/free sets. Numerical experiments demonstrate the advantages of the proposed method in terms of both computational complexity and graph learning accuracy compared to existing methods.
comment: Proceedings of Artificial Intelligence and Statistics (AISTATS), 2024
♻ ☆ FedAgg: Adaptive Federated Learning with Aggregated Gradients
Federated Learning (FL) has emerged as a pivotal paradigm within distributed model training, facilitating collaboration among multiple devices to refine a shared model, harnessing their respective datasets as orchestrated by a central server, while ensuring the localization of private data. Nonetheless, the non-independent-and-identically-distributed (Non-IID) data generated on heterogeneous clients and the incessant information exchange among participants may markedly impede training efficacy and retard the convergence rate. In this paper, we refine the conventional stochastic gradient descent (SGD) methodology by introducing aggregated gradients at each local training epoch and propose an adaptive learning rate iterative algorithm that concerns the divergence between local and average parameters. To surmount the obstacle that acquiring other clients' local information, we introduce the mean-field approach by leveraging two mean-field terms to approximately estimate the average local parameters and gradients over time in a manner that precludes the need for local information exchange among clients and design the decentralized adaptive learning rate for each client. Through meticulous theoretical analysis, we provide a robust convergence guarantee for our proposed algorithm and ensure its wide applicability. Our numerical experiments substantiate the superiority of our framework in comparison with existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID data distributions.
♻ ☆ ADMarker: A Multi-Modal Federated Learning System for Monitoring Digital Biomarkers of Alzheimer's Disease
Alzheimer's Disease (AD) and related dementia are a growing global health challenge due to the aging population. In this paper, we present ADMarker, the first end-to-end system that integrates multi-modal sensors and new federated learning algorithms for detecting multidimensional AD digital biomarkers in natural living environments. ADMarker features a novel three-stage multi-modal federated learning architecture that can accurately detect digital biomarkers in a privacy-preserving manner. Our approach collectively addresses several major real-world challenges, such as limited data labels, data heterogeneity, and limited computing resources. We built a compact multi-modality hardware system and deployed it in a four-week clinical trial involving 91 elderly participants. The results indicate that ADMarker can accurately detect a comprehensive set of digital biomarkers with up to 93.8% accuracy and identify early AD with an average of 88.9% accuracy. ADMarker offers a new platform that can allow AD clinicians to characterize and track the complex correlation between multidimensional interpretable digital biomarkers, demographic factors of patients, and AD diagnosis in a longitudinal manner.
♻ ☆ Adaptive Federated Learning via New Entropy Approach
Federated Learning (FL) has emerged as a prominent distributed machine learning framework that enables geographically discrete clients to train a global model collaboratively while preserving their privacy-sensitive data. However, due to the non-independent-and-identically-distributed (Non-IID) data generated by heterogeneous clients, the performances of the conventional federated optimization schemes such as FedAvg and its variants deteriorate, requiring the design to adaptively adjust specific model parameters to alleviate the negative influence of heterogeneity. In this paper, by leveraging entropy as a new metric for assessing the degree of system disorder, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients and achieve fast convergence. Nevertheless, given the data disparity and parameter deviation of heterogeneous clients, determining the optimal dynamic learning rate for each client becomes a challenging task as there is no communication among participating clients during the local training epochs. To enable a decentralized learning rate for each participating client, we first introduce the mean-field terms to estimate the components associated with other clients' local parameters. Furthermore, we provide rigorous theoretical analysis on the existence and determination of the mean-field estimators. Based on the mean-field estimators, the closed-form adaptive learning rate for each client is derived by constructing the Hamilton equation. Moreover, the convergence rate of our proposed FedEnt is proved. The extensive experimental results on the real-world datasets (i.e., MNIST, EMNIST-L, CIFAR10, and CIFAR100) show that our FedEnt algorithm surpasses FedAvg and its variants (i.e., FedAdam, FedProx, and FedDyn) under Non-IID settings and achieves a faster convergence rate.
comment: 16 pages, 13 figures
Multimedia 4
☆ Calibration & Reconstruction: Deep Integrated Language for Referring Image Segmentation ICMR2024
Referring image segmentation aims to segment an object referred to by natural language expression from an image. The primary challenge lies in the efficient propagation of fine-grained semantic information from textual features to visual features. Many recent works utilize a Transformer to address this challenge. However, conventional transformer decoders can distort linguistic information with deeper layers, leading to suboptimal results. In this paper, we introduce CRFormer, a model that iteratively calibrates multi-modal features in the transformer decoder. We start by generating language queries using vision features, emphasizing different aspects of the input language. Then, we propose a novel Calibration Decoder (CDec) wherein the multi-modal features can iteratively calibrated by the input language features. In the Calibration Decoder, we use the output of each decoder layer and the original language features to generate new queries for continuous calibration, which gradually updates the language features. Based on CDec, we introduce a Language Reconstruction Module and a reconstruction loss. This module leverages queries from the final layer of the decoder to reconstruct the input language and compute the reconstruction loss. This can further prevent the language information from being lost or distorted. Our experiments consistently show the superior performance of our approach across RefCOCO, RefCOCO+, and G-Ref datasets compared to state-of-the-art methods.
comment: 9 pages, 8 figures ICMR2024. arXiv admin note: text overlap with arXiv:2305.14969
☆ Guided Masked Self-Distillation Modeling for Distributed Multimedia Sensor Event Analysis
Observations with distributed sensors are essential in analyzing a series of human and machine activities (referred to as 'events' in this paper) in complex and extensive real-world environments. This is because the information obtained from a single sensor is often missing or fragmented in such an environment; observations from multiple locations and modalities should be integrated to analyze events comprehensively. However, a learning method has yet to be established to extract joint representations that effectively combine such distributed observations. Therefore, we propose Guided Masked sELf-Distillation modeling (Guided-MELD) for inter-sensor relationship modeling. The basic idea of Guided-MELD is to learn to supplement the information from the masked sensor with information from other sensors needed to detect the event. Guided-MELD is expected to enable the system to effectively distill the fragmented or redundant target event information obtained by the sensors without being overly dependent on any specific sensors. To validate the effectiveness of the proposed method in novel tasks of distributed multimedia sensor event analysis, we recorded two new datasets that fit the problem setting: MM-Store and MM-Office. These datasets consist of human activities in a convenience store and an office, recorded using distributed cameras and microphones. Experimental results on these datasets show that the proposed Guided-MELD improves event tagging and detection performance and outperforms conventional inter-sensor relationship modeling methods. Furthermore, the proposed method performed robustly even when sensors were reduced.
comment: 13page, 7figure, under review
♻ ☆ Safe-CLIP: Removing NSFW Concepts from Vision-and-Language Models
Large-scale vision-and-language models, such as CLIP, are typically trained on web-scale data, which can introduce inappropriate content and lead to the development of unsafe and biased behavior. This, in turn, hampers their applicability in sensitive and trustworthy contexts and could raise significant concerns in their adoption. Our research introduces a novel approach to enhancing the safety of vision-and-language models by diminishing their sensitivity to NSFW (not safe for work) inputs. In particular, our methodology seeks to sever "toxic" linguistic and visual concepts, unlearning the linkage between unsafe linguistic or visual items and unsafe regions of the embedding space. We show how this can be done by fine-tuning a CLIP model on synthetic data obtained from a large language model trained to convert between safe and unsafe sentences, and a text-to-image generator. We conduct extensive experiments on the resulting embedding space for cross-modal retrieval, text-to-image, and image-to-text generation, where we show that our model can be remarkably employed with pre-trained generative models. Our source code and trained models are available at: https://github.com/aimagelab/safe-clip.
♻ ☆ Generating Illustrated Instructions CVPR 2024
We introduce the new task of generating Illustrated Instructions, i.e., visual instructions customized to a user's needs. We identify desiderata unique to this task, and formalize it through a suite of automatic and human evaluation metrics, designed to measure the validity, consistency, and efficacy of the generations. We combine the power of large language models (LLMs) together with strong text-to-image generation diffusion models to propose a simple approach called StackedDiffusion, which generates such illustrated instructions given text as input. The resulting model strongly outperforms baseline approaches and state-of-the-art multimodal LLMs; and in 30% of cases, users even prefer it to human-generated articles. Most notably, it enables various new and exciting applications far beyond what static articles on the web can provide, such as personalized instructions complete with intermediate steps and pictures in response to a user's individual situation.
comment: Accepted to CVPR 2024. Project website: http://facebookresearch.github.io/IllustratedInstructions. Code reproduction: https://github.com/sachit-menon/generating-illustrated-instructions-reproduction
Computation and Language 88
☆ Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
comment: Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point
☆ Language Imbalance Can Boost Cross-lingual Generalisation
Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
☆ Manipulating Large Language Models to Increase Product Visibility
Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.
☆ LLoCO: Learning Long Contexts Offline
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using $30\times$ fewer tokens during inference. LLoCO achieves up to $7.62\times$ speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
comment: The first two authors contributed equally to this work
☆ OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments
Autonomous agents that accomplish complex computer tasks with minimal human interventions have the potential to transform human-computer interaction, significantly enhancing accessibility and productivity. However, existing benchmarks either lack an interactive environment or are limited to environments specific to certain applications or domains, failing to reflect the diverse and complex nature of real-world computer use, thereby limiting the scope of tasks and agent scalability. To address this issue, we introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents, supporting task setup, execution-based evaluation, and interactive learning across various operating systems such as Ubuntu, Windows, and macOS. OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks that involve arbitrary applications. Building upon OSWorld, we create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and workflows spanning multiple applications. Each task example is derived from real-world computer use cases and includes a detailed initial state setup configuration and a custom execution-based evaluation script for reliable, reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based agents on OSWorld reveals significant deficiencies in their ability to serve as computer assistants. While humans can accomplish over 72.36% of the tasks, the best model achieves only 12.24% success, primarily struggling with GUI grounding and operational knowledge. Comprehensive analysis using OSWorld provides valuable insights for developing multimodal generalist agents that were not possible with previous benchmarks. Our code, environment, baseline models, and data are publicly available at https://os-world.github.io.
comment: 51 pages, 21 figures
☆ Rho-1: Not All Tokens Are What You Need
Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that "Not all tokens in a corpus are equally important for language model training". Our initial analysis delves into token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher excess loss. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.
comment: First two authors equal contribution
☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. All code and model weights are public at https://github.com/baochi0212/LaVy
comment: 7 pages
☆ AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~\citep{zou2023universal} proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
☆ DesignQA: A Multimodal Benchmark for Evaluating Large Language Models' Understanding of Engineering Documentation
This research introduces DesignQA, a novel benchmark aimed at evaluating the proficiency of multimodal large language models (MLLMs) in comprehending and applying engineering requirements in technical documentation. Developed with a focus on real-world engineering challenges, DesignQA uniquely combines multimodal data-including textual design requirements, CAD images, and engineering drawings-derived from the Formula SAE student competition. Different from many existing MLLM benchmarks, DesignQA contains document-grounded visual questions where the input image and input document come from different sources. The benchmark features automatic evaluation metrics and is divided into segments-Rule Comprehension, Rule Compliance, and Rule Extraction-based on tasks that engineers perform when designing according to requirements. We evaluate state-of-the-art models like GPT4 and LLaVA against the benchmark, and our study uncovers the existing gaps in MLLMs' abilities to interpret complex engineering documentation. Key findings suggest that while MLLMs demonstrate potential in navigating technical documents, substantial limitations exist, particularly in accurately extracting and applying detailed requirements to engineering designs. This benchmark sets a foundation for future advancements in AI-supported engineering design processes. DesignQA is publicly available at: https://github.com/anniedoris/design_qa/.
☆ HGRN2: Gated Linear RNNs with State Expansion
Hierarchically gated linear RNN (HGRN,Qin et al. 2023) has demonstrated competitive training speed and performance in language modeling, while offering efficient inference. However, the recurrent state size of HGRN remains relatively small, which limits its expressiveness.To address this issue, inspired by linear attention, we introduce a simple outer-product-based state expansion mechanism so that the recurrent state size can be significantly enlarged without introducing any additional parameters. The linear attention form also allows for hardware-efficient training.Our extensive experiments verify the advantage of HGRN2 over HGRN1 in language modeling, image classification, and Long Range Arena.Our largest 3B HGRN2 model slightly outperforms Mamba and LLaMa Architecture Transformer for language modeling in a controlled experiment setting; and performs competitively with many open-source 3B models in downstream evaluation while using much fewer total training tokens.
comment: Techinical Report. Yiran Zhong is the corresponding author. The source code is available at https://github.com/OpenNLPLab/HGRN2
☆ High-Dimension Human Value Representation in Large Language Models
The widespread application of Large Language Models (LLMs) across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, ranging from Reinforcement Learning with Human Feedback (RLHF), to constitutional learning, etc. there is an urgent need to understand the scope and nature of human values injected into these models before their release. There is also a need for model alignment without a costly large scale human annotation effort. We propose UniVaR, a high-dimensional representation of human value distributions in LLMs, orthogonal to model architecture and training data. Trained from the value-relevant output of eight multilingual LLMs and tested on the output from four multilingual LLMs, namely LlaMA2, ChatGPT, JAIS and Yi, we show that UniVaR is a powerful tool to compare the distribution of human values embedded in different LLMs with different langauge sources. Through UniVaR, we explore how different LLMs prioritize various values in different languages and cultures, shedding light on the complex interplay between human values and language modeling.
☆ Analyzing Toxicity in Deep Conversations: A Reddit Case Study
Online social media has become increasingly popular in recent years due to its ease of access and ability to connect with others. One of social media's main draws is its anonymity, allowing users to share their thoughts and opinions without fear of judgment or retribution. This anonymity has also made social media prone to harmful content, which requires moderation to ensure responsible and productive use. Several methods using artificial intelligence have been employed to detect harmful content. However, conversation and contextual analysis of hate speech are still understudied. Most promising works only analyze a single text at a time rather than the conversation supporting it. In this work, we employ a tree-based approach to understand how users behave concerning toxicity in public conversation settings. To this end, we collect both the posts and the comment sections of the top 100 posts from 8 Reddit communities that allow profanity, totaling over 1 million responses. We find that toxic comments increase the likelihood of subsequent toxic comments being produced in online conversations. Our analysis also shows that immediate context plays a vital role in shaping a response rather than the original post. We also study the effect of consensual profanity and observe overlapping similarities with non-consensual profanity in terms of user behavior and patterns.
☆ Guiding Large Language Models to Post-Edit Machine Translation with Error Annotations
Machine Translation (MT) remains one of the last NLP tasks where large language models (LLMs) have not yet replaced dedicated supervised systems. This work exploits the complementary strengths of LLMs and supervised MT by guiding LLMs to automatically post-edit MT with external feedback on its quality, derived from Multidimensional Quality Metric (MQM) annotations. Working with LLaMA-2 models, we consider prompting strategies varying the nature of feedback provided and then fine-tune the LLM to improve its ability to exploit the provided guidance. Through experiments on Chinese-English, English-German, and English-Russian MQM data, we demonstrate that prompting LLMs to post-edit MT improves TER, BLEU and COMET scores, although the benefits of fine-grained feedback are not clear. Fine-tuning helps integrate fine-grained feedback more effectively and further improves translation quality based on both automatic and human evaluation.
comment: 21 pages, 8 figures
☆ On Training Data Influence of GPT Models
Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
☆ RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
We introduce RecurrentGemma, an open language model which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide a pre-trained model with 2B non-embedding parameters, and an instruction tuned variant. Both models achieve comparable performance to Gemma-2B despite being trained on fewer tokens.
☆ Question Generation in Knowledge-Driven Dialog: Explainability and Evaluation
We explore question generation in the context of knowledge-grounded dialogs focusing on explainability and evaluation. Inspired by previous work on planning-based summarisation, we present a model which instead of directly generating a question, sequentially predicts first a fact then a question. We evaluate our approach on 37k test dialogs adapted from the KGConv dataset and we show that, although more demanding in terms of inference, our approach performs on par with a standard model which solely generates a question while allowing for a detailed referenceless evaluation of the model behaviour in terms of relevance, factuality and pronominalisation.
☆ Heron-Bench: A Benchmark for Evaluating Vision Language Models in Japanese
Vision Language Models (VLMs) have undergone a rapid evolution, giving rise to significant advancements in the realm of multimodal understanding tasks. However, the majority of these models are trained and evaluated on English-centric datasets, leaving a gap in the development and evaluation of VLMs for other languages, such as Japanese. This gap can be attributed to the lack of methodologies for constructing VLMs and the absence of benchmarks to accurately measure their performance. To address this issue, we introduce a novel benchmark, Japanese Heron-Bench, for evaluating Japanese capabilities of VLMs. The Japanese Heron-Bench consists of a variety of imagequestion answer pairs tailored to the Japanese context. Additionally, we present a baseline Japanese VLM that has been trained with Japanese visual instruction tuning datasets. Our Heron-Bench reveals the strengths and limitations of the proposed VLM across various ability dimensions. Furthermore, we clarify the capability gap between strong closed models like GPT-4V and the baseline model, providing valuable insights for future research in this domain. We release the benchmark dataset and training code to facilitate further developments in Japanese VLM research.
☆ MultiLS-SP/CA: Lexical Complexity Prediction and Lexical Simplification Resources for Catalan and Spanish
Automatic lexical simplification is a task to substitute lexical items that may be unfamiliar and difficult to understand with easier and more common words. This paper presents MultiLS-SP/CA, a novel dataset for lexical simplification in Spanish and Catalan. This dataset represents the first of its kind in Catalan and a substantial addition to the sparse data on automatic lexical simplification which is available for Spanish. Specifically, MultiLS-SP is the first dataset for Spanish which includes scalar ratings of the understanding difficulty of lexical items. In addition, we describe experiments with this dataset, which can serve as a baseline for future work on the same data.
comment: Submitted to the 40th edition of the SEPLN Conference. Under Revision
☆ Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation
This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the $k$-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-$F_1$ score on the shared task's test set.
comment: Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages
☆ Discourse-Aware In-Context Learning for Temporal Expression Normalization NAACL 2024
Temporal expression (TE) normalization is a well-studied problem. However, the predominately used rule-based systems are highly restricted to specific settings, and upcoming machine learning approaches suffer from a lack of labeled data. In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization using in-context learning to inject task, document, and example information into the model. We explore various sample selection strategies to retrieve the most relevant set of examples. By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model. Our experiments show competitive results to models designed for this task. In particular, our method achieves large performance improvements for non-standard settings by dynamically including relevant examples during inference.
comment: Accepted at NAACL 2024
☆ Using Letter Positional Probabilities to Assess Word Complexity
Word complexity is defined in a number of different ways. Psycholinguistic, morphological and lexical proxies are often used. Human ratings are also used. The problem here is that these proxies do not measure complexity directly, and human ratings are subject to subjective bias. In this study we contend that some form of 'latent complexity' can be approximated by using samples of simple and complex words. We use a sample of 'simple' words from primary school picture books and a sample of 'complex' words from high school and academic settings. In order to analyse the differences between these classes, we look at the letter positional probabilities (LPPs). We find a strong statistical association between simple and complex words on the basis of LPPs. For example, simple words are significantly (p<.001) more likely to start with w, b, s, h, g,k, j,t y or f, while complex words are significantly (p<.001) more likely to start with i, a, e, r, v, u or d. We find similar strong associations for subsequent letter positions, with 84 letter-position variables in the first 6 positions being significant at the p<.001 level. We then use LPPs as variables in creating a classifier which can classify the two classes with an 83% accuracy. We test these findings using a second data set, with 66 LPPs significant (p<.001) in the first 6 positions common to both datasets. We use these 66 variables to create a classifier that is able to classify a third dataset with an accuracy of 70%. Finally, we create a fourth sample by combining the extreme high and low scoring words generated by three classifiers built on the first three separate datasets and use this sample to build a classifier which has an accuracy of 97%. We use this to score the four levels of English word groups from an ESL program.
comment: 25 Pages, 15 Tables
☆ AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports LREC
Monitoring the threat landscape to be aware of actual or potential attacks is of utmost importance to cybersecurity professionals. Information about cyber threats is typically distributed using natural language reports. Natural language processing can help with managing this large amount of unstructured information, yet to date, the topic has received little attention. With this paper, we present AnnoCTR, a new CC-BY-SA-licensed dataset of cyber threat reports. The reports have been annotated by a domain expert with named entities, temporal expressions, and cybersecurity-specific concepts including implicitly mentioned techniques and tactics. Entities and concepts are linked to Wikipedia and the MITRE ATT&CK knowledge base, the most widely-used taxonomy for classifying types of attacks. Prior datasets linking to MITRE ATT&CK either provide a single label per document or annotate sentences out-of-context; our dataset annotates entire documents in a much finer-grained way. In an experimental study, we model the annotations of our dataset using state-of-the-art neural models. In our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.
comment: Accepted at LREC-COLING 2024. Corpus available at https://github.com/boschresearch/anno-ctr-lrec-coling-2024
☆ ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
Scientific Research, vital for improving human life, is hindered by its inherent complexity, slow pace, and the need for specialized experts. To enhance its productivity, we propose a ResearchAgent, a large language model-powered research idea writing agent, which automatically generates problems, methods, and experiment designs while iteratively refining them based on scientific literature. Specifically, starting with a core paper as the primary focus to generate ideas, our ResearchAgent is augmented not only with relevant publications through connecting information over an academic graph but also entities retrieved from an entity-centric knowledge store based on their underlying concepts, mined and shared across numerous papers. In addition, mirroring the human approach to iteratively improving ideas with peer discussions, we leverage multiple ReviewingAgents that provide reviews and feedback iteratively. Further, they are instantiated with human preference-aligned large language models whose criteria for evaluation are derived from actual human judgments. We experimentally validate our ResearchAgent on scientific publications across multiple disciplines, showcasing its effectiveness in generating novel, clear, and valid research ideas based on human and model-based evaluation results.
☆ Automatic Generation and Evaluation of Reading Comprehension Test Items with Large Language Models LREC
Reading comprehension tests are used in a variety of applications, reaching from education to assessing the comprehensibility of simplified texts. However, creating such tests manually and ensuring their quality is difficult and time-consuming. In this paper, we explore how large language models (LLMs) can be used to generate and evaluate multiple-choice reading comprehension items. To this end, we compiled a dataset of German reading comprehension items and developed a new protocol for human and automatic evaluation, including a metric we call text informativity, which is based on guessability and answerability. We then used this protocol and the dataset to evaluate the quality of items generated by Llama 2 and GPT-4. Our results suggest that both models are capable of generating items of acceptable quality in a zero-shot setting, but GPT-4 clearly outperforms Llama 2. We also show that LLMs can be used for automatic evaluation by eliciting item reponses from them. In this scenario, evaluation results with GPT-4 were the most similar to human annotators. Overall, zero-shot generation with LLMs is a promising approach for generating and evaluating reading comprehension test items, in particular for languages without large amounts of available data.
comment: Accepted for publication at the 3rd Workshop on Tools and Resources for People with REAding DIfficulties (READI) at LREC-COLING 2024
☆ ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs
The integration of Large Language Models (LLMs) and knowledge graphs (KGs) has achieved remarkable success in various natural language processing tasks. However, existing methodologies that integrate LLMs and KGs often navigate the task-solving process solely based on the LLM's analysis of the question, overlooking the rich cognitive potential inherent in the vast knowledge encapsulated in KGs. To address this, we introduce Observation-Driven Agent (ODA), a novel AI agent framework tailored for tasks involving KGs. ODA incorporates KG reasoning abilities via global observation that enhances reasoning capabilities through a cyclical paradigm of observation, action, and reflection. Confronting the exponential explosion of knowledge during observation, we innovatively design a recursive observation mechanism. Subsequently, we integrate the observed knowledge into the action and reflection modules. Through extensive experiments, ODA demonstrates state-of-the-art performance on several datasets, notably achieving accuracy improvements of 12.87% and 8.9%.
comment: LLM+KG
☆ Curated Datasets and Neural Models for Machine Translation of Informal Registers between Mayan and Spanish Vernaculars NAACL 2024
The Mayan languages comprise a language family with an ancient history, millions of speakers, and immense cultural value, that, nevertheless, remains severely underrepresented in terms of resources and global exposure. In this paper we develop, curate, and publicly release a set of corpora in several Mayan languages spoken in Guatemala and Southern Mexico, which we call MayanV. The datasets are parallel with Spanish, the dominant language of the region, and are taken from official native sources focused on representing informal, day-to-day, and non-domain-specific language. As such, and according to our dialectometric analysis, they differ in register from most other available resources. Additionally, we present neural machine translation models, trained on as many resources and Mayan languages as possible, and evaluated exclusively on our datasets. We observe lexical divergences between the dialects of Spanish in our resources and the more widespread written standard of Spanish, and that resources other than the ones we present do not seem to improve translation performance, indicating that many such resources may not accurately capture common, real-life language usage. The MayanV dataset is available at https://github.com/transducens/mayanv.
comment: 13 pages, 3 figures, 8 tables, Submitted to NAACL 2024
☆ rollama: An R package for using generative large language models through Ollama
rollama is an R package that wraps the Ollama API, which allows you to run different Generative Large Language Models (GLLM) locally. The package and learning material focus on making it easy to use Ollama for annotating textual or imagine data with open-source models as well as use these models for document embedding. But users can use or extend rollama to do essentially anything else that is possible through OpenAI's API, yet more private, reproducible and for free.
☆ Why do small language models underperform? Studying Language Model Saturation via the Softmax Bottleneck
Recent advances in language modeling consist in pretraining highly parameterized neural networks on extremely large web-mined text corpora. Training and inference with such models can be costly in practice, which incentivizes the use of smaller counterparts. However, it has been observed that smaller models can suffer from saturation, characterized as a drop in performance at some advanced point in training followed by a plateau. In this paper, we find that such saturation can be explained by a mismatch between the hidden dimension of smaller models and the high rank of the target contextual probability distribution. This mismatch affects the performance of the linear prediction head used in such models through the well-known softmax bottleneck phenomenon. We measure the effect of the softmax bottleneck in various settings and find that models based on less than 1000 hidden dimensions tend to adopt degenerate latent representations in late pretraining, which leads to reduced evaluation performance.
☆ Multi-Image Visual Question Answering for Unsupervised Anomaly Detection
Unsupervised anomaly detection enables the identification of potential pathological areas by juxtaposing original images with their pseudo-healthy reconstructions generated by models trained exclusively on normal images. However, the clinical interpretation of resultant anomaly maps presents a challenge due to a lack of detailed, understandable explanations. Recent advancements in language models have shown the capability of mimicking human-like understanding and providing detailed descriptions. This raises an interesting question: \textit{How can language models be employed to make the anomaly maps more explainable?} To the best of our knowledge, we are the first to leverage a language model for unsupervised anomaly detection, for which we construct a dataset with different questions and answers. Additionally, we present a novel multi-image visual question answering framework tailored for anomaly detection, incorporating diverse feature fusion strategies to enhance visual knowledge extraction. Our experiments reveal that the framework, augmented by our new Knowledge Q-Former module, adeptly answers questions on the anomaly detection dataset. Besides, integrating anomaly maps as inputs distinctly aids in improving the detection of unseen pathologies.
comment: 13 pages, 8 figures
☆ Audio Dialogues: Dialogues dataset for audio and music understanding
Existing datasets for audio understanding primarily focus on single-turn interactions (i.e. audio captioning, audio question answering) for describing audio in natural language, thus limiting understanding audio via interactive dialogue. To address this gap, we introduce Audio Dialogues: a multi-turn dialogue dataset containing 163.8k samples for general audio sounds and music. In addition to dialogues, Audio Dialogues also has question-answer pairs to understand and compare multiple input audios together. Audio Dialogues leverages a prompting-based approach and caption annotations from existing datasets to generate multi-turn dialogues using a Large Language Model (LLM). We evaluate existing audio-augmented large language models on our proposed dataset to demonstrate the complexity and applicability of Audio Dialogues. Our code for generating the dataset will be made publicly available. Detailed prompts and generated dialogues can be found on the demo website https://audiodialogues.github.io/.
comment: Demo website: https://audiodialogues.github.io/
☆ Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain LREC
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
comment: LREC-COLING 2024
☆ NoticIA: A Clickbait Article Summarization Dataset in Spanish
We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. This task demands advanced text understanding and summarization abilities, challenging the models' capacity to infer and connect diverse pieces of information to meet the user's informational needs generated by the clickbait headline. We evaluate the Spanish text comprehension capabilities of a wide range of state-of-the-art large language models. Additionally, we use the dataset to train ClickbaitFighter, a task-specific model that achieves near-human performance in this task.
comment: Under review in the journal Procesamiento del Lenguaje Natural
☆ UltraEval: A Lightweight Platform for Flexible and Comprehensive Evaluation for LLMs
Evaluation is pivotal for honing Large Language Models (LLMs), pinpointing their capabilities and guiding enhancements. The rapid development of LLMs calls for a lightweight and easy-to-use framework for swift evaluation deployment. However, due to the various implementation details to consider, developing a comprehensive evaluation platform is never easy. Existing platforms are often complex and poorly modularized, hindering seamless incorporation into researcher's workflows. This paper introduces UltraEval, a user-friendly evaluation framework characterized by lightweight, comprehensiveness, modularity, and efficiency. We identify and reimplement three core components of model evaluation (models, data, and metrics). The resulting composability allows for the free combination of different models, tasks, prompts, and metrics within a unified evaluation workflow. Additionally, UltraEval supports diverse models owing to a unified HTTP service and provides sufficient inference acceleration. UltraEval is now available for researchers publicly~\footnote{Website is at \url{https://github.com/OpenBMB/UltraEval}}.
☆ Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective
Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at \url{https://github.com/pppa2019/Mango}.
comment: The code is publicly available at https://github.com/pppa2019/Mango
☆ Decomposing Label Space, Format and Discrimination: Rethinking How LLMs Respond and Solve Tasks via In-Context Learning
In-context Learning (ICL) has emerged as a powerful capability alongside the development of scaled-up large language models (LLMs). By instructing LLMs using few-shot demonstrative examples, ICL enables them to perform a wide range of tasks without updating millions of parameters. However, the precise contributions of demonstrations towards improving end-task performance have not been thoroughly investigated in recent analytical studies. In this paper, we empirically decompose the overall performance of ICL into three dimensions, label space, format, and discrimination, and we evaluate four general-purpose LLMs across a diverse range of tasks. Counter-intuitively, we find that the demonstrations have a marginal impact on provoking discriminative knowledge of language models. However, ICL exhibits significant efficacy in regulating the label space and format which helps LLMs to respond in desired label words. We then demonstrate this ability functions similar to detailed instructions for LLMs to follow. We additionally provide an in-depth analysis of the mechanism of retrieval helping with ICL and find that retrieving the most semantically similar examples notably boosts model's discriminative capability.
comment: 36 pages, 8 figures
☆ From Words to Numbers: Your Large Language Model Is Secretly A Capable Regressor When Given In-Context Examples
We analyze how well pre-trained large language models (e.g., Llama2, GPT-4, Claude 3, etc) can do linear and non-linear regression when given in-context examples, without any additional training or gradient updates. Our findings reveal that several large language models (e.g., GPT-4, Claude 3) are able to perform regression tasks with a performance rivaling (or even outperforming) that of traditional supervised methods such as Random Forest, Bagging, or Gradient Boosting. For example, on the challenging Friedman #2 regression dataset, Claude 3 outperforms many supervised methods such as AdaBoost, SVM, Random Forest, KNN, or Gradient Boosting. We then investigate how well the performance of large language models scales with the number of in-context exemplars. We borrow from the notion of regret from online learning and empirically show that LLMs are capable of obtaining a sub-linear regret.
comment: 50 pages, 48 figures, preprint
PromptSync: Bridging Domain Gaps in Vision-Language Models through Class-Aware Prototype Alignment and Discrimination CVPR 2024
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tuning to adapt the model to unseen domains, but they overlooked the issue of imbalanced class distributions. In this study, we explicitly address this problem by employing class-aware prototype alignment weighted by mean class probabilities obtained for the test sample and filtered augmented views. Additionally, we ensure that the class probabilities are as accurate as possible by performing prototype discrimination using contrastive learning. The combination of alignment and discriminative loss serves as a geometric regularizer, preventing the prompt representation from collapsing onto a single class and effectively bridging the distribution gap between the source and test domains. Our method, named PromptSync, synchronizes the prompts for each test sample on both the text and vision branches of the V-L model. In empirical evaluations on the domain generalization benchmark, our method outperforms previous best methods by 2.33\% in overall performance, by 1\% in base-to-novel generalization, and by 2.84\% in cross-dataset transfer tasks.
comment: Accepted at CVPR 2024 LIMIT, 12 pages, 8 Tables, 2 Figures
☆ Best Practices and Lessons Learned on Synthetic Data for Language Models
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
☆ Leveraging Data Augmentation for Process Information Extraction
Business Process Modeling projects often require formal process models as a central component. High costs associated with the creation of such formal process models motivated many different fields of research aimed at automated generation of process models from readily available data. These include process mining on event logs, and generating business process models from natural language texts. Research in the latter field is regularly faced with the problem of limited data availability, hindering both evaluation and development of new techniques, especially learning-based ones. To overcome this data scarcity issue, in this paper we investigate the application of data augmentation for natural language text data. Data augmentation methods are well established in machine learning for creating new, synthetic data without human assistance. We find that many of these methods are applicable to the task of business process information extraction, improving the accuracy of extraction. Our study shows, that data augmentation is an important component in enabling machine learning methods for the task of business process model generation from natural language text, where currently mostly rule-based systems are still state of the art. Simple data augmentation techniques improved the $F_1$ score of mention extraction by 2.9 percentage points, and the $F_1$ of relation extraction by $4.5$. To better understand how data augmentation alters human annotated texts, we analyze the resulting text, visualizing and discussing the properties of augmented textual data. We make all code and experiments results publicly available.
comment: Accepted at BPMDS 2024 (https://sites.google.com/view/bpmds/), to be printed
☆ Interactive Prompt Debugging with Sequence Salience
We present Sequence Salience, a visual tool for interactive prompt debugging with input salience methods. Sequence Salience builds on widely used salience methods for text classification and single-token prediction, and extends this to a system tailored for debugging complex LLM prompts. Our system is well-suited for long texts, and expands on previous work by 1) providing controllable aggregation of token-level salience to the word, sentence, or paragraph level, making salience over long inputs tractable; and 2) supporting rapid iteration where practitioners can act on salience results, refine prompts, and run salience on the new output. We include case studies showing how Sequence Salience can help practitioners work with several complex prompting strategies, including few-shot, chain-of-thought, and constitutional principles. Sequence Salience is built on the Learning Interpretability Tool, an open-source platform for ML model visualizations, and code, notebooks, and tutorials are available at http://goo.gle/sequence-salience.
☆ Laissez-Faire Harms: Algorithmic Biases in Generative Language Models
The rapid deployment of generative language models (LMs) has raised concerns about social biases affecting the well-being of diverse consumers. The extant literature on generative LMs has primarily examined bias via explicit identity prompting. However, prior research on bias in earlier language-based technology platforms, including search engines, has shown that discrimination can occur even when identity terms are not specified explicitly. Studies of bias in LM responses to open-ended prompts (where identity classifications are left unspecified) are lacking and have not yet been grounded in end-consumer harms. Here, we advance studies of generative LM bias by considering a broader set of natural use cases via open-ended prompting. In this "laissez-faire" setting, we find that synthetically generated texts from five of the most pervasive LMs (ChatGPT3.5, ChatGPT4, Claude2.0, Llama2, and PaLM2) perpetuate harms of omission, subordination, and stereotyping for minoritized individuals with intersectional race, gender, and/or sexual orientation identities (AI/AN, Asian, Black, Latine, MENA, NH/PI, Female, Non-binary, Queer). We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs that portray their identities in a subordinated manner compared to representative or empowering portrayals. We also document a prevalence of stereotypes (e.g. perpetual foreigner) in LM-generated outputs that are known to trigger psychological harms that disproportionately affect minoritized individuals. These include stereotype threat, which leads to impaired cognitive performance and increased negative self-perception. Our findings highlight the urgent need to protect consumers from discriminatory harms caused by language models and invest in critical AI education programs tailored towards empowering diverse consumers.
comment: 16 pages (44 if including supplementals), 4 figures (20 if including supplementals)
☆ Structure-aware Fine-tuning for Code Pre-trained Models COLING 2024
Over the past few years, we have witnessed remarkable advancements in Code Pre-trained Models (CodePTMs). These models achieved excellent representation capabilities by designing structure-based pre-training tasks for code. However, how to enhance the absorption of structural knowledge when fine-tuning CodePTMs still remains a significant challenge. To fill this gap, in this paper, we present Structure-aware Fine-tuning (SAT), a novel structure-enhanced and plug-and-play fine-tuning method for CodePTMs. We first propose a structure loss to quantify the difference between the information learned by CodePTMs and the knowledge extracted from code structure. Specifically, we use the attention scores extracted from Transformer layer as the learned structural information, and the shortest path length between leaves in abstract syntax trees as the structural knowledge. Subsequently, multi-task learning is introduced to improve the performance of fine-tuning. Experiments conducted on four pre-trained models and two generation tasks demonstrate the effectiveness of our proposed method as a plug-and-play solution. Furthermore, we observed that SAT can benefit CodePTMs more with limited training data.
comment: Accepted by COLING 2024
☆ Scalable Language Model with Generalized Continual Learning
Continual learning has gained increasing importance as it facilitates the acquisition and refinement of scalable knowledge and skills in language models. However, existing methods typically encounter strict limitations and challenges in real-world scenarios, such as reliance on experience replay, optimization constraints, and inference task-ID. In this study, we introduce the Scalable Language Model (SLM) to overcome these limitations within a more challenging and generalized setting, representing a significant advancement toward practical applications for continual learning. Specifically, we propose the Joint Adaptive Re-Parameterization (JARe), integrated with Dynamic Task-related Knowledge Retrieval (DTKR), to enable adaptive adjustment of language models based on specific downstream tasks. This approach leverages the task distribution within the vector space, aiming to achieve a smooth and effortless continual learning process. Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting. Moreover, while prior research primarily focused on a single task type such as classification, our study goes beyond, with the large language model, i.e., LLaMA-2, to explore the effects across diverse domains and task types, such that a single language model can be decently scaled to broader applications.
comment: The Twelfth International Conference on Learning Representations
☆ "Confidently Nonsensical?'': A Critical Survey on the Perspectives and Challenges of 'Hallucinations' in NLP
We investigate how hallucination in large language models (LLM) is characterized in peer-reviewed literature using a critical examination of 103 publications across NLP research. Through a comprehensive review of sociological and technological literature, we identify a lack of agreement with the term `hallucination.' Additionally, we conduct a survey with 171 practitioners from the field of NLP and AI to capture varying perspectives on hallucination. Our analysis underscores the necessity for explicit definitions and frameworks outlining hallucination within NLP, highlighting potential challenges, and our survey inputs provide a thematic understanding of the influence and ramifications of hallucination in society.
☆ Transferable and Principled Efficiency for Open-Vocabulary Segmentation
Recent success of pre-trained foundation vision-language models makes Open-Vocabulary Segmentation (OVS) possible. Despite the promising performance, this approach introduces heavy computational overheads for two challenges: 1) large model sizes of the backbone; 2) expensive costs during the fine-tuning. These challenges hinder this OVS strategy from being widely applicable and affordable in real-world scenarios. Although traditional methods such as model compression and efficient fine-tuning can address these challenges, they often rely on heuristics. This means that their solutions cannot be easily transferred and necessitate re-training on different models, which comes at a cost. In the context of efficient OVS, we target achieving performance that is comparable to or even better than prior OVS works based on large vision-language foundation models, by utilizing smaller models that incur lower training costs. The core strategy is to make our efficiency principled and thus seamlessly transferable from one OVS framework to others without further customization. Comprehensive experiments on diverse OVS benchmarks demonstrate our superior trade-off between segmentation accuracy and computation costs over previous works. Our code is available on https://github.com/Xujxyang/OpenTrans
☆ Behavior Trees Enable Structured Programming of Language Model Agents
Language models trained on internet-scale data sets have shown an impressive ability to solve problems in Natural Language Processing and Computer Vision. However, experience is showing that these models are frequently brittle in unexpected ways, and require significant scaffolding to ensure that they operate correctly in the larger systems that comprise "language-model agents." In this paper, we argue that behavior trees provide a unifying framework for combining language models with classical AI and traditional programming. We introduce Dendron, a Python library for programming language model agents using behavior trees. We demonstrate the approach embodied by Dendron in three case studies: building a chat agent, a camera-based infrastructure inspection agent for use on a mobile robot or vehicle, and an agent that has been built to satisfy safety constraints that it did not receive through instruction tuning or RLHF.
☆ JetMoE: Reaching Llama2 Performance with 0.1M Dollars
Large Language Models (LLMs) have achieved remarkable results, but their increasing resource demand has become a major obstacle to the development of powerful and accessible super-human intelligence. This report introduces JetMoE-8B, a new LLM trained with less than $0.1 million, using 1.25T tokens from carefully mixed open-source corpora and 30,000 H100 GPU hours. Despite its low cost, the JetMoE-8B demonstrates impressive performance, with JetMoE-8B outperforming the Llama2-7B model and JetMoE-8B-Chat surpassing the Llama2-13B-Chat model. These results suggest that LLM training can be much more cost-effective than generally thought. JetMoE-8B is based on an efficient Sparsely-gated Mixture-of-Experts (SMoE) architecture, composed of attention and feedforward experts. Both layers are sparsely activated, allowing JetMoE-8B to have 8B parameters while only activating 2B for each input token, reducing inference computation by about 70% compared to Llama2-7B. Moreover, JetMoE-8B is highly open and academia-friendly, using only public datasets and training code. All training parameters and data mixtures have been detailed in this report to facilitate future efforts in the development of open foundation models. This transparency aims to encourage collaboration and further advancements in the field of accessible and efficient LLMs. The model weights are publicly available at https://github.com/myshell-ai/JetMoE.
☆ Multimodal Contextual Dialogue Breakdown Detection for Conversational AI Models NAACL 2024
Detecting dialogue breakdown in real time is critical for conversational AI systems, because it enables taking corrective action to successfully complete a task. In spoken dialog systems, this breakdown can be caused by a variety of unexpected situations including high levels of background noise, causing STT mistranscriptions, or unexpected user flows. In particular, industry settings like healthcare, require high precision and high flexibility to navigate differently based on the conversation history and dialogue states. This makes it both more challenging and more critical to accurately detect dialog breakdown. To accurately detect breakdown, we found it requires processing audio inputs along with downstream NLP model inferences on transcribed text in real time. In this paper, we introduce a Multimodal Contextual Dialogue Breakdown (MultConDB) model. This model significantly outperforms other known best models by achieving an F1 of 69.27.
comment: Published in NAACL 2024 Industry Track
☆ Graph Integrated Language Transformers for Next Action Prediction in Complex Phone Calls NAACL 2024
Current Conversational AI systems employ different machine learning pipelines, as well as external knowledge sources and business logic to predict the next action. Maintaining various components in dialogue managers' pipeline adds complexity in expansion and updates, increases processing time, and causes additive noise through the pipeline that can lead to incorrect next action prediction. This paper investigates graph integration into language transformers to improve understanding the relationships between humans' utterances, previous, and next actions without the dependency on external sources or components. Experimental analyses on real calls indicate that the proposed Graph Integrated Language Transformer models can achieve higher performance compared to other production level conversational AI systems in driving interactive calls with human users in real-world settings.
comment: Published in NAACL 2024 Industry Track
☆ Distilling Algorithmic Reasoning from LLMs via Explaining Solution Programs
Distilling explicit chain-of-thought reasoning paths has emerged as an effective method for improving the reasoning abilities of large language models (LLMs) across various tasks. However, when tackling complex tasks that pose significant challenges for state-of-the-art models, this technique often struggles to produce effective chains of thought that lead to correct answers. In this work, we propose a novel approach to distill reasoning abilities from LLMs by leveraging their capacity to explain solutions. We apply our method to solving competitive-level programming challenges. More specifically, we employ an LLM to generate explanations for a set of pairs, then use pairs to fine-tune a smaller language model, which we refer to as the Reasoner, to learn algorithmic reasoning that can generate "how-to-solve" hints for unseen problems. Our experiments demonstrate that learning from explanations enables the Reasoner to more effectively guide program implementation by a Coder, resulting in higher solve rates than strong chain-of-thought baselines on competitive-level programming problems. It also outperforms models that learn directly from pairs. We curated an additional test set in the CodeContests format, which includes 246 more recent problems posted after the models' knowledge cutoff.
comment: pre-print
☆ Extending Translate-Train for ColBERT-X to African Language CLIR
This paper describes the submission runs from the HLTCOE team at the CIRAL CLIR tasks for African languages at FIRE 2023. Our submissions use machine translation models to translate the documents and the training passages, and ColBERT-X as the retrieval model. Additionally, we present a set of unofficial runs that use an alternative training procedure with a similar training setting.
comment: 10 pages, 2 figures. System description paper for HLTCOE's participation in CIRAL@FIRE 2023
☆ HLTCOE at TREC 2023 NeuCLIR Track
The HLTCOE team applied PLAID, an mT5 reranker, and document translation to the TREC 2023 NeuCLIR track. For PLAID we included a variety of models and training techniques -- the English model released with ColBERT v2, translate-train~(TT), Translate Distill~(TD) and multilingual translate-train~(MTT). TT trains a ColBERT model with English queries and passages automatically translated into the document language from the MS-MARCO v1 collection. This results in three cross-language models for the track, one per language. MTT creates a single model for all three document languages by combining the translations of MS-MARCO passages in all three languages into mixed-language batches. Thus the model learns about matching queries to passages simultaneously in all languages. Distillation uses scores from the mT5 model over non-English translated document pairs to learn how to score query-document pairs. The team submitted runs to all NeuCLIR tasks: the CLIR and MLIR news task as well as the technical documents task.
comment: 6 pages. Part of TREC 2023 Proceedings
☆ S3Editor: A Sparse Semantic-Disentangled Self-Training Framework for Face Video Editing
Face attribute editing plays a pivotal role in various applications. However, existing methods encounter challenges in achieving high-quality results while preserving identity, editing faithfulness, and temporal consistency. These challenges are rooted in issues related to the training pipeline, including limited supervision, architecture design, and optimization strategy. In this work, we introduce S3Editor, a Sparse Semantic-disentangled Self-training framework for face video editing. S3Editor is a generic solution that comprehensively addresses these challenges with three key contributions. Firstly, S3Editor adopts a self-training paradigm to enhance the training process through semi-supervision. Secondly, we propose a semantic disentangled architecture with a dynamic routing mechanism that accommodates diverse editing requirements. Thirdly, we present a structured sparse optimization schema that identifies and deactivates malicious neurons to further disentangle impacts from untarget attributes. S3Editor is model-agnostic and compatible with various editing approaches. Our extensive qualitative and quantitative results affirm that our approach significantly enhances identity preservation, editing fidelity, as well as temporal consistency.
☆ Data-Augmentation-Based Dialectal Adaptation for LLMs
This report presents GMUNLP's participation to the Dialect-Copa shared task at VarDial 2024, which focuses on evaluating the commonsense reasoning capabilities of large language models (LLMs) on South Slavic micro-dialects. The task aims to assess how well LLMs can handle non-standard dialectal varieties, as their performance on standard languages is already well-established. We propose an approach that combines the strengths of different types of language models and leverages data augmentation techniques to improve task performance on three South Slavic dialects: Chakavian, Cherkano, and Torlak. We conduct experiments using a language-family-focused encoder-based model (BERTi\'c) and a domain-agnostic multilingual model (AYA-101). Our results demonstrate that the proposed data augmentation techniques lead to substantial performance gains across all three test datasets in the open-source model category. This work highlights the practical utility of data augmentation and the potential of LLMs in handling non-standard dialectal varieties, contributing to the broader goal of advancing natural language understanding in low-resource and dialectal settings. Code:https://github.com/ffaisal93/dialect_copa
☆ Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models
Fine-tuning language models (LMs) has demonstrated success in a wide array of downstream tasks. However, as LMs are scaled up, the memory requirements for backpropagation become prohibitively high. Zeroth-order (ZO) optimization methods can leverage memory-efficient forward passes to estimate gradients. More recently, MeZO, an adaptation of ZO-SGD, has been shown to consistently outperform zero-shot and in-context learning when combined with suitable task prompts. In this work, we couple ZO methods with variance reduction techniques to enhance stability and convergence for inference-based LM fine-tuning. We introduce Memory-Efficient Zeroth-Order Stochastic Variance-Reduced Gradient (MeZO-SVRG) and demonstrate its efficacy across multiple LM fine-tuning tasks, eliminating the reliance on task-specific prompts. Evaluated across a range of both masked and autoregressive LMs on benchmark GLUE tasks, MeZO-SVRG outperforms MeZO with up to 20% increase in test accuracies in both full- and partial-parameter fine-tuning settings. MeZO-SVRG benefits from reduced computation time as it often surpasses MeZO's peak test accuracy with a $2\times$ reduction in GPU-hours. MeZO-SVRG significantly reduces the required memory footprint compared to first-order SGD, i.e. by $2\times$ for autoregressive models. Our experiments highlight that MeZO-SVRG's memory savings progressively improve compared to SGD with larger batch sizes.
comment: 29 pages, 25 tables, 9 figures
☆ SQBC: Active Learning using LLM-Generated Synthetic Data for Stance Detection in Online Political Discussions
Stance detection is an important task for many applications that analyse or support online political discussions. Common approaches include fine-tuning transformer based models. However, these models require a large amount of labelled data, which might not be available. In this work, we present two different ways to leverage LLM-generated synthetic data to train and improve stance detection agents for online political discussions: first, we show that augmenting a small fine-tuning dataset with synthetic data can improve the performance of the stance detection model. Second, we propose a new active learning method called SQBC based on the "Query-by-Comittee" approach. The key idea is to use LLM-generated synthetic data as an oracle to identify the most informative unlabelled samples, that are selected for manual labelling. Comprehensive experiments show that both ideas can improve the stance detection performance. Curiously, we observed that fine-tuning on actively selected samples can exceed the performance of using the full dataset.
☆ MSciNLI: A Diverse Benchmark for Scientific Natural Language Inference NAACL 2024
The task of scientific Natural Language Inference (NLI) involves predicting the semantic relation between two sentences extracted from research articles. This task was recently proposed along with a new dataset called SciNLI derived from papers published in the computational linguistics domain. In this paper, we aim to introduce diversity in the scientific NLI task and present MSciNLI, a dataset containing 132,320 sentence pairs extracted from five new scientific domains. The availability of multiple domains makes it possible to study domain shift for scientific NLI. We establish strong baselines on MSciNLI by fine-tuning Pre-trained Language Models (PLMs) and prompting Large Language Models (LLMs). The highest Macro F1 scores of PLM and LLM baselines are 77.21% and 51.77%, respectively, illustrating that MSciNLI is challenging for both types of models. Furthermore, we show that domain shift degrades the performance of scientific NLI models which demonstrates the diverse characteristics of different domains in our dataset. Finally, we use both scientific NLI datasets in an intermediate task transfer learning setting and show that they can improve the performance of downstream tasks in the scientific domain. We make our dataset and code available on Github.
comment: Accepted to the NAACL 2024 Main Conference
☆ Augmenting Knowledge Graph Hierarchies Using Neural Transformers
Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
comment: European Conference on Information Retrieval 2024
♻ ☆ AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages NAACL 2024
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measuring this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
comment: Accepted by NAACL 2024
♻ ☆ A Systematic Comparison of Syllogistic Reasoning in Humans and Language Models NAACL 2024
A central component of rational behavior is logical inference: the process of determining which conclusions follow from a set of premises. Psychologists have documented several ways in which humans' inferences deviate from the rules of logic. Do language models, which are trained on text generated by humans, replicate such human biases, or are they able to overcome them? Focusing on the case of syllogisms -- inferences from two simple premises -- we show that, within the PaLM2 family of transformer language models, larger models are more logical than smaller ones, and also more logical than humans. At the same time, even the largest models make systematic errors, some of which mirror human reasoning biases: they show sensitivity to the (irrelevant) ordering of the variables in the syllogism, and draw confident but incorrect inferences from particular syllogisms (syllogistic fallacies). Overall, we find that language models often mimic the human biases included in their training data, but are able to overcome them in some cases.
comment: NAACL 2024
♻ ☆ Me LLaMA: Foundation Large Language Models for Medical Applications
Recent advancements in large language models (LLMs) such as ChatGPT and LLaMA have hinted at their potential to revolutionize medical applications, yet their application in clinical settings often reveals limitations due to a lack of specialized training on medical-specific data. In response to this challenge, this study introduces Me-LLaMA, a novel medical LLM family that includes foundation models - Me-LLaMA 13/70B, along with their chat-enhanced versions - Me-LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our methodology leverages a comprehensive domain-specific data suite, including a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six critical medical tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me-LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. With task-specific instruction tuning, Me-LLaMA models outperform ChatGPT on 7 out of 8 datasets and GPT-4 on 5 out of 8 datasets. In addition, we investigated the catastrophic forgetting problem, and our results show that Me-LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me-LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: https://github.com/BIDS-Xu-Lab/Me-LLaMA.
comment: 21 pages, 3 figures, 8 tables
♻ ☆ Source-Aware Training Enables Knowledge Attribution in Language Models
Large language models (LLMs) learn a vast amount of knowledge during pretraining, but they are often oblivious to the source(s) of such knowledge. We investigate the problem of intrinsic source citation, where LLMs are required to cite the pretraining source supporting a generated response. Intrinsic source citation can enhance LLM transparency, interpretability, and verifiability. To give LLMs such ability, we explore source-aware training -- a post pretraining recipe that involves (i) training the LLM to associate unique source document identifiers with the knowledge in each document, followed by (ii) an instruction-tuning to teach the LLM to cite a supporting pretraining source when prompted. Source-aware training can easily be applied to pretrained LLMs off the shelf, and diverges minimally from existing pretraining/fine-tuning frameworks. Through experiments on carefully curated data, we demonstrate that our training recipe can enable faithful attribution to the pretraining data without a substantial impact on the model's quality compared to standard pretraining. Our results also highlight the importance of data augmentation in achieving attribution. Code and data available here: \url{https://github.com/mukhal/intrinsic-source-citation}
♻ ☆ MetaCheckGPT -- A Multi-task Hallucination Detector Using LLM Uncertainty and Meta-models SemEval-2024
Hallucinations in large language models (LLMs) have recently become a significant problem. A recent effort in this direction is a shared task at Semeval 2024 Task 6, SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. This paper describes our winning solution ranked 1st and 2nd in the 2 sub-tasks of model agnostic and model aware tracks respectively. We propose a meta-regressor framework of LLMs for model evaluation and integration that achieves the highest scores on the leaderboard. We also experiment with various transformer-based models and black box methods like ChatGPT, Vectara, and others. In addition, we perform an error analysis comparing GPT4 against our best model which shows the limitations of the former.
comment: Entry for SemEval-2024 Shared Task 6: SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes
♻ ☆ KoCoNovel: Annotated Dataset of Character Coreference in Korean Novels
In this paper, we present KoCoNovel, a novel character coreference dataset derived from Korean literary texts, complete with detailed annotation guidelines. Comprising 178K tokens from 50 modern and contemporary novels, KoCoNovel stands as one of the largest public coreference resolution corpora in Korean, and the first to be based on literary texts. KoCoNovel offers four distinct versions to accommodate a wide range of literary coreference analysis needs. These versions are designed to support perspectives of the omniscient author or readers, and to manage multiple entities as either separate or overlapping, thereby broadening its applicability. One of KoCoNovel's distinctive features is that 24% of all character mentions are single common nouns, lacking possessive markers or articles. This feature is particularly influenced by the nuances of Korean address term culture, which favors the use of terms denoting social relationships and kinship over personal names. In experiments with a BERT-based coreference model, we observe notable performance enhancements with KoCoNovel in character coreference tasks within literary texts, compared to a larger non-literary coreference dataset. Such findings underscore KoCoNovel's potential to significantly enhance coreference resolution models through the integration of Korean cultural and linguistic dynamics.
comment: 12 pages
♻ ☆ Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry
Proving geometric theorems constitutes a hallmark of visual reasoning combining both intuitive and logical skills. Therefore, automated theorem proving of Olympiad-level geometry problems is considered a notable milestone in human-level automated reasoning. The introduction of AlphaGeometry, a neuro-symbolic model trained with 100 million synthetic samples, marked a major breakthrough. It solved 25 of 30 International Mathematical Olympiad (IMO) problems whereas the reported baseline based on Wu's method solved only ten. In this note, we revisit the IMO-AG-30 Challenge introduced with AlphaGeometry, and find that Wu's method is surprisingly strong. Wu's method alone can solve 15 problems, and some of them are not solved by any of the other methods. This leads to two key findings: (i) Combining Wu's method with the classic synthetic methods of deductive databases and angle, ratio, and distance chasing solves 21 out of 30 methods by just using a CPU-only laptop with a time limit of 5 minutes per problem. Essentially, this classic method solves just 4 problems less than AlphaGeometry and establishes the first fully symbolic baseline strong enough to rival the performance of an IMO silver medalist. (ii) Wu's method even solves 2 of the 5 problems that AlphaGeometry failed to solve. Thus, by combining AlphaGeometry with Wu's method we set a new state-of-the-art for automated theorem proving on IMO-AG-30, solving 27 out of 30 problems, the first AI method which outperforms an IMO gold medalist.
comment: Work in Progress. Released for wider feedback
♻ ☆ Interpretation of Intracardiac Electrograms Through Textual Representations
Understanding the irregular electrical activity of atrial fibrillation (AFib) has been a key challenge in electrocardiography. For serious cases of AFib, catheter ablations are performed to collect intracardiac electrograms (EGMs). EGMs offer intricately detailed and localized electrical activity of the heart and are an ideal modality for interpretable cardiac studies. Recent advancements in artificial intelligence (AI) has allowed some works to utilize deep learning frameworks to interpret EGMs during AFib. Additionally, language models (LMs) have shown exceptional performance in being able to generalize to unseen domains, especially in healthcare. In this study, we are the first to leverage pretrained LMs for finetuning of EGM interpolation and AFib classification via masked language modeling. We formulate the EGM as a textual sequence and present competitive performances on AFib classification compared against other representations. Lastly, we provide a comprehensive interpretability study to provide a multi-perspective intuition of the model's behavior, which could greatly benefit the clinical use.
comment: 16 pages, 7 figures; Accepted to CHIL 2024
♻ ☆ Gemma: Open Models Based on Gemini Research and Technology
This work introduces Gemma, a family of lightweight, state-of-the art open models built from the research and technology used to create Gemini models. Gemma models demonstrate strong performance across academic benchmarks for language understanding, reasoning, and safety. We release two sizes of models (2 billion and 7 billion parameters), and provide both pretrained and fine-tuned checkpoints. Gemma outperforms similarly sized open models on 11 out of 18 text-based tasks, and we present comprehensive evaluations of safety and responsibility aspects of the models, alongside a detailed description of model development. We believe the responsible release of LLMs is critical for improving the safety of frontier models, and for enabling the next wave of LLM innovations.
♻ ☆ CLUE: A Clinical Language Understanding Evaluation for LLMs
Large Language Models (LLMs) have shown the potential to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs address healthcare-specific challenges, including privacy demands and computational constraints. However, evaluation of these models has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. Additionally, there has been no thorough comparison between biomedical and general-domain LLMs for clinical tasks. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on real-world clinical tasks. CLUE includes two novel datasets derived from MIMIC IV discharge letters and four existing tasks designed to test the practical applicability of LLMs in healthcare settings. Our evaluation covers several biomedical and general domain LLMs, providing insights into their clinical performance and applicability. CLUE represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We publish our evaluation and data generation scripts: https://github.com/TIO-IKIM/CLUE.
♻ ☆ DANCER: Entity Description Augmented Named Entity Corrector for Automatic Speech Recognition LREC
End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity CorrEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitigation of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contain named entities of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for named entities.
comment: Accepted by LREC-COLING 2024
♻ ☆ Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing
Large language models have revolutionized the field of artificial intelligence and have been used in various applications. Among these models, ChatGPT (Chat Generative Pre-trained Transformer) has been developed by OpenAI, it stands out as a powerful tool that has been widely adopted. ChatGPT has been successfully applied in numerous areas, including chatbots, content generation, language translation, personalized recommendations, and even medical diagnosis and treatment. Its success in these applications can be attributed to its ability to generate human-like responses, understand natural language, and adapt to different contexts. Its versatility and accuracy make it a powerful tool for natural language processing (NLP). However, there are also limitations to ChatGPT, such as its tendency to produce biased responses and its potential to perpetuate harmful language patterns. This article provides a comprehensive overview of ChatGPT, its applications, advantages, and limitations. Additionally, the paper emphasizes the importance of ethical considerations when using this robust tool in real-world scenarios. Finally, This paper contributes to ongoing discussions surrounding artificial intelligence and its impact on vision and NLP domains by providing insights into prompt engineering techniques.
♻ ☆ Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds
We evaluate LLMs' language understanding capacities on simple inference tasks that most humans find trivial. Specifically, we target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments. We design evaluation sets for these tasks and conduct experiments in both zero-shot and chain-of-thought setups, and with multiple prompts and LLMs. The models exhibit moderate to low performance on these evaluation sets. Subsequent experiments show that embedding the premise in syntactic constructions that should preserve the entailment relations (presupposition triggers) or change them (non-factives), further confuses the models, causing them to either under-predict or over-predict certain entailment labels regardless of the true relation, and often disregarding the nature of the embedding context. Overall these results suggest that, despite LLMs' celebrated language understanding capacity, even the strongest models have blindspots with respect to certain types of entailments, and certain information-packaging structures act as ``blinds'' overshadowing the semantics of the embedded premise.
♻ ☆ Distilled Self-Critique of LLMs with Synthetic Data: a Bayesian Perspective ICLR 2024
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{https://github.com/vicgalle/distilled-self-critique}.
comment: Accepted to ICLR 2024 (TinyPapers track)
♻ ☆ A Multi-Label Dataset of French Fake News: Human and Machine Insights LREC
We present a corpus of 100 documents, OBSINFOX, selected from 17 sources of French press considered unreliable by expert agencies, annotated using 11 labels by 8 annotators. By collecting more labels than usual, by more annotators than is typically done, we can identify features that humans consider as characteristic of fake news, and compare them to the predictions of automated classifiers. We present a topic and genre analysis using Gate Cloud, indicative of the prevalence of satire-like text in the corpus. We then use the subjectivity analyzer VAGO, and a neural version of it, to clarify the link between ascriptions of the label Subjective and ascriptions of the label Fake News. The annotated dataset is available online at the following url: https://github.com/obs-info/obsinfox Keywords: Fake News, Multi-Labels, Subjectivity, Vagueness, Detail, Opinion, Exaggeration, French Press
comment: Paper to appear in the Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
♻ ☆ Technical Report: Impact of Position Bias on Language Models in Token Classification
Language Models (LMs) have shown state-of-the-art performance in Natural Language Processing (NLP) tasks. Downstream tasks such as Named Entity Recognition (NER) or Part-of-Speech (POS) tagging are known to suffer from data imbalance issues, particularly regarding the ratio of positive to negative examples and class disparities. This paper investigates an often-overlooked issue of encoder models, specifically the position bias of positive examples in token classification tasks. For completeness, we also include decoders in the evaluation. We evaluate the impact of position bias using different position embedding techniques, focusing on BERT with Absolute Position Embedding (APE), Relative Position Embedding (RPE), and Rotary Position Embedding (RoPE). Therefore, we conduct an in-depth evaluation of the impact of position bias on the performance of LMs when fine-tuned on token classification benchmarks. Our study includes CoNLL03 and OntoNote5.0 for NER, English Tree Bank UD\_en, and TweeBank for POS tagging. We propose an evaluation approach to investigate position bias in transformer models. We show that LMs can suffer from this bias with an average drop ranging from 3\% to 9\% in their performance. To mitigate this effect, we propose two methods: Random Position Shifting and Context Perturbation, that we apply on batches during the training process. The results show an improvement of $\approx$ 2\% in the performance of the model on CoNLL03, UD\_en, and TweeBank.
comment: Updated content of the preprint
♻ ☆ Supervised Knowledge Makes Large Language Models Better In-context Learners ICLR 2024
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering. The recent progress in large-scale generative models has further expanded their use in real-world language applications. However, the critical challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored. While previous in-context learning research has focused on enhancing models to adhere to users' specific instructions and quality expectations, and to avoid undesired outputs, little to no work has explored the use of task-Specific fine-tuned Language Models (SLMs) to improve LLMs' in-context learning during the inference stage. Our primary contribution is the establishment of a simple yet effective framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks. Using our proposed plug-in method, enhanced versions of Llama 2 and ChatGPT surpass their original versions regarding generalizability and factuality. We offer a comprehensive suite of resources, including 16 curated datasets, prompts, model checkpoints, and LLM outputs across 9 distinct tasks. The code and data are released at: https://github.com/YangLinyi/Supervised-Knowledge-Makes-Large-Language-Models-Better-In-context-Learners. Our empirical analysis sheds light on the advantages of incorporating discriminative models into LLMs and highlights the potential of our methodology in fostering more reliable LLMs.
comment: Accepted to ICLR 2024
♻ ☆ Towards Robustness of Text-to-Visualization Translation against Lexical and Phrasal Variability
Text-to-Vis is an emerging task in the natural language processing (NLP) area that aims to automatically generate data visualizations from natural language questions (NLQs). Despite their progress, existing text-to-vis models often heavily rely on lexical matching between words in the questions and tokens in data schemas. This overreliance on lexical matching may lead to a diminished level of model robustness against input variations. In this study, we thoroughly examine the robustness of current text-to-vis models, an area that has not previously been explored. In particular, we construct the first robustness dataset nvBench-Rob, which contains diverse lexical and phrasal variations based on the original text-to-vis benchmark nvBench. Then, we found that the performance of existing text-to-vis models on this new dataset dramatically drops, implying that these methods exhibit inadequate robustness overall. Finally, we propose a novel framework based on Retrieval-Augmented Generation (RAG) technique, named GRED, specifically designed to address input perturbations in these two variants. The framework consists of three parts: NLQ-Retrieval Generator, Visualization Query-Retrieval Retuner and Annotation-based Debugger, which are used to tackle the challenges posed by natural language variants, programming style differences and data schema variants, respectively. Extensive experimental evaluations show that, compared to the state-of-the-art model RGVisNet in the Text-to-Vis field, GRED performs better in terms of model robustness, with a 32% increase in accuracy on the proposed nvBench-Rob dataset.
♻ ☆ CrisisTransformers: Pre-trained language models and sentence encoders for crisis-related social media texts
Social media platforms play an essential role in crisis communication, but analyzing crisis-related social media texts is challenging due to their informal nature. Transformer-based pre-trained models like BERT and RoBERTa have shown success in various NLP tasks, but they are not tailored for crisis-related texts. Furthermore, general-purpose sentence encoders are used to generate sentence embeddings, regardless of the textual complexities in crisis-related texts. Advances in applications like text classification, semantic search, and clustering contribute to the effective processing of crisis-related texts, which is essential for emergency responders to gain a comprehensive view of a crisis event, whether historical or real-time. To address these gaps in crisis informatics literature, this study introduces CrisisTransformers, an ensemble of pre-trained language models and sentence encoders trained on an extensive corpus of over 15 billion word tokens from tweets associated with more than 30 crisis events, including disease outbreaks, natural disasters, conflicts, and other critical incidents. We evaluate existing models and CrisisTransformers on 18 crisis-specific public datasets. Our pre-trained models outperform strong baselines across all datasets in classification tasks, and our best-performing sentence encoder improves the state-of-the-art by 17.43% in sentence encoding tasks. Additionally, we investigate the impact of model initialization on convergence and evaluate the significance of domain-specific models in generating semantically meaningful sentence embeddings. The models are publicly available at: https://huggingface.co/crisistransformers
♻ ☆ RoT: Enhancing Large Language Models with Reflection on Search Trees
Large language models (LLMs) have demonstrated impressive capability in reasoning and planning when integrated with tree-search-based prompting methods. However, since these methods ignore the previous search experiences, they often make the same mistakes in the search process. To address this issue, we introduce Reflection on search Trees (RoT), an LLM reflection framework designed to improve the performance of tree-search-based prompting methods. It uses a strong LLM to summarize guidelines from previous tree search experiences to enhance the ability of a weak LLM. The guidelines are instructions about solving this task through tree search which can prevent the weak LLMs from making similar mistakes in the past search process. In addition, we proposed a novel state selection method, which identifies the critical information from historical search processes to help RoT generate more specific and meaningful guidelines. In our extensive experiments, we find that RoT significantly improves the performance of LLMs in reasoning or planning tasks with various tree-search-based prompting methods (e.g., BFS and MCTS). Non-tree-search-based prompting methods such as Chain-of-Thought (CoT) can also benefit from RoT guidelines since RoT can provide task-specific knowledge collected from the search experience.
comment: 9 pages main
♻ ☆ MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models SemEval '24
This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git
comment: Ranked 3rd in SemEval '24 Task 3 with F1 of 0.3435, close to 1st & 2nd by 0.0339 & 0.0025
♻ ☆ Training With "Paraphrasing the Original Text'' Improves Long-Context Performance
As Large Language Models (LLMs) continue to evolve, more are being designed to handle long-context inputs. Despite this advancement, many models face challenges in achieving high precision on long-context tasks, often showing a ``lost in the middle'' issue. This paper identifies the root of these issues as a deficiency in retrieval capabilities, exacerbated by the sparsity of key information in long contexts. To tackle this challenge, we introduce a novel approach called ``Paraphrasing the Original Text'', aimed at augmenting LLMs' proficiency in extracting information from long context. This enhancement is achieved through a specialized supervised fine-tuning stage that incorporates paraphrasing information into training samples, thereby improving the model's retrieval capabilities for long-context scenarios. Testing on datasets like LongBench and NaturalQuestions Multi-document QA dataset, our method demonstrated significant improvements in managing long-context tasks, effectively addressing the ``lost in the middle'' dilemma. Specifically, we observed an average performance increase of 6.4\% and 5.9\% across these datasets, respectively. Moreover, our approach is efficient, requiring minimal overhead with fine-tuning needed on just 19k samples. The model and training data have been made available on HuggingFace(https://huggingface.co/yuyijiong/Qwen-14b-chat-yarn-32k).
comment: Chinese version of this paper can be downloaded from (https://cloud.tsinghua.edu.cn/d/5894ec4442e54a6aac96/)
♻ ☆ From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications
Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed ``Revision Distance,'' utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, ``Revision Distance'' is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.
comment: 9 pages, 2 figures, under review
♻ ☆ Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning
The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged moderate-sized large language models (LLMs) highlights the potential of building smaller yet powerful LLMs. Regardless, the cost of training such models from scratch on trillions of tokens remains high. In this work, we study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models. Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains. We demonstrate the efficacy of our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE, OpenLLaMA and the concurrent TinyLlama models, on a wide range of downstream and instruction tuning evaluations, while requiring only 3% of compute compared to training such models from scratch. This work provides compelling evidence that leveraging existing LLMs with structured pruning is a far more cost-effective approach for building competitive small-scale LLMs
comment: The code and models are available at https://github.com/princeton-nlp/LLM-Shearing
♻ ☆ Privacy Preserving Prompt Engineering: A Survey
Pre-trained language models (PLMs) have demonstrated significant proficiency in solving a wide range of general natural language processing (NLP) tasks. Researchers have observed a direct correlation between the performance of these models and their sizes. As a result, the sizes of these models have notably expanded in recent years, persuading researchers to adopt the term large language models (LLMs) to characterize the larger-sized PLMs. The size expansion comes with a distinct capability called in-context learning (ICL), which represents a special form of prompting and allows the models to be utilized through the presentation of demonstration examples without modifications to the model parameters. Although interesting, privacy concerns have become a major obstacle in its widespread usage. Multiple studies have examined the privacy risks linked to ICL and prompting in general, and have devised techniques to alleviate these risks. Thus, there is a necessity to organize these mitigation techniques for the benefit of the community. This survey provides a systematic overview of the privacy protection methods employed during ICL and prompting in general. We review, analyze, and compare different methods under this paradigm. Furthermore, we provide a summary of the resources accessible for the development of these frameworks. Finally, we discuss the limitations of these frameworks and offer a detailed examination of the promising areas that necessitate further exploration.
comment: 23 pages, 8 figures
♻ ☆ RULER: What's the Real Context Size of Your Long-Context Language Models?
The needle-in-a-haystack (NIAH) test, which examines the ability to retrieve a piece of information (the "needle") from long distractor texts (the "haystack"), has been widely adopted to evaluate long-context language models (LMs). However, this simple retrieval-based test is indicative of only a superficial form of long-context understanding. To provide a more comprehensive evaluation of long-context LMs, we create a new synthetic benchmark RULER with flexible configurations for customized sequence length and task complexity. RULER expands upon the vanilla NIAH test to encompass variations with diverse types and quantities of needles. Moreover, RULER introduces new task categories multi-hop tracing and aggregation to test behaviors beyond searching from context. We evaluate ten long-context LMs with 13 representative tasks in RULER. Despite achieving nearly perfect accuracy in the vanilla NIAH test, all models exhibit large performance drops as the context length increases. While these models all claim context sizes of 32K tokens or greater, only four models (GPT-4, Command-R, Yi-34B, and Mixtral) can maintain satisfactory performance at the length of 32K. Our analysis of Yi-34B, which supports context length of 200K, reveals large room for improvement as we increase input length and task complexity. We open source RULER to spur comprehensive evaluation of long-context LMs.
♻ ☆ Does fine-tuning GPT-3 with the OpenAI API leak personally-identifiable information?
Machine learning practitioners often fine-tune generative pre-trained models like GPT-3 to improve model performance at specific tasks. Previous works, however, suggest that fine-tuned machine learning models memorize and emit sensitive information from the original fine-tuning dataset. Companies such as OpenAI offer fine-tuning services for their models, but no prior work has conducted a memorization attack on any closed-source models. In this work, we simulate a privacy attack on GPT-3 using OpenAI's fine-tuning API. Our objective is to determine if personally identifiable information (PII) can be extracted from this model. We (1) explore the use of naive prompting methods on a GPT-3 fine-tuned classification model, and (2) we design a practical word generation task called Autocomplete to investigate the extent of PII memorization in fine-tuned GPT-3 within a real-world context. Our findings reveal that fine-tuning GPT3 for both tasks led to the model memorizing and disclosing critical personally identifiable information (PII) obtained from the underlying fine-tuning dataset. To encourage further research, we have made our codes and datasets publicly available on GitHub at: https://github.com/albertsun1/gpt3-pii-attacks
♻ ☆ Adapted Large Language Models Can Outperform Medical Experts in Clinical Text Summarization
Analyzing vast textual data and summarizing key information from electronic health records imposes a substantial burden on how clinicians allocate their time. Although large language models (LLMs) have shown promise in natural language processing (NLP), their effectiveness on a diverse range of clinical summarization tasks remains unproven. In this study, we apply adaptation methods to eight LLMs, spanning four distinct clinical summarization tasks: radiology reports, patient questions, progress notes, and doctor-patient dialogue. Quantitative assessments with syntactic, semantic, and conceptual NLP metrics reveal trade-offs between models and adaptation methods. A clinical reader study with ten physicians evaluates summary completeness, correctness, and conciseness; in a majority of cases, summaries from our best adapted LLMs are either equivalent (45%) or superior (36%) compared to summaries from medical experts. The ensuing safety analysis highlights challenges faced by both LLMs and medical experts, as we connect errors to potential medical harm and categorize types of fabricated information. Our research provides evidence of LLMs outperforming medical experts in clinical text summarization across multiple tasks. This suggests that integrating LLMs into clinical workflows could alleviate documentation burden, allowing clinicians to focus more on patient care.
comment: 27 pages, 19 figures
♻ ☆ On the Fragility of Active Learners
Active learning (AL) techniques aim to maximally utilize a labeling budget by iteratively selecting instances that are most likely to improve prediction accuracy. However, their benefit compared to random sampling has not been consistent across various setups, e.g., different datasets, classifiers. In this empirical study, we examine how a combination of different factors might obscure any gains from an AL technique. Focusing on text classification, we rigorously evaluate AL techniques over around 1000 experiments that vary wrt the dataset, batch size, text representation and the classifier. We show that AL is only effective in a narrow set of circumstances. We also address the problem of using metrics that are better aligned with real world expectations. The impact of this study is in its insights for a practitioner: (a) the choice of text representation and classifier is as important as that of an AL technique, (b) choice of the right metric is critical in assessment of the latter, and, finally, (c) reported AL results must be holistically interpreted, accounting for variables other than just the query strategy.
♻ ☆ The Expressive Power of Transformers with Chain of Thought ICLR
Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming projected pre-norm (a slight generalization of standard pre-norm), adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, this provides a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.
comment: 9-page preprint. ICLR camera ready posted April 11
Computer Vision and Pattern Recognition 166
☆ GoMVS: Geometrically Consistent Cost Aggregation for Multi-View Stereo CVPR 2024
Matching cost aggregation plays a fundamental role in learning-based multi-view stereo networks. However, directly aggregating adjacent costs can lead to suboptimal results due to local geometric inconsistency. Related methods either seek selective aggregation or improve aggregated depth in the 2D space, both are unable to handle geometric inconsistency in the cost volume effectively. In this paper, we propose GoMVS to aggregate geometrically consistent costs, yielding better utilization of adjacent geometries. More specifically, we correspond and propagate adjacent costs to the reference pixel by leveraging the local geometric smoothness in conjunction with surface normals. We achieve this by the geometric consistent propagation (GCP) module. It computes the correspondence from the adjacent depth hypothesis space to the reference depth space using surface normals, then uses the correspondence to propagate adjacent costs to the reference geometry, followed by a convolution for aggregation. Our method achieves new state-of-the-art performance on DTU, Tanks & Temple, and ETH3D datasets. Notably, our method ranks 1st on the Tanks & Temple Advanced benchmark.
comment: CVPR 2024. Project page: https://wuuu3511.github.io/gomvs/ Code: https://github.com/Wuuu3511/GoMVS
☆ Connecting NeRFs, Images, and Text CVPR
Neural Radiance Fields (NeRFs) have emerged as a standard framework for representing 3D scenes and objects, introducing a novel data type for information exchange and storage. Concurrently, significant progress has been made in multimodal representation learning for text and image data. This paper explores a novel research direction that aims to connect the NeRF modality with other modalities, similar to established methodologies for images and text. To this end, we propose a simple framework that exploits pre-trained models for NeRF representations alongside multimodal models for text and image processing. Our framework learns a bidirectional mapping between NeRF embeddings and those obtained from corresponding images and text. This mapping unlocks several novel and useful applications, including NeRF zero-shot classification and NeRF retrieval from images or text.
comment: Accepted at CVPRW-INRV 2024
☆ GoMAvatar: Efficient Animatable Human Modeling from Monocular Video Using Gaussians-on-Mesh CVPR 2024
We introduce GoMAvatar, a novel approach for real-time, memory-efficient, high-quality animatable human modeling. GoMAvatar takes as input a single monocular video to create a digital avatar capable of re-articulation in new poses and real-time rendering from novel viewpoints, while seamlessly integrating with rasterization-based graphics pipelines. Central to our method is the Gaussians-on-Mesh representation, a hybrid 3D model combining rendering quality and speed of Gaussian splatting with geometry modeling and compatibility of deformable meshes. We assess GoMAvatar on ZJU-MoCap data and various YouTube videos. GoMAvatar matches or surpasses current monocular human modeling algorithms in rendering quality and significantly outperforms them in computational efficiency (43 FPS) while being memory-efficient (3.63 MB per subject).
comment: CVPR 2024; project page: https://wenj.github.io/GoMAvatar/
☆ OpenBias: Open-set Bias Detection in Text-to-Image Generative Models CVPR 2024
Text-to-image generative models are becoming increasingly popular and accessible to the general public. As these models see large-scale deployments, it is necessary to deeply investigate their safety and fairness to not disseminate and perpetuate any kind of biases. However, existing works focus on detecting closed sets of biases defined a priori, limiting the studies to well-known concepts. In this paper, we tackle the challenge of open-set bias detection in text-to-image generative models presenting OpenBias, a new pipeline that identifies and quantifies the severity of biases agnostically, without access to any precompiled set. OpenBias has three stages. In the first phase, we leverage a Large Language Model (LLM) to propose biases given a set of captions. Secondly, the target generative model produces images using the same set of captions. Lastly, a Vision Question Answering model recognizes the presence and extent of the previously proposed biases. We study the behavior of Stable Diffusion 1.5, 2, and XL emphasizing new biases, never investigated before. Via quantitative experiments, we demonstrate that OpenBias agrees with current closed-set bias detection methods and human judgement.
comment: CVPR 2024 Highlight - Code: https://github.com/Picsart-AI-Research/OpenBias
☆ Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
comment: Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point
☆ QuasiSim: Parameterized Quasi-Physical Simulators for Dexterous Manipulations Transfer
We explore the dexterous manipulation transfer problem by designing simulators. The task wishes to transfer human manipulations to dexterous robot hand simulations and is inherently difficult due to its intricate, highly-constrained, and discontinuous dynamics and the need to control a dexterous hand with a DoF to accurately replicate human manipulations. Previous approaches that optimize in high-fidelity black-box simulators or a modified one with relaxed constraints only demonstrate limited capabilities or are restricted by insufficient simulation fidelity. We introduce parameterized quasi-physical simulators and a physics curriculum to overcome these limitations. The key ideas are 1) balancing between fidelity and optimizability of the simulation via a curriculum of parameterized simulators, and 2) solving the problem in each of the simulators from the curriculum, with properties ranging from high task optimizability to high fidelity. We successfully enable a dexterous hand to track complex and diverse manipulations in high-fidelity simulated environments, boosting the success rate by 11\%+ from the best-performed baseline. The project website is available at https://meowuu7.github.io/QuasiSim/.
comment: Project website: https://meowuu7.github.io/QuasiSim/ Code: https://github.com/Meowuu7/QuasiSim Hugging Face Demo: https://huggingface.co/spaces/xymeow7/quasi-physical-sims
☆ ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback
To enhance the controllability of text-to-image diffusion models, existing efforts like ControlNet incorporated image-based conditional controls. In this paper, we reveal that existing methods still face significant challenges in generating images that align with the image conditional controls. To this end, we propose ControlNet++, a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls. Specifically, for an input conditional control, we use a pre-trained discriminative reward model to extract the corresponding condition of the generated images, and then optimize the consistency loss between the input conditional control and extracted condition. A straightforward implementation would be generating images from random noises and then calculating the consistency loss, but such an approach requires storing gradients for multiple sampling timesteps, leading to considerable time and memory costs. To address this, we introduce an efficient reward strategy that deliberately disturbs the input images by adding noise, and then uses the single-step denoised images for reward fine-tuning. This avoids the extensive costs associated with image sampling, allowing for more efficient reward fine-tuning. Extensive experiments show that ControlNet++ significantly improves controllability under various conditional controls. For example, it achieves improvements over ControlNet by 7.9% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions.
comment: Project Page: https://liming-ai.github.io/ControlNet_Plus_Plus
☆ WaveMo: Learning Wavefront Modulations to See Through Scattering
Imaging through scattering media is a fundamental and pervasive challenge in fields ranging from medical diagnostics to astronomy. A promising strategy to overcome this challenge is wavefront modulation, which induces measurement diversity during image acquisition. Despite its importance, designing optimal wavefront modulations to image through scattering remains under-explored. This paper introduces a novel learning-based framework to address the gap. Our approach jointly optimizes wavefront modulations and a computationally lightweight feedforward "proxy" reconstruction network. This network is trained to recover scenes obscured by scattering, using measurements that are modified by these modulations. The learned modulations produced by our framework generalize effectively to unseen scattering scenarios and exhibit remarkable versatility. During deployment, the learned modulations can be decoupled from the proxy network to augment other more computationally expensive restoration algorithms. Through extensive experiments, we demonstrate our approach significantly advances the state of the art in imaging through scattering media. Our project webpage is at https://wavemo-2024.github.io/.
☆ View Selection for 3D Captioning via Diffusion Ranking
Scalable annotation approaches are crucial for constructing extensive 3D-text datasets, facilitating a broader range of applications. However, existing methods sometimes lead to the generation of hallucinated captions, compromising caption quality. This paper explores the issue of hallucination in 3D object captioning, with a focus on Cap3D method, which renders 3D objects into 2D views for captioning using pre-trained models. We pinpoint a major challenge: certain rendered views of 3D objects are atypical, deviating from the training data of standard image captioning models and causing hallucinations. To tackle this, we present DiffuRank, a method that leverages a pre-trained text-to-3D model to assess the alignment between 3D objects and their 2D rendered views, where the view with high alignment closely represent the object's characteristics. By ranking all rendered views and feeding the top-ranked ones into GPT4-Vision, we enhance the accuracy and detail of captions, enabling the correction of 200k captions in the Cap3D dataset and extending it to 1 million captions across Objaverse and Objaverse-XL datasets. Additionally, we showcase the adaptability of DiffuRank by applying it to pre-trained text-to-image models for a Visual Question Answering task, where it outperforms the CLIP model.
comment: Dataset link: https://huggingface.co/datasets/tiange/Cap3D
☆ Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Representation Learning
Contrastive vision-language models like CLIP have gained popularity for their versatile applicable learned representations in various downstream tasks. Despite their successes in some tasks, like zero-shot image recognition, they also perform surprisingly poor on other tasks, like attribute detection. Previous work has attributed these challenges to the modality gap, a separation of image and text in the shared representation space, and a bias towards objects over other factors, such as attributes. In this work we investigate both phenomena. We find that only a few embedding dimensions drive the modality gap. Further, we propose a measure for object bias and find that object bias does not lead to worse performance on other concepts, such as attributes. But what leads to the emergence of the modality gap and object bias? To answer this question we carefully designed an experimental setting which allows us to control the amount of shared information between the modalities. This revealed that the driving factor behind both, the modality gap and the object bias, is the information imbalance between images and captions.
☆ Gaga: Group Any Gaussians via 3D-aware Memory Bank
We introduce Gaga, a framework that reconstructs and segments open-world 3D scenes by leveraging inconsistent 2D masks predicted by zero-shot segmentation models. Contrasted to prior 3D scene segmentation approaches that heavily rely on video object tracking, Gaga utilizes spatial information and effectively associates object masks across diverse camera poses. By eliminating the assumption of continuous view changes in training images, Gaga demonstrates robustness to variations in camera poses, particularly beneficial for sparsely sampled images, ensuring precise mask label consistency. Furthermore, Gaga accommodates 2D segmentation masks from diverse sources and demonstrates robust performance with different open-world zero-shot segmentation models, enhancing its versatility. Extensive qualitative and quantitative evaluations demonstrate that Gaga performs favorably against state-of-the-art methods, emphasizing its potential for real-world applications such as scene understanding and manipulation.
comment: Project Page: https://www.gaga.gallery
Self-supervised Dataset Distillation: A Good Compression Is All You Need
Dataset distillation aims to compress information from a large-scale original dataset to a new compact dataset while striving to preserve the utmost degree of the original data informational essence. Previous studies have predominantly concentrated on aligning the intermediate statistics between the original and distilled data, such as weight trajectory, features, gradient, BatchNorm, etc. In this work, we consider addressing this task through the new lens of model informativeness in the compression stage on the original dataset pretraining. We observe that with the prior state-of-the-art SRe$^2$L, as model sizes increase, it becomes increasingly challenging for supervised pretrained models to recover learned information during data synthesis, as the channel-wise mean and variance inside the model are flatting and less informative. We further notice that larger variances in BN statistics from self-supervised models enable larger loss signals to update the recovered data by gradients, enjoying more informativeness during synthesis. Building on this observation, we introduce SC-DD, a simple yet effective Self-supervised Compression framework for Dataset Distillation that facilitates diverse information compression and recovery compared to traditional supervised learning schemes, further reaps the potential of large pretrained models with enhanced capabilities. Extensive experiments are conducted on CIFAR-100, Tiny-ImageNet and ImageNet-1K datasets to demonstrate the superiority of our proposed approach. The proposed SC-DD outperforms all previous state-of-the-art supervised dataset distillation methods when employing larger models, such as SRe$^2$L, MTT, TESLA, DC, CAFE, etc., by large margins under the same recovery and post-training budgets. Code is available at https://github.com/VILA-Lab/SRe2L/tree/main/SCDD/.
☆ Ferret-v2: An Improved Baseline for Referring and Grounding with Large Language Models
While Ferret seamlessly integrates regional understanding into the Large Language Model (LLM) to facilitate its referring and grounding capability, it poses certain limitations: constrained by the pre-trained fixed visual encoder and failed to perform well on broader tasks. In this work, we unveil Ferret-v2, a significant upgrade to Ferret, with three key designs. (1) Any resolution grounding and referring: A flexible approach that effortlessly handles higher image resolution, improving the model's ability to process and understand images in greater detail. (2) Multi-granularity visual encoding: By integrating the additional DINOv2 encoder, the model learns better and diverse underlying contexts for global and fine-grained visual information. (3) A three-stage training paradigm: Besides image-caption alignment, an additional stage is proposed for high-resolution dense alignment before the final instruction tuning. Experiments show that Ferret-v2 provides substantial improvements over Ferret and other state-of-the-art methods, thanks to its high-resolution scaling and fine-grained visual processing.
comment: Preprint. 14 pages, 4 figures
☆ Taming Stable Diffusion for Text to 360° Panorama Image Generation CVPR 2024
Generative models, e.g., Stable Diffusion, have enabled the creation of photorealistic images from text prompts. Yet, the generation of 360-degree panorama images from text remains a challenge, particularly due to the dearth of paired text-panorama data and the domain gap between panorama and perspective images. In this paper, we introduce a novel dual-branch diffusion model named PanFusion to generate a 360-degree image from a text prompt. We leverage the stable diffusion model as one branch to provide prior knowledge in natural image generation and register it to another panorama branch for holistic image generation. We propose a unique cross-attention mechanism with projection awareness to minimize distortion during the collaborative denoising process. Our experiments validate that PanFusion surpasses existing methods and, thanks to its dual-branch structure, can integrate additional constraints like room layout for customized panorama outputs. Code is available at https://chengzhag.github.io/publication/panfusion.
comment: CVPR 2024. Project Page: https://chengzhag.github.io/publication/panfusion Code: https://github.com/chengzhag/PanFusion
☆ Boosting Self-Supervision for Single-View Scene Completion via Knowledge Distillation
Inferring scene geometry from images via Structure from Motion is a long-standing and fundamental problem in computer vision. While classical approaches and, more recently, depth map predictions only focus on the visible parts of a scene, the task of scene completion aims to reason about geometry even in occluded regions. With the popularity of neural radiance fields (NeRFs), implicit representations also became popular for scene completion by predicting so-called density fields. Unlike explicit approaches. e.g. voxel-based methods, density fields also allow for accurate depth prediction and novel-view synthesis via image-based rendering. In this work, we propose to fuse the scene reconstruction from multiple images and distill this knowledge into a more accurate single-view scene reconstruction. To this end, we propose Multi-View Behind the Scenes (MVBTS) to fuse density fields from multiple posed images, trained fully self-supervised only from image data. Using knowledge distillation, we use MVBTS to train a single-view scene completion network via direct supervision called KDBTS. It achieves state-of-the-art performance on occupancy prediction, especially in occluded regions.
☆ FusionMamba: Efficient Image Fusion with State Space Model
Image fusion aims to generate a high-resolution multi/hyper-spectral image by combining a high-resolution image with limited spectral information and a low-resolution image with abundant spectral data. Current deep learning (DL)-based methods for image fusion primarily rely on CNNs or Transformers to extract features and merge different types of data. While CNNs are efficient, their receptive fields are limited, restricting their capacity to capture global context. Conversely, Transformers excel at learning global information but are hindered by their quadratic complexity. Fortunately, recent advancements in the State Space Model (SSM), particularly Mamba, offer a promising solution to this issue by enabling global awareness with linear complexity. However, there have been few attempts to explore the potential of SSM in information fusion, which is a crucial ability in domains like image fusion. Therefore, we propose FusionMamba, an innovative method for efficient image fusion. Our contributions mainly focus on two aspects. Firstly, recognizing that images from different sources possess distinct properties, we incorporate Mamba blocks into two U-shaped networks, presenting a novel architecture that extracts spatial and spectral features in an efficient, independent, and hierarchical manner. Secondly, to effectively combine spatial and spectral information, we extend the Mamba block to accommodate dual inputs. This expansion leads to the creation of a new module called the FusionMamba block, which outperforms existing fusion techniques such as concatenation and cross-attention. To validate FusionMamba's effectiveness, we conduct a series of experiments on five datasets related to three image fusion tasks. The quantitative and qualitative evaluation results demonstrate that our method achieves state-of-the-art (SOTA) performance, underscoring the superiority of FusionMamba.
☆ Parameter Hierarchical Optimization for Visible-Infrared Person Re-Identification
Visible-infrared person re-identification (VI-reID) aims at matching cross-modality pedestrian images captured by disjoint visible or infrared cameras. Existing methods alleviate the cross-modality discrepancies via designing different kinds of network architectures. Different from available methods, in this paper, we propose a novel parameter optimizing paradigm, parameter hierarchical optimization (PHO) method, for the task of VI-ReID. It allows part of parameters to be directly optimized without any training, which narrows the search space of parameters and makes the whole network more easier to be trained. Specifically, we first divide the parameters into different types, and then introduce a self-adaptive alignment strategy (SAS) to automatically align the visible and infrared images through transformation. Considering that features in different dimension have varying importance, we develop an auto-weighted alignment learning (AAL) module that can automatically weight features according to their importance. Importantly, in the alignment process of SAS and AAL, all the parameters are immediately optimized with optimization principles rather than training the whole network, which yields a better parameter training manner. Furthermore, we establish the cross-modality consistent learning (CCL) loss to extract discriminative person representations with translation consistency. We provide both theoretical justification and empirical evidence that our proposed PHO method outperform existing VI-reID approaches.
☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. All code and model weights are public at https://github.com/baochi0212/LaVy
comment: 7 pages
☆ Context-aware Video Anomaly Detection in Long-Term Datasets
Video anomaly detection research is generally evaluated on short, isolated benchmark videos only a few minutes long. However, in real-world environments, security cameras observe the same scene for months or years at a time, and the notion of anomalous behavior critically depends on context, such as the time of day, day of week, or schedule of events. Here, we propose a context-aware video anomaly detection algorithm, Trinity, specifically targeted to these scenarios. Trinity is especially well-suited to crowded scenes in which individuals cannot be easily tracked, and anomalies are due to speed, direction, or absence of group motion. Trinity is a contrastive learning framework that aims to learn alignments between context, appearance, and motion, and uses alignment quality to classify videos as normal or anomalous. We evaluate our algorithm on both conventional benchmarks and a public webcam-based dataset we collected that spans more than three months of activity.
☆ The Power of Properties: Uncovering the Influential Factors in Emotion Classification ICPR
Facial expression-based human emotion recognition is a critical research area in psychology and medicine. State-of-the-art classification performance is only reached by end-to-end trained neural networks. Nevertheless, such black-box models lack transparency in their decision-making processes, prompting efforts to ascertain the rules that underlie classifiers' decisions. Analyzing single inputs alone fails to expose systematic learned biases. These biases can be characterized as facial properties summarizing abstract information like age or medical conditions. Therefore, understanding a model's prediction behavior requires an analysis rooted in causality along such selected properties. We demonstrate that up to 91.25% of classifier output behavior changes are statistically significant concerning basic properties. Among those are age, gender, and facial symmetry. Furthermore, the medical usage of surface electromyography significantly influences emotion prediction. We introduce a workflow to evaluate explicit properties and their impact. These insights might help medical professionals select and apply classifiers regarding their specialized data and properties.
comment: 8 pages, 3 tables, 1 figure, accepted at ICPRAI 2024
☆ Resolve Domain Conflicts for Generalizable Remote Physiological Measurement ACM MM 2023
Remote photoplethysmography (rPPG) technology has become increasingly popular due to its non-invasive monitoring of various physiological indicators, making it widely applicable in multimedia interaction, healthcare, and emotion analysis. Existing rPPG methods utilize multiple datasets for training to enhance the generalizability of models. However, they often overlook the underlying conflict issues across different datasets, such as (1) label conflict resulting from different phase delays between physiological signal labels and face videos at the instance level, and (2) attribute conflict stemming from distribution shifts caused by head movements, illumination changes, skin types, etc. To address this, we introduce the DOmain-HArmonious framework (DOHA). Specifically, we first propose a harmonious phase strategy to eliminate uncertain phase delays and preserve the temporal variation of physiological signals. Next, we design a harmonious hyperplane optimization that reduces irrelevant attribute shifts and encourages the model's optimization towards a global solution that fits more valid scenarios. Our experiments demonstrate that DOHA significantly improves the performance of existing methods under multiple protocols. Our code is available at https://github.com/SWY666/rPPG-DOHA.
comment: Accepted by ACM MM 2023
☆ MindBridge: A Cross-Subject Brain Decoding Framework CVPR 2024
Brain decoding, a pivotal field in neuroscience, aims to reconstruct stimuli from acquired brain signals, primarily utilizing functional magnetic resonance imaging (fMRI). Currently, brain decoding is confined to a per-subject-per-model paradigm, limiting its applicability to the same individual for whom the decoding model is trained. This constraint stems from three key challenges: 1) the inherent variability in input dimensions across subjects due to differences in brain size; 2) the unique intrinsic neural patterns, influencing how different individuals perceive and process sensory information; 3) limited data availability for new subjects in real-world scenarios hampers the performance of decoding models. In this paper, we present a novel approach, MindBridge, that achieves cross-subject brain decoding by employing only one model. Our proposed framework establishes a generic paradigm capable of addressing these challenges by introducing biological-inspired aggregation function and novel cyclic fMRI reconstruction mechanism for subject-invariant representation learning. Notably, by cycle reconstruction of fMRI, MindBridge can enable novel fMRI synthesis, which also can serve as pseudo data augmentation. Within the framework, we also devise a novel reset-tuning method for adapting a pretrained model to a new subject. Experimental results demonstrate MindBridge's ability to reconstruct images for multiple subjects, which is competitive with dedicated subject-specific models. Furthermore, with limited data for a new subject, we achieve a high level of decoding accuracy, surpassing that of subject-specific models. This advancement in cross-subject brain decoding suggests promising directions for wider applications in neuroscience and indicates potential for more efficient utilization of limited fMRI data in real-world scenarios. Project page: https://littlepure2333.github.io/MindBridge
comment: CVPR 2024 highlight. Code is available at https://github.com/littlepure2333/MindBridge
☆ Fuss-Free Network: A Simplified and Efficient Neural Network for Crowd Counting
In the field of crowd-counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper introduces the Fuss-Free Network (FFNet), a crowd counting deep learning model that is characterized by its simplicity and efficiency in terms of its structure. The model comprises only a backbone of a neural network and a multi-scale feature fusion structure.The multi-scale feature fusion structure is a simple architecture consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation.Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models.The experimental results further indicate that excellent performance in crowd counting tasks can also be achieved by utilizing a simple, low-parameter, and computationally efficient neural network structure.
☆ TBSN: Transformer-Based Blind-Spot Network for Self-Supervised Image Denoising
Blind-spot networks (BSN) have been prevalent network architectures in self-supervised image denoising (SSID). Existing BSNs are mostly conducted with convolution layers. Although transformers offer potential solutions to the limitations of convolutions and have demonstrated success in various image restoration tasks, their attention mechanisms may violate the blind-spot requirement, thus restricting their applicability in SSID. In this paper, we present a transformer-based blind-spot network (TBSN) by analyzing and redesigning the transformer operators that meet the blind-spot requirement. Specifically, TBSN follows the architectural principles of dilated BSNs, and incorporates spatial as well as channel self-attention layers to enhance the network capability. For spatial self-attention, an elaborate mask is applied to the attention matrix to restrict its receptive field, thus mimicking the dilated convolution. For channel self-attention, we observe that it may leak the blind-spot information when the channel number is greater than spatial size in the deep layers of multi-scale architectures. To eliminate this effect, we divide the channel into several groups and perform channel attention separately. Furthermore, we introduce a knowledge distillation strategy that distills TBSN into smaller denoisers to improve computational efficiency while maintaining performance. Extensive experiments on real-world image denoising datasets show that TBSN largely extends the receptive field and exhibits favorable performance against state-of-the-art SSID methods. The code and pre-trained models will be publicly available at https://github.com/nagejacob/TBSN.
☆ Streamlined Photoacoustic Image Processing with Foundation Models: A Training-Free Solution
Foundation models have rapidly evolved and have achieved significant accomplishments in computer vision tasks. Specifically, the prompt mechanism conveniently allows users to integrate image prior information into the model, making it possible to apply models without any training. Therefore, we propose a method based on foundation models and zero training to solve the tasks of photoacoustic (PA) image segmentation. We employed the segment anything model (SAM) by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks, including: (1) removing the skin signal in three-dimensional PA image rendering; (2) dual speed-of-sound reconstruction, and (3) segmentation of finger blood vessels. Through these demonstrations, we have concluded that deep learning can be directly applied in PA imaging without the requirement for network design and training. This potentially allows for a hands-on, convenient approach to achieving efficient and accurate segmentation of PA images. This letter serves as a comprehensive tutorial, facilitating the mastery of the technique through the provision of code and sample datasets.
☆ Heron-Bench: A Benchmark for Evaluating Vision Language Models in Japanese
Vision Language Models (VLMs) have undergone a rapid evolution, giving rise to significant advancements in the realm of multimodal understanding tasks. However, the majority of these models are trained and evaluated on English-centric datasets, leaving a gap in the development and evaluation of VLMs for other languages, such as Japanese. This gap can be attributed to the lack of methodologies for constructing VLMs and the absence of benchmarks to accurately measure their performance. To address this issue, we introduce a novel benchmark, Japanese Heron-Bench, for evaluating Japanese capabilities of VLMs. The Japanese Heron-Bench consists of a variety of imagequestion answer pairs tailored to the Japanese context. Additionally, we present a baseline Japanese VLM that has been trained with Japanese visual instruction tuning datasets. Our Heron-Bench reveals the strengths and limitations of the proposed VLM across various ability dimensions. Furthermore, we clarify the capability gap between strong closed models like GPT-4V and the baseline model, providing valuable insights for future research in this domain. We release the benchmark dataset and training code to facilitate further developments in Japanese VLM research.
☆ Sparse Laneformer
Lane detection is a fundamental task in autonomous driving, and has achieved great progress as deep learning emerges. Previous anchor-based methods often design dense anchors, which highly depend on the training dataset and remain fixed during inference. We analyze that dense anchors are not necessary for lane detection, and propose a transformer-based lane detection framework based on a sparse anchor mechanism. To this end, we generate sparse anchors with position-aware lane queries and angle queries instead of traditional explicit anchors. We adopt Horizontal Perceptual Attention (HPA) to aggregate the lane features along the horizontal direction, and adopt Lane-Angle Cross Attention (LACA) to perform interactions between lane queries and angle queries. We also propose Lane Perceptual Attention (LPA) based on deformable cross attention to further refine the lane predictions. Our method, named Sparse Laneformer, is easy-to-implement and end-to-end trainable. Extensive experiments demonstrate that Sparse Laneformer performs favorably against the state-of-the-art methods, e.g., surpassing Laneformer by 3.0% F1 score and O2SFormer by 0.7% F1 score with fewer MACs on CULane with the same ResNet-34 backbone.
☆ Voice-Assisted Real-Time Traffic Sign Recognition System Using Convolutional Neural Network
Traffic signs are important in communicating information to drivers. Thus, comprehension of traffic signs is essential for road safety and ignorance may result in road accidents. Traffic sign detection has been a research spotlight over the past few decades. Real-time and accurate detections are the preliminaries of robust traffic sign detection system which is yet to be achieved. This study presents a voice-assisted real-time traffic sign recognition system which is capable of assisting drivers. This system functions under two subsystems. Initially, the detection and recognition of the traffic signs are carried out using a trained Convolutional Neural Network (CNN). After recognizing the specific traffic sign, it is narrated to the driver as a voice message using a text-to-speech engine. An efficient CNN model for a benchmark dataset is developed for real-time detection and recognition using Deep Learning techniques. The advantage of this system is that even if the driver misses a traffic sign, or does not look at the traffic sign, or is unable to comprehend the sign, the system detects it and narrates it to the driver. A system of this type is also important in the development of autonomous vehicles.
☆ DGMamba: Domain Generalization via Generalized State Space Model
Domain generalization~(DG) aims at solving distribution shift problems in various scenes. Existing approaches are based on Convolution Neural Networks (CNNs) or Vision Transformers (ViTs), which suffer from limited receptive fields or quadratic complexities issues. Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields. Despite this, it can hardly be applied to DG to address distribution shifts, due to the hidden state issues and inappropriate scan mechanisms. In this paper, we propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains and meanwhile has the advantages of global receptive fields, and efficient linear complexity. Our DGMamba compromises two core components: Hidden State Suppressing~(HSS) and Semantic-aware Patch refining~(SPR). In particular, HSS is introduced to mitigate the influence of hidden states associated with domain-specific features during output prediction. SPR strives to encourage the model to concentrate more on objects rather than context, consisting of two designs: Prior-Free Scanning~(PFS), and Domain Context Interchange~(DCI). Concretely, PFS aims to shuffle the non-semantic patches within images, creating more flexible and effective sequences from images, and DCI is designed to regularize Mamba with the combination of mismatched non-semantic and semantic information by fusing patches among domains. Extensive experiments on four commonly used DG benchmarks demonstrate that the proposed DGMamba achieves remarkably superior results to state-of-the-art models. The code will be made publicly available.
☆ VIFNet: An End-to-end Visible-Infrared Fusion Network for Image Dehazing
Image dehazing poses significant challenges in environmental perception. Recent research mainly focus on deep learning-based methods with single modality, while they may result in severe information loss especially in dense-haze scenarios. The infrared image exhibits robustness to the haze, however, existing methods have primarily treated the infrared modality as auxiliary information, failing to fully explore its rich information in dehazing. To address this challenge, the key insight of this study is to design a visible-infrared fusion network for image dehazing. In particular, we propose a multi-scale Deep Structure Feature Extraction (DSFE) module, which incorporates the Channel-Pixel Attention Block (CPAB) to restore more spatial and marginal information within the deep structural features. Additionally, we introduce an inconsistency weighted fusion strategy to merge the two modalities by leveraging the more reliable information. To validate this, we construct a visible-infrared multimodal dataset called AirSim-VID based on the AirSim simulation platform. Extensive experiments performed on challenging real and simulated image datasets demonstrate that VIFNet can outperform many state-of-the-art competing methods. The code and dataset are available at https://github.com/mengyu212/VIFNet_dehazing.
☆ AUG: A New Dataset and An Efficient Model for Aerial Image Urban Scene Graph Generation
Scene graph generation (SGG) aims to understand the visual objects and their semantic relationships from one given image. Until now, lots of SGG datasets with the eyelevel view are released but the SGG dataset with the overhead view is scarcely studied. By contrast to the object occlusion problem in the eyelevel view, which impedes the SGG, the overhead view provides a new perspective that helps to promote the SGG by providing a clear perception of the spatial relationships of objects in the ground scene. To fill in the gap of the overhead view dataset, this paper constructs and releases an aerial image urban scene graph generation (AUG) dataset. Images from the AUG dataset are captured with the low-attitude overhead view. In the AUG dataset, 25,594 objects, 16,970 relationships, and 27,175 attributes are manually annotated. To avoid the local context being overwhelmed in the complex aerial urban scene, this paper proposes one new locality-preserving graph convolutional network (LPG). Different from the traditional graph convolutional network, which has the natural advantage of capturing the global context for SGG, the convolutional layer in the LPG integrates the non-destructive initial features of the objects with dynamically updated neighborhood information to preserve the local context under the premise of mining the global context. To address the problem that there exists an extra-large number of potential object relationship pairs but only a small part of them is meaningful in AUG, we propose the adaptive bounding box scaling factor for potential relationship detection (ABS-PRD) to intelligently prune the meaningless relationship pairs. Extensive experiments on the AUG dataset show that our LPG can significantly outperform the state-of-the-art methods and the effectiveness of the proposed locality-preserving strategy.
☆ PRAM: Place Recognition Anywhere Model for Efficient Visual Localization
Humans localize themselves efficiently in known environments by first recognizing landmarks defined on certain objects and their spatial relationships, and then verifying the location by aligning detailed structures of recognized objects with those in the memory. Inspired by this, we propose the place recognition anywhere model (PRAM) to perform visual localization as efficiently as humans do. PRAM consists of two main components - recognition and registration. In detail, first of all, a self-supervised map-centric landmark definition strategy is adopted, making places in either indoor or outdoor scenes act as unique landmarks. Then, sparse keypoints extracted from images, are utilized as the input to a transformer-based deep neural network for landmark recognition; these keypoints enable PRAM to recognize hundreds of landmarks with high time and memory efficiency. Keypoints along with recognized landmark labels are further used for registration between query images and the 3D landmark map. Different from previous hierarchical methods, PRAM discards global and local descriptors, and reduces over 90% storage. Since PRAM utilizes recognition and landmark-wise verification to replace global reference search and exhaustive matching respectively, it runs 2.4 times faster than prior state-of-the-art approaches. Moreover, PRAM opens new directions for visual localization including multi-modality localization, map-centric feature learning, and hierarchical scene coordinate regression.
comment: project page: https://feixue94.github.io/pram-project/
☆ ConsistencyDet: Robust Object Detector with Denoising Paradigm of Consistency Model
Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on perturbed bounding boxes of annotated entities. This framework, termed ConsistencyDet, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any temporal stage back to its pristine state, thereby realizing a ``one-step denoising'' mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into the definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics.
☆ Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations
Image restoration is rather challenging in adverse weather conditions, especially when multiple degradations occur simultaneously. Blind image decomposition was proposed to tackle this issue, however, its effectiveness heavily relies on the accurate estimation of each component. Although diffusion-based models exhibit strong generative abilities in image restoration tasks, they may generate irrelevant contents when the degraded images are severely corrupted. To address these issues, we leverage physical constraints to guide the whole restoration process, where a mixed degradation model based on atmosphere scattering model is constructed. Then we formulate our Joint Conditional Diffusion Model (JCDM) by incorporating the degraded image and degradation mask to provide precise guidance. To achieve better color and detail recovery results, we further integrate a refinement network to reconstruct the restored image, where Uncertainty Estimation Block (UEB) is employed to enhance the features. Extensive experiments performed on both multi-weather and weather-specific datasets demonstrate the superiority of our method over state-of-the-art competing methods.
☆ RMAFF-PSN: A Residual Multi-Scale Attention Feature Fusion Photometric Stereo Network
Predicting accurate normal maps of objects from two-dimensional images in regions of complex structure and spatial material variations is challenging using photometric stereo methods due to the influence of surface reflection properties caused by variations in object geometry and surface materials. To address this issue, we propose a photometric stereo network called a RMAFF-PSN that uses residual multiscale attentional feature fusion to handle the ``difficult'' regions of the object. Unlike previous approaches that only use stacked convolutional layers to extract deep features from the input image, our method integrates feature information from different resolution stages and scales of the image. This approach preserves more physical information, such as texture and geometry of the object in complex regions, through shallow-deep stage feature extraction, double branching enhancement, and attention optimization. To test the network structure under real-world conditions, we propose a new real dataset called Simple PS data, which contains multiple objects with varying structures and materials. Experimental results on a publicly available benchmark dataset demonstrate that our method outperforms most existing calibrated photometric stereo methods for the same number of input images, especially in the case of highly non-convex object structures. Our method also obtains good results under sparse lighting conditions.
comment: 17 pages,12 figures
☆ NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving
We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/wljungbergh/NeuroNCAP
☆ Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
Novel deep-learning (DL) architectures have reached a level where they can generate digital media, including photorealistic images, that are difficult to distinguish from real data. These technologies have already been used to generate training data for Machine Learning (ML) models, and large text-to-image models like DALL-E 2, Imagen, and Stable Diffusion are achieving remarkable results in realistic high-resolution image generation. Given these developments, issues of data authentication in monitoring and verification deserve a careful and systematic analysis: How realistic are synthetic images? How easily can they be generated? How useful are they for ML researchers, and what is their potential for Open Science? In this work, we use novel DL models to explore how synthetic satellite images can be created using conditioning mechanisms. We investigate the challenges of synthetic satellite image generation and evaluate the results based on authenticity and state-of-the-art metrics. Furthermore, we investigate how synthetic data can alleviate the lack of data in the context of ML methods for remote-sensing. Finally we discuss implications of synthetic satellite imagery in the context of monitoring and verification.
comment: https://resources.inmm.org/annual-meeting-proceedings/generating-synthetic-satellite-imagery-deep-learning-text-image-models
☆ 3D-CSAD: Untrained 3D Anomaly Detection for Complex Manufacturing Surfaces
The surface quality inspection of manufacturing parts based on 3D point cloud data has attracted increasing attention in recent years. The reason is that the 3D point cloud can capture the entire surface of manufacturing parts, unlike the previous practices that focus on some key product characteristics. However, achieving accurate 3D anomaly detection is challenging, due to the complex surfaces of manufacturing parts and the difficulty of collecting sufficient anomaly samples. To address these challenges, we propose a novel untrained anomaly detection method based on 3D point cloud data for complex manufacturing parts, which can achieve accurate anomaly detection in a single sample without training data. In the proposed framework, we transform an input sample into two sets of profiles along different directions. Based on one set of the profiles, a novel segmentation module is devised to segment the complex surface into multiple basic and simple components. In each component, another set of profiles, which have the nature of similar shapes, can be modeled as a low-rank matrix. Thus, accurate 3D anomaly detection can be achieved by using Robust Principal Component Analysis (RPCA) on these low-rank matrices. Extensive numerical experiments on different types of parts show that our method achieves promising results compared with the benchmark methods.
☆ Exploiting Object-based and Segmentation-based Semantic Features for Deep Learning-based Indoor Scene Classification
Indoor scenes are usually characterized by scattered objects and their relationships, which turns the indoor scene classification task into a challenging computer vision task. Despite the significant performance boost in classification tasks achieved in recent years, provided by the use of deep-learning-based methods, limitations such as inter-category ambiguity and intra-category variation have been holding back their performance. To overcome such issues, gathering semantic information has been shown to be a promising source of information towards a more complete and discriminative feature representation of indoor scenes. Therefore, the work described in this paper uses both semantic information, obtained from object detection, and semantic segmentation techniques. While object detection techniques provide the 2D location of objects allowing to obtain spatial distributions between objects, semantic segmentation techniques provide pixel-level information that allows to obtain, at a pixel-level, a spatial distribution and shape-related features of the segmentation categories. Hence, a novel approach that uses a semantic segmentation mask to provide Hu-moments-based segmentation categories' shape characterization, designated by Segmentation-based Hu-Moments Features (SHMFs), is proposed. Moreover, a three-main-branch network, designated by GOS$^2$F$^2$App, that exploits deep-learning-based global features, object-based features, and semantic segmentation-based features is also proposed. GOS$^2$F$^2$App was evaluated in two indoor scene benchmark datasets: SUN RGB-D and NYU Depth V2, where, to the best of our knowledge, state-of-the-art results were achieved on both datasets, which present evidences of the effectiveness of the proposed approach.
comment: This preprint was submitted at IEEE Transactions on Image Processing
☆ Realistic Continual Learning Approach using Pre-trained Models
Continual learning (CL) is crucial for evaluating adaptability in learning solutions to retain knowledge. Our research addresses the challenge of catastrophic forgetting, where models lose proficiency in previously learned tasks as they acquire new ones. While numerous solutions have been proposed, existing experimental setups often rely on idealized class-incremental learning scenarios. We introduce Realistic Continual Learning (RealCL), a novel CL paradigm where class distributions across tasks are random, departing from structured setups. We also present CLARE (Continual Learning Approach with pRE-trained models for RealCL scenarios), a pre-trained model-based solution designed to integrate new knowledge while preserving past learning. Our contributions include pioneering RealCL as a generalization of traditional CL setups, proposing CLARE as an adaptable approach for RealCL tasks, and conducting extensive experiments demonstrating its effectiveness across various RealCL scenarios. Notably, CLARE outperforms existing models on RealCL benchmarks, highlighting its versatility and robustness in unpredictable learning environments.
☆ Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models
Guidance is a crucial technique for extracting the best performance out of image-generating diffusion models. Traditionally, a constant guidance weight has been applied throughout the sampling chain of an image. We show that guidance is clearly harmful toward the beginning of the chain (high noise levels), largely unnecessary toward the end (low noise levels), and only beneficial in the middle. We thus restrict it to a specific range of noise levels, improving both the inference speed and result quality. This limited guidance interval improves the record FID in ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and qualitatively beneficial across different sampler parameters, network architectures, and datasets, including the large-scale setting of Stable Diffusion XL. We thus suggest exposing the guidance interval as a hyperparameter in all diffusion models that use guidance.
☆ Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning CVPR'24
Zero-shot learning (ZSL) recognizes the unseen classes by conducting visual-semantic interactions to transfer semantic knowledge from seen classes to unseen ones, supported by semantic information (e.g., attributes). However, existing ZSL methods simply extract visual features using a pre-trained network backbone (i.e., CNN or ViT), which fail to learn matched visual-semantic correspondences for representing semantic-related visual features as lacking of the guidance of semantic information, resulting in undesirable visual-semantic interactions. To tackle this issue, we propose a progressive semantic-guided vision transformer for zero-shot learning (dubbed ZSLViT). ZSLViT mainly considers two properties in the whole network: i) discover the semantic-related visual representations explicitly, and ii) discard the semantic-unrelated visual information. Specifically, we first introduce semantic-embedded token learning to improve the visual-semantic correspondences via semantic enhancement and discover the semantic-related visual tokens explicitly with semantic-guided token attention. Then, we fuse low semantic-visual correspondence visual tokens to discard the semantic-unrelated visual information for visual enhancement. These two operations are integrated into various encoders to progressively learn semantic-related visual representations for accurate visual-semantic interactions in ZSL. The extensive experiments show that our ZSLViT achieves significant performance gains on three popular benchmark datasets, i.e., CUB, SUN, and AWA2.
comment: Accepted to CVPR'24
☆ OpenTrench3D: A Photogrammetric 3D Point Cloud Dataset for Semantic Segmentation of Underground Utilities
Identifying and classifying underground utilities is an important task for efficient and effective urban planning and infrastructure maintenance. We present OpenTrench3D, a novel and comprehensive 3D Semantic Segmentation point cloud dataset, designed to advance research and development in underground utility surveying and mapping. OpenTrench3D covers a completely novel domain for public 3D point cloud datasets and is unique in its focus, scope, and cost-effective capturing method. The dataset consists of 310 point clouds collected across 7 distinct areas. These include 5 water utility areas and 2 district heating utility areas. The inclusion of different geographical areas and main utilities (water and district heating utilities) makes OpenTrench3D particularly valuable for inter-domain transfer learning experiments. We provide benchmark results for the dataset using three state-of-the-art semantic segmentation models, PointNeXt, PointVector and PointMetaBase. Benchmarks are conducted by training on data from water areas, fine-tuning on district heating area 1 and evaluating on district heating area 2. The dataset is publicly available. With OpenTrench3D, we seek to foster innovation and progress in the field of 3D semantic segmentation in applications related to detection and documentation of underground utilities as well as in transfer learning methods in general.
☆ ViM-UNet: Vision Mamba for Biomedical Segmentation
CNNs, most notably the UNet, are the default architecture for biomedical segmentation. Transformer-based approaches, such as UNETR, have been proposed to replace them, benefiting from a global field of view, but suffering from larger runtimes and higher parameter counts. The recent Vision Mamba architecture offers a compelling alternative to transformers, also providing a global field of view, but at higher efficiency. Here, we introduce ViM-UNet, a novel segmentation architecture based on it and compare it to UNet and UNETR for two challenging microscopy instance segmentation tasks. We find that it performs similarly or better than UNet, depending on the task, and outperforms UNETR while being more efficient. Our code is open source and documented at https://github.com/constantinpape/torch-em/blob/main/vimunet.md.
☆ Point Cloud Geometry Scalable Coding with a Quality-Conditioned Latents Probability Estimator ICIP 2024
The widespread usage of point clouds (PC) for immersive visual applications has resulted in the use of very heterogeneous receiving conditions and devices, notably in terms of network, hardware, and display capabilities. In this scenario, quality scalability, i.e., the ability to reconstruct a signal at different qualities by progressively decoding a single bitstream, is a major requirement that has yet to be conveniently addressed, notably in most learning-based PC coding solutions. This paper proposes a quality scalability scheme, named Scalable Quality Hyperprior (SQH), adaptable to learning-based static point cloud geometry codecs, which uses a Quality-conditioned Latents Probability Estimator (QuLPE) to decode a high-quality version of a PC learning-based representation, based on an available lower quality base layer. SQH is integrated in the future JPEG PC coding standard, allowing to create a layered bitstream that can be used to progressively decode the PC geometry with increasing quality and fidelity. Experimental results show that SQH offers the quality scalability feature with very limited or no compression performance penalty at all when compared with the corresponding non-scalable solution, thus preserving the significant compression gains over other state-of-the-art PC codecs.
comment: Submitted at ICIP 2024
☆ Flatness Improves Backbone Generalisation in Few-shot Classification
Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. Surprisingly, most efforts have only focused on developing architectures for easing the adaptation to the target domain without considering the importance of backbone training for good generalisation. We show that flatness-aware backbone training with vanilla fine-tuning results in a simpler yet competitive baseline compared to the state-of-the-art. Our results indicate that for in- and cross-domain FSC, backbone training is crucial to achieving good generalisation across different adaptation methods. We advocate more care should be taken when training these models.
☆ Chaos in Motion: Unveiling Robustness in Remote Heart Rate Measurement through Brain-Inspired Skin Tracking
Heart rate is an important physiological indicator of human health status. Existing remote heart rate measurement methods typically involve facial detection followed by signal extraction from the region of interest (ROI). These SOTA methods have three serious problems: (a) inaccuracies even failures in detection caused by environmental influences or subject movement; (b) failures for special patients such as infants and burn victims; (c) privacy leakage issues resulting from collecting face video. To address these issues, we regard the remote heart rate measurement as the process of analyzing the spatiotemporal characteristics of the optical flow signal in the video. We apply chaos theory to computer vision tasks for the first time, thus designing a brain-inspired framework. Firstly, using an artificial primary visual cortex model to extract the skin in the videos, and then calculate heart rate by time-frequency analysis on all pixels. Our method achieves Robust Skin Tracking for Heart Rate measurement, called HR-RST. The experimental results show that HR-RST overcomes the difficulty of environmental influences and effectively tracks the subject movement. Moreover, the method could extend to other body parts. Consequently, the method can be applied to special patients and effectively protect individual privacy, offering an innovative solution.
comment: 8 pages, 10 figures
☆ Depth Estimation using Weighted-loss and Transfer Learning
Depth estimation from 2D images is a common computer vision task that has applications in many fields including autonomous vehicles, scene understanding and robotics. The accuracy of a supervised depth estimation method mainly relies on the chosen loss function, the model architecture, quality of data and performance metrics. In this study, we propose a simplified and adaptable approach to improve depth estimation accuracy using transfer learning and an optimized loss function. The optimized loss function is a combination of weighted losses to which enhance robustness and generalization: Mean Absolute Error (MAE), Edge Loss and Structural Similarity Index (SSIM). We use a grid search and a random search method to find optimized weights for the losses, which leads to an improved model. We explore multiple encoder-decoder-based models including DenseNet121, DenseNet169, DenseNet201, and EfficientNet for the supervised depth estimation model on NYU Depth Dataset v2. We observe that the EfficientNet model, pre-trained on ImageNet for classification when used as an encoder, with a simple upsampling decoder, gives the best results in terms of RSME, REL and log10: 0.386, 0.113 and 0.049, respectively. We also perform a qualitative analysis which illustrates that our model produces depth maps that closely resemble ground truth, even in cases where the ground truth is flawed. The results indicate significant improvements in accuracy and robustness, with EfficientNet being the most successful architecture.
☆ Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation Patterns CVPR 2024
Monitoring the integrity of object detection for errors within the perception module of automated driving systems (ADS) is paramount for ensuring safety. Despite recent advancements in deep neural network (DNN)-based object detectors, their susceptibility to detection errors, particularly in the less-explored realm of 3D object detection, remains a significant concern. State-of-the-art integrity monitoring (also known as introspection) mechanisms in 2D object detection mainly utilise the activation patterns in the final layer of the DNN-based detector's backbone. However, that may not sufficiently address the complexities and sparsity of data in 3D object detection. To this end, we conduct, in this article, an extensive investigation into the effects of activation patterns extracted from various layers of the backbone network for introspecting the operation of 3D object detectors. Through a comparative analysis using Kitti and NuScenes datasets with PointPillars and CenterPoint detectors, we demonstrate that using earlier layers' activation patterns enhances the error detection performance of the integrity monitoring system, yet increases computational complexity. To address the real-time operation requirements in ADS, we also introduce a novel introspection method that combines activation patterns from multiple layers of the detector's backbone and report its performance.
comment: Accepted by CVPR 2024 Workshop on Safe Autonomy for All Domains (SAIAD)
☆ Model-based Cleaning of the QUILT-1M Pathology Dataset for Text-Conditional Image Synthesis
The QUILT-1M dataset is the first openly available dataset containing images harvested from various online sources. While it provides a huge data variety, the image quality and composition is highly heterogeneous, impacting its utility for text-conditional image synthesis. We propose an automatic pipeline that provides predictions of the most common impurities within the images, e.g., visibility of narrators, desktop environment and pathology software, or text within the image. Additionally, we propose to use semantic alignment filtering of the image-text pairs. Our findings demonstrate that by rigorously filtering the dataset, there is a substantial enhancement of image fidelity in text-to-image tasks.
comment: 4 pages (short paper)
☆ Deep learning-driven pulmonary arteries and veins segmentation reveals demography-associated pulmonary vasculature anatomy
Pulmonary artery-vein segmentation is crucial for diagnosing pulmonary diseases and surgical planning, and is traditionally achieved by Computed Tomography Pulmonary Angiography (CTPA). However, concerns regarding adverse health effects from contrast agents used in CTPA have constrained its clinical utility. In contrast, identifying arteries and veins using non-contrast CT, a conventional and low-cost clinical examination routine, has long been considered impossible. Here we propose a High-abundant Pulmonary Artery-vein Segmentation (HiPaS) framework achieving accurate artery-vein segmentation on both non-contrast CT and CTPA across various spatial resolutions. HiPaS first performs spatial normalization on raw CT scans via a super-resolution module, and then iteratively achieves segmentation results at different branch levels by utilizing the low-level vessel segmentation as a prior for high-level vessel segmentation. We trained and validated HiPaS on our established multi-centric dataset comprising 1,073 CT volumes with meticulous manual annotation. Both quantitative experiments and clinical evaluation demonstrated the superior performance of HiPaS, achieving a dice score of 91.8% and a sensitivity of 98.0%. Further experiments demonstrated the non-inferiority of HiPaS segmentation on non-contrast CT compared to segmentation on CTPA. Employing HiPaS, we have conducted an anatomical study of pulmonary vasculature on 10,613 participants in China (five sites), discovering a new association between pulmonary vessel abundance and sex and age: vessel abundance is significantly higher in females than in males, and slightly decreases with age, under the controlling of lung volumes (p < 0.0001). HiPaS realizing accurate artery-vein segmentation delineates a promising avenue for clinical diagnosis and understanding pulmonary physiology in a non-invasive manner.
☆ Shape Completion in the Dark: Completing Vertebrae Morphology from 3D Ultrasound
Purpose: Ultrasound (US) imaging, while advantageous for its radiation-free nature, is challenging to interpret due to only partially visible organs and a lack of complete 3D information. While performing US-based diagnosis or investigation, medical professionals therefore create a mental map of the 3D anatomy. In this work, we aim to replicate this process and enhance the visual representation of anatomical structures. Methods: We introduce a point-cloud-based probabilistic DL method to complete occluded anatomical structures through 3D shape completion and choose US-based spine examinations as our application. To enable training, we generate synthetic 3D representations of partially occluded spinal views by mimicking US physics and accounting for inherent artifacts. Results: The proposed model performs consistently on synthetic and patient data, with mean and median differences of 2.02 and 0.03 in CD, respectively. Our ablation study demonstrates the importance of US physics-based data generation, reflected in the large mean and median difference of 11.8 CD and 9.55 CD, respectively. Additionally, we demonstrate that anatomic landmarks, such as the spinous process (with reconstruction CD of 4.73) and the facet joints (mean distance to GT of 4.96mm) are preserved in the 3D completion. Conclusion: Our work establishes the feasibility of 3D shape completion for lumbar vertebrae, ensuring the preservation of level-wise characteristics and successful generalization from synthetic to real data. The incorporation of US physics contributes to more accurate patient data completions. Notably, our method preserves essential anatomic landmarks and reconstructs crucial injections sites at their correct locations. The generated data and source code will be made publicly available (https://github.com/miruna20/Shape-Completion-in-the-Dark).
☆ Dealing with Subject Similarity in Differential Morphing Attack Detection
The advent of morphing attacks has posed significant security concerns for automated Face Recognition systems, raising the pressing need for robust and effective Morphing Attack Detection (MAD) methods able to effectively address this issue. In this paper, we focus on Differential MAD (D-MAD), where a trusted live capture, usually representing the criminal, is compared with the document image to classify it as morphed or bona fide. We show these approaches based on identity features are effective when the morphed image and the live one are sufficiently diverse; unfortunately, the effectiveness is significantly reduced when the same approaches are applied to look-alike subjects or in all those cases when the similarity between the two compared images is high (e.g. comparison between the morphed image and the accomplice). Therefore, in this paper, we propose ACIdA, a modular D-MAD system, consisting of a module for the attempt type classification, and two modules for the identity and artifacts analysis on input images. Successfully addressing this task would allow broadening the D-MAD applications including, for instance, the document enrollment stage, which currently relies entirely on human evaluation, thus limiting the possibility of releasing ID documents with manipulated images, as well as the automated gates to detect both accomplices and criminals. An extensive cross-dataset experimental evaluation conducted on the introduced scenario shows that ACIdA achieves state-of-the-art results, outperforming literature competitors, while maintaining good performance in traditional D-MAD benchmarks.
☆ Finding Dino: A plug-and-play framework for unsupervised detection of out-of-distribution objects using prototypes
Detecting and localising unknown or Out-of-distribution (OOD) objects in any scene can be a challenging task in vision. Particularly, in safety-critical cases involving autonomous systems like automated vehicles or trains. Supervised anomaly segmentation or open-world object detection models depend on training on exhaustively annotated datasets for every domain and still struggle in distinguishing between background and OOD objects. In this work, we present a plug-and-play generalised framework - PRototype-based zero-shot OOD detection Without Labels (PROWL). It is an inference-based method that does not require training on the domain dataset and relies on extracting relevant features from self-supervised pre-trained models. PROWL can be easily adapted to detect OOD objects in any operational design domain by specifying a list of known classes from this domain. PROWL, as an unsupervised method, outperforms other supervised methods trained without auxiliary OOD data on the RoadAnomaly and RoadObstacle datasets provided in SegmentMeIfYouCan (SMIYC) benchmark. We also demonstrate its suitability for other domains such as rail and maritime scenes.
☆ Separated Attention: An Improved Cycle GAN Based Under Water Image Enhancement Method
In this paper we have present an improved Cycle GAN based model for under water image enhancement. We have utilized the cycle consistent learning technique of the state-of-the-art Cycle GAN model with modification in the loss function in terms of depth-oriented attention which enhance the contrast of the overall image, keeping global content, color, local texture, and style information intact. We trained the Cycle GAN model with the modified loss functions on the benchmarked Enhancing Underwater Visual Perception (EUPV) dataset a large dataset including paired and unpaired sets of underwater images (poor and good quality) taken with seven distinct cameras in a range of visibility situation during research on ocean exploration and human-robot cooperation. In addition, we perform qualitative and quantitative evaluation which supports the given technique applied and provided a better contrast enhancement model of underwater imagery. More significantly, the upgraded images provide better results from conventional models and further for under water navigation, pose estimation, saliency prediction, object detection and tracking. The results validate the appropriateness of the model for autonomous underwater vehicles (AUV) in visual navigation.
comment: 9 pages, 8 figures
☆ Simba: Mamba augmented U-ShiftGCN for Skeletal Action Recognition in Videos
Skeleton Action Recognition (SAR) involves identifying human actions using skeletal joint coordinates and their interconnections. While plain Transformers have been attempted for this task, they still fall short compared to the current leading methods, which are rooted in Graph Convolutional Networks (GCNs) due to the absence of structural priors. Recently, a novel selective state space model, Mamba, has surfaced as a compelling alternative to the attention mechanism in Transformers, offering efficient modeling of long sequences. In this work, to the utmost extent of our awareness, we present the first SAR framework incorporating Mamba. Each fundamental block of our model adopts a novel U-ShiftGCN architecture with Mamba as its core component. The encoder segment of the U-ShiftGCN is devised to extract spatial features from the skeletal data using downsampling vanilla Shift S-GCN blocks. These spatial features then undergo intermediate temporal modeling facilitated by the Mamba block before progressing to the encoder section, which comprises vanilla upsampling Shift S-GCN blocks. Additionally, a Shift T-GCN (ShiftTCN) temporal modeling unit is employed before the exit of each fundamental block to refine temporal representations. This particular integration of downsampling spatial, intermediate temporal, upsampling spatial, and ultimate temporal subunits yields promising results for skeleton action recognition. We dub the resulting model \textbf{Simba}, which attains state-of-the-art performance across three well-known benchmark skeleton action recognition datasets: NTU RGB+D, NTU RGB+D 120, and Northwestern-UCLA. Interestingly, U-ShiftGCN (Simba without Intermediate Mamba Block) by itself is capable of performing reasonably well and surpasses our baseline.
comment: 20 pages, 6 tables, 1 figure
☆ Homography Guided Temporal Fusion for Road Line and Marking Segmentation ICCV 2023
Reliable segmentation of road lines and markings is critical to autonomous driving. Our work is motivated by the observations that road lines and markings are (1) frequently occluded in the presence of moving vehicles, shadow, and glare and (2) highly structured with low intra-class shape variance and overall high appearance consistency. To solve these issues, we propose a Homography Guided Fusion (HomoFusion) module to exploit temporally-adjacent video frames for complementary cues facilitating the correct classification of the partially occluded road lines or markings. To reduce computational complexity, a novel surface normal estimator is proposed to establish spatial correspondences between the sampled frames, allowing the HomoFusion module to perform a pixel-to-pixel attention mechanism in updating the representation of the occluded road lines or markings. Experiments on ApolloScape, a large-scale lane mark segmentation dataset, and ApolloScape Night with artificial simulated night-time road conditions, demonstrate that our method outperforms other existing SOTA lane mark segmentation models with less than 9\% of their parameters and computational complexity. We show that exploiting available camera intrinsic data and ground plane assumption for cross-frame correspondence can lead to a light-weight network with significantly improved performances in speed and accuracy. We also prove the versatility of our HomoFusion approach by applying it to the problem of water puddle segmentation and achieving SOTA performance.
comment: Accepted by ICCV 2023
☆ Multi-Image Visual Question Answering for Unsupervised Anomaly Detection
Unsupervised anomaly detection enables the identification of potential pathological areas by juxtaposing original images with their pseudo-healthy reconstructions generated by models trained exclusively on normal images. However, the clinical interpretation of resultant anomaly maps presents a challenge due to a lack of detailed, understandable explanations. Recent advancements in language models have shown the capability of mimicking human-like understanding and providing detailed descriptions. This raises an interesting question: \textit{How can language models be employed to make the anomaly maps more explainable?} To the best of our knowledge, we are the first to leverage a language model for unsupervised anomaly detection, for which we construct a dataset with different questions and answers. Additionally, we present a novel multi-image visual question answering framework tailored for anomaly detection, incorporating diverse feature fusion strategies to enhance visual knowledge extraction. Our experiments reveal that the framework, augmented by our new Knowledge Q-Former module, adeptly answers questions on the anomaly detection dataset. Besides, integrating anomaly maps as inputs distinctly aids in improving the detection of unseen pathologies.
comment: 13 pages, 8 figures
☆ Diffusion Probabilistic Multi-cue Level Set for Reducing Edge Uncertainty in Pancreas Segmentation
Accurately segmenting the pancreas remains a huge challenge. Traditional methods encounter difficulties in semantic localization due to the small volume and distorted structure of the pancreas, while deep learning methods encounter challenges in obtaining accurate edges because of low contrast and organ overlapping. To overcome these issues, we propose a multi-cue level set method based on the diffusion probabilistic model, namely Diff-mcs. Our method adopts a coarse-to-fine segmentation strategy. We use the diffusion probabilistic model in the coarse segmentation stage, with the obtained probability distribution serving as both the initial localization and prior cues for the level set method. In the fine segmentation stage, we combine the prior cues with grayscale cues and texture cues to refine the edge by maximizing the difference between probability distributions of the cues inside and outside the level set curve. The method is validated on three public datasets and achieves state-of-the-art performance, which can obtain more accurate segmentation results with lower uncertainty segmentation edges. In addition, we conduct ablation studies and uncertainty analysis to verify that the diffusion probability model provides a more appropriate initialization for the level set method. Furthermore, when combined with multiple cues, the level set method can better obtain edges and improve the overall accuracy. Our code is available at https://github.com/GOUYUEE/Diff-mcs.
☆ Do You Remember? Dense Video Captioning with Cross-Modal Memory Retrieval CVPR 2024
There has been significant attention to the research on dense video captioning, which aims to automatically localize and caption all events within untrimmed video. Several studies introduce methods by designing dense video captioning as a multitasking problem of event localization and event captioning to consider inter-task relations. However, addressing both tasks using only visual input is challenging due to the lack of semantic content. In this study, we address this by proposing a novel framework inspired by the cognitive information processing of humans. Our model utilizes external memory to incorporate prior knowledge. The memory retrieval method is proposed with cross-modal video-to-text matching. To effectively incorporate retrieved text features, the versatile encoder and the decoder with visual and textual cross-attention modules are designed. Comparative experiments have been conducted to show the effectiveness of the proposed method on ActivityNet Captions and YouCook2 datasets. Experimental results show promising performance of our model without extensive pretraining from a large video dataset.
comment: CVPR 2024
☆ Automatic Detection of Dark Ship-to-Ship Transfers using Deep Learning and Satellite Imagery
Despite extensive research into ship detection via remote sensing, no studies identify ship-to-ship transfers in satellite imagery. Given the importance of transshipment in illicit shipping practices, this is a significant gap. In what follows, I train a convolutional neural network to accurately detect 4 different types of cargo vessel and two different types of Ship-to-Ship transfer in PlanetScope satellite imagery. I then elaborate a pipeline for the automatic detection of suspected illicit ship-to-ship transfers by cross-referencing satellite detections with vessel borne GPS data. Finally, I apply this method to the Kerch Strait between Ukraine and Russia to identify over 400 dark transshipment events since 2022.
☆ Contrastive-Based Deep Embeddings for Label Noise-Resilient Histopathology Image Classification
Recent advancements in deep learning have proven highly effective in medical image classification, notably within histopathology. However, noisy labels represent a critical challenge in histopathology image classification, where accurate annotations are vital for training robust deep learning models. Indeed, deep neural networks can easily overfit label noise, leading to severe degradations in model performance. While numerous public pathology foundation models have emerged recently, none have evaluated their resilience to label noise. Through thorough empirical analyses across multiple datasets, we exhibit the label noise resilience property of embeddings extracted from foundation models trained in a self-supervised contrastive manner. We demonstrate that training with such embeddings substantially enhances label noise robustness when compared to non-contrastive-based ones as well as commonly used noise-resilient methods. Our results unequivocally underline the superiority of contrastive learning in effectively mitigating the label noise challenge. Code is publicly available at https://github.com/LucasDedieu/NoiseResilientHistopathology.
comment: 16 pages
☆ GLID: Pre-training a Generalist Encoder-Decoder Vision Model CVPR 2024
This paper proposes a GeneraLIst encoder-Decoder (GLID) pre-training method for better handling various downstream computer vision tasks. While self-supervised pre-training approaches, e.g., Masked Autoencoder, have shown success in transfer learning, task-specific sub-architectures are still required to be appended for different downstream tasks, which cannot enjoy the benefits of large-scale pre-training. GLID overcomes this challenge by allowing the pre-trained generalist encoder-decoder to be fine-tuned on various vision tasks with minimal task-specific architecture modifications. In the GLID training scheme, pre-training pretext task and other downstream tasks are modeled as "query-to-answer" problems, including the pre-training pretext task and other downstream tasks. We pre-train a task-agnostic encoder-decoder with query-mask pairs. During fine-tuning, GLID maintains the pre-trained encoder-decoder and queries, only replacing the topmost linear transformation layer with task-specific linear heads. This minimizes the pretrain-finetune architecture inconsistency and enables the pre-trained model to better adapt to downstream tasks. GLID achieves competitive performance on various vision tasks, including object detection, image segmentation, pose estimation, and depth estimation, outperforming or matching specialist models such as Mask2Former, DETR, ViTPose, and BinsFormer.
comment: CVPR 2024
☆ Attention based End to end network for Offline Writer Identification on Word level data
Writer identification due to its widespread application in various fields has gained popularity over the years. In scenarios where optimum handwriting samples are available, whether they be in the form of a single line, a sentence, or an entire page, writer identification algorithms have demonstrated noteworthy levels of accuracy. However, in scenarios where only a limited number of handwritten samples are available, particularly in the form of word images, there is a significant scope for improvement. In this paper, we propose a writer identification system based on an attention-driven Convolutional Neural Network (CNN). The system is trained utilizing image segments, known as fragments, extracted from word images, employing a pyramid-based strategy. This methodology enables the system to capture a comprehensive representation of the data, encompassing both fine-grained details and coarse features across various levels of abstraction. These extracted fragments serve as the training data for the convolutional network, enabling it to learn a more robust representation compared to traditional convolution-based networks trained on word images. Additionally, the paper explores the integration of an attention mechanism to enhance the representational power of the learned features. The efficacy of the proposed algorithm is evaluated on three benchmark databases, demonstrating its proficiency in writer identification tasks, particularly in scenarios with limited access to handwriting data.
☆ Implicit and Explicit Language Guidance for Diffusion-based Visual Perception
Text-to-image diffusion models have shown powerful ability on conditional image synthesis. With large-scale vision-language pre-training, diffusion models are able to generate high-quality images with rich texture and reasonable structure under different text prompts. However, it is an open problem to adapt the pre-trained diffusion model for visual perception. In this paper, we propose an implicit and explicit language guidance framework for diffusion-based perception, named IEDP. Our IEDP comprises of an implicit language guidance branch and an explicit language guidance branch. The implicit branch employs frozen CLIP image encoder to directly generate implicit text embeddings that are fed to diffusion model, without using explicit text prompts. The explicit branch utilizes the ground-truth labels of corresponding images as text prompts to condition feature extraction of diffusion model. During training, we jointly train diffusion model by sharing the model weights of these two branches. As a result, implicit and explicit branches can jointly guide feature learning. During inference, we only employ implicit branch for final prediction, which does not require any ground-truth labels. Experiments are performed on two typical perception tasks, including semantic segmentation and depth estimation. Our IEDP achieves promising performance on both tasks. For semantic segmentation, our IEDP has the mIoU score of 55.9% on AD20K validation set, which outperforms the baseline method VPD by 2.2%. For depth estimation, our IEDP outperforms the baseline method VPD with a relative gain of 10.2%.
☆ Weakly-Supervised Learning via Multi-Lateral Decoder Branching for Guidewire Segmentation in Robot-Assisted Cardiovascular Catheterization
Although robot-assisted cardiovascular catheterization is commonly performed for intervention of cardiovascular diseases, more studies are needed to support the procedure with automated tool segmentation. This can aid surgeons on tool tracking and visualization during intervention. Learning-based segmentation has recently offered state-of-the-art segmentation performances however, generating ground-truth signals for fully-supervised methods is labor-intensive and time consuming for the interventionists. In this study, a weakly-supervised learning method with multi-lateral pseudo labeling is proposed for tool segmentation in cardiac angiograms. The method includes a modified U-Net model with one encoder and multiple lateral-branched decoders that produce pseudo labels as supervision signals under different perturbation. The pseudo labels are self-generated through a mixed loss function and shared consistency in the decoders. We trained the model end-to-end with weakly-annotated data obtained during robotic cardiac catheterization. Experiments with the proposed model shows weakly annotated data has closer performance to when fully annotated data is used. Compared to three existing weakly-supervised methods, our approach yielded higher segmentation performance across three different cardiac angiogram data. With ablation study, we showed consistent performance under different parameters. Thus, we offer a less expensive method for real-time tool segmentation and tracking during robot-assisted cardiac catheterization.
☆ Multi-rater Prompting for Ambiguous Medical Image Segmentation
Multi-rater annotations commonly occur when medical images are independently annotated by multiple experts (raters). In this paper, we tackle two challenges arisen in multi-rater annotations for medical image segmentation (called ambiguous medical image segmentation): (1) How to train a deep learning model when a group of raters produces a set of diverse but plausible annotations, and (2) how to fine-tune the model efficiently when computation resources are not available for re-training the entire model on a different dataset domain. We propose a multi-rater prompt-based approach to address these two challenges altogether. Specifically, we introduce a series of rater-aware prompts that can be plugged into the U-Net model for uncertainty estimation to handle multi-annotation cases. During the prompt-based fine-tuning process, only 0.3% of learnable parameters are required to be updated comparing to training the entire model. Further, in order to integrate expert consensus and disagreement, we explore different multi-rater incorporation strategies and design a mix-training strategy for comprehensive insight learning. Extensive experiments verify the effectiveness of our new approach for ambiguous medical image segmentation on two public datasets while alleviating the heavy burden of model re-training.
☆ ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved Layout-to-Image Generation
We present ObjBlur, a novel curriculum learning approach to improve layout-to-image generation models, where the task is to produce realistic images from layouts composed of boxes and labels. Our method is based on progressive object-level blurring, which effectively stabilizes training and enhances the quality of generated images. This curriculum learning strategy systematically applies varying degrees of blurring to individual objects or the background during training, starting from strong blurring to progressively cleaner images. Our findings reveal that this approach yields significant performance improvements, stabilized training, smoother convergence, and reduced variance between multiple runs. Moreover, our technique demonstrates its versatility by being compatible with generative adversarial networks and diffusion models, underlining its applicability across various generative modeling paradigms. With ObjBlur, we reach new state-of-the-art results on the complex COCO and Visual Genome datasets.
☆ Attention-Aware Laparoscopic Image Desmoking Network with Lightness Embedding and Hybrid Guided Embedding
This paper presents a novel method of smoke removal from the laparoscopic images. Due to the heterogeneous nature of surgical smoke, a two-stage network is proposed to estimate the smoke distribution and reconstruct a clear, smoke-free surgical scene. The utilization of the lightness channel plays a pivotal role in providing vital information pertaining to smoke density. The reconstruction of smoke-free image is guided by a hybrid embedding, which combines the estimated smoke mask with the initial image. Experimental results demonstrate that the proposed method boasts a Peak Signal to Noise Ratio that is $2.79\%$ higher than the state-of-the-art methods, while also exhibits a remarkable $38.2\%$ reduction in run-time. Overall, the proposed method offers comparable or even superior performance in terms of both smoke removal quality and computational efficiency when compared to existing state-of-the-art methods. This work will be publicly available on http://homepage.hit.edu.cn/wpgao
comment: ISBI2024
☆ CAT: Contrastive Adapter Training for Personalized Image Generation CVPR
The emergence of various adapters, including Low-Rank Adaptation (LoRA) applied from the field of natural language processing, has allowed diffusion models to personalize image generation at a low cost. However, due to the various challenges including limited datasets and shortage of regularization and computation resources, adapter training often results in unsatisfactory outcomes, leading to the corruption of the backbone model's prior knowledge. One of the well known phenomena is the loss of diversity in object generation, especially within the same class which leads to generating almost identical objects with minor variations. This poses challenges in generation capabilities. To solve this issue, we present Contrastive Adapter Training (CAT), a simple yet effective strategy to enhance adapter training through the application of CAT loss. Our approach facilitates the preservation of the base model's original knowledge when the model initiates adapters. Furthermore, we introduce the Knowledge Preservation Score (KPS) to evaluate CAT's ability to keep the former information. We qualitatively and quantitatively compare CAT's improvement. Finally, we mention the possibility of CAT in the aspects of multi-concept adapter and optimization.
comment: CVPRW 2024
☆ SFSORT: Scene Features-based Simple Online Real-Time Tracker
This paper introduces SFSORT, the world's fastest multi-object tracking system based on experiments conducted on MOT Challenge datasets. To achieve an accurate and computationally efficient tracker, this paper employs a tracking-by-detection method, following the online real-time tracking approach established in prior literature. By introducing a novel cost function called the Bounding Box Similarity Index, this work eliminates the Kalman Filter, leading to reduced computational requirements. Additionally, this paper demonstrates the impact of scene features on enhancing object-track association and improving track post-processing. Using a 2.2 GHz Intel Xeon CPU, the proposed method achieves an HOTA of 61.7\% with a processing speed of 2242 Hz on the MOT17 dataset and an HOTA of 60.9\% with a processing speed of 304 Hz on the MOT20 dataset. The tracker's source code, fine-tuned object detection model, and tutorials are available at \url{https://github.com/gitmehrdad/SFSORT}.
☆ Event-Enhanced Snapshot Compressive Videography at 10K FPS
Video snapshot compressive imaging (SCI) encodes the target dynamic scene compactly into a snapshot and reconstructs its high-speed frame sequence afterward, greatly reducing the required data footprint and transmission bandwidth as well as enabling high-speed imaging with a low frame rate intensity camera. In implementation, high-speed dynamics are encoded via temporally varying patterns, and only frames at corresponding temporal intervals can be reconstructed, while the dynamics occurring between consecutive frames are lost. To unlock the potential of conventional snapshot compressive videography, we propose a novel hybrid "intensity+event" imaging scheme by incorporating an event camera into a video SCI setup. Our proposed system consists of a dual-path optical setup to record the coded intensity measurement and intermediate event signals simultaneously, which is compact and photon-efficient by collecting the half photons discarded in conventional video SCI. Correspondingly, we developed a dual-branch Transformer utilizing the reciprocal relationship between two data modes to decode dense video frames. Extensive experiments on both simulated and real-captured data demonstrate our superiority to state-of-the-art video SCI and video frame interpolation (VFI) methods. Benefiting from the new hybrid design leveraging both intrinsic redundancy in videos and the unique feature of event cameras, we achieve high-quality videography at 0.1ms time intervals with a low-cost CMOS image sensor working at 24 FPS.
☆ Stereo-LiDAR Depth Estimation with Deformable Propagation and Learned Disparity-Depth Conversion ICRA 2024
Accurate and dense depth estimation with stereo cameras and LiDAR is an important task for automatic driving and robotic perception. While sparse hints from LiDAR points have improved cost aggregation in stereo matching, their effectiveness is limited by the low density and non-uniform distribution. To address this issue, we propose a novel stereo-LiDAR depth estimation network with Semi-Dense hint Guidance, named SDG-Depth. Our network includes a deformable propagation module for generating a semi-dense hint map and a confidence map by propagating sparse hints using a learned deformable window. These maps then guide cost aggregation in stereo matching. To reduce the triangulation error in depth recovery from disparity, especially in distant regions, we introduce a disparity-depth conversion module. Our method is both accurate and efficient. The experimental results on benchmark tests show its superior performance. Our code is available at https://github.com/SJTU-ViSYS/SDG-Depth.
comment: Accepted in ICRA 2024. 8 pages, 6 figures
☆ Content-Adaptive Non-Local Convolution for Remote Sensing Pansharpening CVPR 2024
Currently, machine learning-based methods for remote sensing pansharpening have progressed rapidly. However, existing pansharpening methods often do not fully exploit differentiating regional information in non-local spaces, thereby limiting the effectiveness of the methods and resulting in redundant learning parameters. In this paper, we introduce a so-called content-adaptive non-local convolution (CANConv), a novel method tailored for remote sensing image pansharpening. Specifically, CANConv employs adaptive convolution, ensuring spatial adaptability, and incorporates non-local self-similarity through the similarity relationship partition (SRP) and the partition-wise adaptive convolution (PWAC) sub-modules. Furthermore, we also propose a corresponding network architecture, called CANNet, which mainly utilizes the multi-scale self-similarity. Extensive experiments demonstrate the superior performance of CANConv, compared with recent promising fusion methods. Besides, we substantiate the method's effectiveness through visualization, ablation experiments, and comparison with existing methods on multiple test sets. The source code is publicly available at https://github.com/duanyll/CANConv.
comment: Accepted by CVPR 2024
☆ How is Visual Attention Influenced by Text Guidance? Database and Model
The analysis and prediction of visual attention have long been crucial tasks in the fields of computer vision and image processing. In practical applications, images are generally accompanied by various text descriptions, however, few studies have explored the influence of text descriptions on visual attention, let alone developed visual saliency prediction models considering text guidance. In this paper, we conduct a comprehensive study on text-guided image saliency (TIS) from both subjective and objective perspectives. Specifically, we construct a TIS database named SJTU-TIS, which includes 1200 text-image pairs and the corresponding collected eye-tracking data. Based on the established SJTU-TIS database, we analyze the influence of various text descriptions on visual attention. Then, to facilitate the development of saliency prediction models considering text influence, we construct a benchmark for the established SJTU-TIS database using state-of-the-art saliency models. Finally, considering the effect of text descriptions on visual attention, while most existing saliency models ignore this impact, we further propose a text-guided saliency (TGSal) prediction model, which extracts and integrates both image features and text features to predict the image saliency under various text-description conditions. Our proposed model significantly outperforms the state-of-the-art saliency models on both the SJTU-TIS database and the pure image saliency databases in terms of various evaluation metrics. The SJTU-TIS database and the code of the proposed TGSal model will be released at: https://github.com/IntMeGroup/TGSal.
PromptSync: Bridging Domain Gaps in Vision-Language Models through Class-Aware Prototype Alignment and Discrimination CVPR 2024
The potential for zero-shot generalization in vision-language (V-L) models such as CLIP has spurred their widespread adoption in addressing numerous downstream tasks. Previous methods have employed test-time prompt tuning to adapt the model to unseen domains, but they overlooked the issue of imbalanced class distributions. In this study, we explicitly address this problem by employing class-aware prototype alignment weighted by mean class probabilities obtained for the test sample and filtered augmented views. Additionally, we ensure that the class probabilities are as accurate as possible by performing prototype discrimination using contrastive learning. The combination of alignment and discriminative loss serves as a geometric regularizer, preventing the prompt representation from collapsing onto a single class and effectively bridging the distribution gap between the source and test domains. Our method, named PromptSync, synchronizes the prompts for each test sample on both the text and vision branches of the V-L model. In empirical evaluations on the domain generalization benchmark, our method outperforms previous best methods by 2.33\% in overall performance, by 1\% in base-to-novel generalization, and by 2.84\% in cross-dataset transfer tasks.
comment: Accepted at CVPR 2024 LIMIT, 12 pages, 8 Tables, 2 Figures
☆ Remembering Transformer for Continual Learning
Neural networks encounter the challenge of Catastrophic Forgetting (CF) in continual learning, where new task knowledge interferes with previously learned knowledge. We propose Remembering Transformer, inspired by the brain's Complementary Learning Systems (CLS), to tackle this issue. Remembering Transformer employs a mixture-of-adapters and a generative model-based routing mechanism to alleviate CF by dynamically routing task data to relevant adapters. Our approach demonstrated a new SOTA performance in various vision continual learning tasks and great parameter efficiency.
☆ Generalization Gap in Data Augmentation: Insights from Illumination
In the field of computer vision, data augmentation is widely used to enrich the feature complexity of training datasets with deep learning techniques. However, regarding the generalization capabilities of models, the difference in artificial features generated by data augmentation and natural visual features has not been fully revealed. This study focuses on the visual representation variable 'illumination', by simulating its distribution degradation and examining how data augmentation techniques enhance model performance on a classification task. Our goal is to investigate the differences in generalization between models trained with augmented data and those trained under real-world illumination conditions. Results indicate that after undergoing various data augmentation methods, model performance has been significantly improved. Yet, a noticeable generalization gap still exists after utilizing various data augmentation methods, emphasizing the critical role of feature diversity in the training set for enhancing model generalization.
☆ Learning to Classify New Foods Incrementally Via Compressed Exemplars
Food image classification systems play a crucial role in health monitoring and diet tracking through image-based dietary assessment techniques. However, existing food recognition systems rely on static datasets characterized by a pre-defined fixed number of food classes. This contrasts drastically with the reality of food consumption, which features constantly changing data. Therefore, food image classification systems should adapt to and manage data that continuously evolves. This is where continual learning plays an important role. A challenge in continual learning is catastrophic forgetting, where ML models tend to discard old knowledge upon learning new information. While memory-replay algorithms have shown promise in mitigating this problem by storing old data as exemplars, they are hampered by the limited capacity of memory buffers, leading to an imbalance between new and previously learned data. To address this, our work explores the use of neural image compression to extend buffer size and enhance data diversity. We introduced the concept of continuously learning a neural compression model to adaptively improve the quality of compressed data and optimize the bitrates per pixel (bpp) to store more exemplars. Our extensive experiments, including evaluations on food-specific datasets including Food-101 and VFN-74, as well as the general dataset ImageNet-100, demonstrate improvements in classification accuracy. This progress is pivotal in advancing more realistic food recognition systems that are capable of adapting to continually evolving data. Moreover, the principles and methodologies we've developed hold promise for broader applications, extending their benefits to other domains of continual machine learning systems.
☆ Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange
In the realm of point cloud scene understanding, particularly in indoor scenes, objects are arranged following human habits, resulting in objects of certain semantics being closely positioned and displaying notable inter-object correlations. This can create a tendency for neural networks to exploit these strong dependencies, bypassing the individual object patterns. To address this challenge, we introduce a novel self-supervised learning (SSL) strategy. Our approach leverages both object patterns and contextual cues to produce robust features. It begins with the formulation of an object-exchanging strategy, where pairs of objects with comparable sizes are exchanged across different scenes, effectively disentangling the strong contextual dependencies. Subsequently, we introduce a context-aware feature learning strategy, which encodes object patterns without relying on their specific context by aggregating object features across various scenes. Our extensive experiments demonstrate the superiority of our method over existing SSL techniques, further showing its better robustness to environmental changes. Moreover, we showcase the applicability of our approach by transferring pre-trained models to diverse point cloud datasets.
☆ PillarTrack: Redesigning Pillar-based Transformer Network for Single Object Tracking on Point Clouds
LiDAR-based 3D single object tracking (3D SOT) is a critical issue in robotics and autonomous driving. It aims to obtain accurate 3D BBox from the search area based on similarity or motion. However, existing 3D SOT methods usually follow the point-based pipeline, where the sampling operation inevitably leads to redundant or lost information, resulting in unexpected performance. To address these issues, we propose PillarTrack, a pillar-based 3D single object tracking framework. Firstly, we transform sparse point clouds into dense pillars to preserve the local and global geometrics. Secondly, we introduce a Pyramid-type Encoding Pillar Feature Encoder (PE-PFE) design to help the feature representation of each pillar. Thirdly, we present an efficient Transformer-based backbone from the perspective of modality differences. Finally, we construct our PillarTrack tracker based above designs. Extensive experiments on the KITTI and nuScenes dataset demonstrate the superiority of our proposed method. Notably, our method achieves state-of-the-art performance on the KITTI and nuScenes dataset and enables real-time tracking speed. We hope our work could encourage the community to rethink existing 3D SOT tracker designs.We will open source our code to the research community in https://github.com/StiphyJay/PillarTrack.
☆ Fine-Grained Side Information Guided Dual-Prompts for Zero-Shot Skeleton Action Recognition
Skeleton-based zero-shot action recognition aims to recognize unknown human actions based on the learned priors of the known skeleton-based actions and a semantic descriptor space shared by both known and unknown categories. However, previous works focus on establishing the bridges between the known skeleton representation space and semantic descriptions space at the coarse-grained level for recognizing unknown action categories, ignoring the fine-grained alignment of these two spaces, resulting in suboptimal performance in distinguishing high-similarity action categories. To address these challenges, we propose a novel method via Side information and dual-prompts learning for skeleton-based zero-shot action recognition (STAR) at the fine-grained level. Specifically, 1) we decompose the skeleton into several parts based on its topology structure and introduce the side information concerning multi-part descriptions of human body movements for alignment between the skeleton and the semantic space at the fine-grained level; 2) we design the visual-attribute and semantic-part prompts to improve the intra-class compactness within the skeleton space and inter-class separability within the semantic space, respectively, to distinguish the high-similarity actions. Extensive experiments show that our method achieves state-of-the-art performance in ZSL and GZSL settings on NTU RGB+D, NTU RGB+D 120, and PKU-MMD datasets.
comment: 13 pages, 5 figures
☆ G-NeRF: Geometry-enhanced Novel View Synthesis from Single-View Images CVPR 2024
Novel view synthesis aims to generate new view images of a given view image collection. Recent attempts address this problem relying on 3D geometry priors (e.g., shapes, sizes, and positions) learned from multi-view images. However, such methods encounter the following limitations: 1) they require a set of multi-view images as training data for a specific scene (e.g., face, car or chair), which is often unavailable in many real-world scenarios; 2) they fail to extract the geometry priors from single-view images due to the lack of multi-view supervision. In this paper, we propose a Geometry-enhanced NeRF (G-NeRF), which seeks to enhance the geometry priors by a geometry-guided multi-view synthesis approach, followed by a depth-aware training. In the synthesis process, inspired that existing 3D GAN models can unconditionally synthesize high-fidelity multi-view images, we seek to adopt off-the-shelf 3D GAN models, such as EG3D, as a free source to provide geometry priors through synthesizing multi-view data. Simultaneously, to further improve the geometry quality of the synthetic data, we introduce a truncation method to effectively sample latent codes within 3D GAN models. To tackle the absence of multi-view supervision for single-view images, we design the depth-aware training approach, incorporating a depth-aware discriminator to guide geometry priors through depth maps. Experiments demonstrate the effectiveness of our method in terms of both qualitative and quantitative results.
comment: CVPR 2024 Accepted Paper
☆ LUCF-Net: Lightweight U-shaped Cascade Fusion Network for Medical Image Segmentation
In this study, the performance of existing U-shaped neural network architectures was enhanced for medical image segmentation by adding Transformer. Although Transformer architectures are powerful at extracting global information, its ability to capture local information is limited due to its high complexity. To address this challenge, we proposed a new lightweight U-shaped cascade fusion network (LUCF-Net) for medical image segmentation. It utilized an asymmetrical structural design and incorporated both local and global modules to enhance its capacity for local and global modeling. Additionally, a multi-layer cascade fusion decoding network was designed to further bolster the network's information fusion capabilities. Validation results achieved on multi-organ datasets in CT format, cardiac segmentation datasets in MRI format, and dermatology datasets in image format demonstrated that the proposed model outperformed other state-of-the-art methods in handling local-global information, achieving an improvement of 1.54% in Dice coefficient and 2.6 mm in Hausdorff distance on multi-organ segmentation. Furthermore, as a network that combines Convolutional Neural Network and Transformer architectures, it achieves competitive segmentation performance with only 6.93 million parameters and 6.6 gigabytes of floating point operations, without the need of pre-training. In summary, the proposed method demonstrated enhanced performance while retaining a simpler model design compared to other Transformer-based segmentation networks.
☆ Trashbusters: Deep Learning Approach for Litter Detection and Tracking
The illegal disposal of trash is a major public health and environmental concern. Disposing of trash in unplanned places poses serious health and environmental risks. We should try to restrict public trash cans as much as possible. This research focuses on automating the penalization of litterbugs, addressing the persistent problem of littering in public places. Traditional approaches relying on manual intervention and witness reporting suffer from delays, inaccuracies, and anonymity issues. To overcome these challenges, this paper proposes a fully automated system that utilizes surveillance cameras and advanced computer vision algorithms for litter detection, object tracking, and face recognition. The system accurately identifies and tracks individuals engaged in littering activities, attaches their identities through face recognition, and enables efficient enforcement of anti-littering policies. By reducing reliance on manual intervention, minimizing human error, and providing prompt identification, the proposed system offers significant advantages in addressing littering incidents. The primary contribution of this research lies in the implementation of the proposed system, leveraging advanced technologies to enhance surveillance operations and automate the penalization of litterbugs.
☆ Learning to Localize Objects Improves Spatial Reasoning in Visual-LLMs
Integration of Large Language Models (LLMs) into visual domain tasks, resulting in visual-LLMs (V-LLMs), has enabled exceptional performance in vision-language tasks, particularly for visual question answering (VQA). However, existing V-LLMs (e.g. BLIP-2, LLaVA) demonstrate weak spatial reasoning and localization awareness. Despite generating highly descriptive and elaborate textual answers, these models fail at simple tasks like distinguishing a left vs right location. In this work, we explore how image-space coordinate based instruction fine-tuning objectives could inject spatial awareness into V-LLMs. We discover optimal coordinate representations, data-efficient instruction fine-tuning objectives, and pseudo-data generation strategies that lead to improved spatial awareness in V-LLMs. Additionally, our resulting model improves VQA across image and video domains, reduces undesired hallucination, and generates better contextual object descriptions. Experiments across 5 vision-language tasks involving 14 different datasets establish the clear performance improvements achieved by our proposed framework.
☆ Transferable and Principled Efficiency for Open-Vocabulary Segmentation
Recent success of pre-trained foundation vision-language models makes Open-Vocabulary Segmentation (OVS) possible. Despite the promising performance, this approach introduces heavy computational overheads for two challenges: 1) large model sizes of the backbone; 2) expensive costs during the fine-tuning. These challenges hinder this OVS strategy from being widely applicable and affordable in real-world scenarios. Although traditional methods such as model compression and efficient fine-tuning can address these challenges, they often rely on heuristics. This means that their solutions cannot be easily transferred and necessitate re-training on different models, which comes at a cost. In the context of efficient OVS, we target achieving performance that is comparable to or even better than prior OVS works based on large vision-language foundation models, by utilizing smaller models that incur lower training costs. The core strategy is to make our efficiency principled and thus seamlessly transferable from one OVS framework to others without further customization. Comprehensive experiments on diverse OVS benchmarks demonstrate our superior trade-off between segmentation accuracy and computation costs over previous works. Our code is available on https://github.com/Xujxyang/OpenTrans
☆ Multi-view Aggregation Network for Dichotomous Image Segmentation CVPR2024
Dichotomous Image Segmentation (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images. When designing an effective DIS model, the main challenge is how to balance the semantic dispersion of high-resolution targets in the small receptive field and the loss of high-precision details in the large receptive field. Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement. Human visual system captures regions of interest by observing them from multiple views. Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet), which unifies the feature fusion of the distant view and close-up view into a single stream with one encoder-decoder structure. With the help of the proposed multi-view complementary localization and refinement modules, our approach established long-range, profound visual interactions across multiple views, allowing the features of the detailed close-up view to focus on highly slender structures.Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed. The source code and datasets will be publicly available at \href{https://github.com/qianyu-dlut/MVANet}{MVANet}.
comment: Accepted by CVPR2024 as Highlight
☆ Encoding Urban Ecologies: Automated Building Archetype Generation through Self-Supervised Learning for Energy Modeling
As the global population and urbanization expand, the building sector has emerged as the predominant energy consumer and carbon emission contributor. The need for innovative Urban Building Energy Modeling grows, yet existing building archetypes often fail to capture the unique attributes of local buildings and the nuanced distinctions between different cities, jeopardizing the precision of energy modeling. This paper presents an alternative tool employing self-supervised learning to distill complex geometric data into representative, locale-specific archetypes. This study attempts to foster a new paradigm of interaction with built environments, incorporating local parameters to conduct bespoke energy simulations at the community level. The catered archetypes can augment the precision and applicability of energy consumption modeling at different scales across diverse building inventories. This tool provides a potential solution that encourages the exploration of emerging local ecologies. By integrating building envelope characteristics and cultural granularity into the building archetype generation process, we seek a future where architecture and urban design are intricately interwoven with the energy sector in shaping our built environments.
☆ CopilotCAD: Empowering Radiologists with Report Completion Models and Quantitative Evidence from Medical Image Foundation Models
Computer-aided diagnosis systems hold great promise to aid radiologists and clinicians in radiological clinical practice and enhance diagnostic accuracy and efficiency. However, the conventional systems primarily focus on delivering diagnostic results through text report generation or medical image classification, positioning them as standalone decision-makers rather than helpers and ignoring radiologists' expertise. This study introduces an innovative paradigm to create an assistive co-pilot system for empowering radiologists by leveraging Large Language Models (LLMs) and medical image analysis tools. Specifically, we develop a collaborative framework to integrate LLMs and quantitative medical image analysis results generated by foundation models with radiologists in the loop, achieving efficient and safe generation of radiology reports and effective utilization of computational power of AI and the expertise of medical professionals. This approach empowers radiologists to generate more precise and detailed diagnostic reports, enhancing patient outcomes while reducing the burnout of clinicians. Our methodology underscores the potential of AI as a supportive tool in medical diagnostics, promoting a harmonious integration of technology and human expertise to advance the field of radiology.
☆ Improving Shift Invariance in Convolutional Neural Networks with Translation Invariant Polyphase Sampling
Downsampling operators break the shift invariance of convolutional neural networks (CNNs) and this affects the robustness of features learned by CNNs when dealing with even small pixel-level shift. Through a large-scale correlation analysis framework, we study shift invariance of CNNs by inspecting existing downsampling operators in terms of their maximum-sampling bias (MSB), and find that MSB is negatively correlated with shift invariance. Based on this crucial insight, we propose a learnable pooling operator called Translation Invariant Polyphase Sampling (TIPS) and two regularizations on the intermediate feature maps of TIPS to reduce MSB and learn translation-invariant representations. TIPS can be integrated into any CNN and can be trained end-to-end with marginal computational overhead. Our experiments demonstrate that TIPS results in consistent performance gains in terms of accuracy, shift consistency, and shift fidelity on multiple benchmarks for image classification and semantic segmentation compared to previous methods and also leads to improvements in adversarial and distributional robustness. TIPS results in the lowest MSB compared to all previous methods, thus explaining our strong empirical results.
☆ Simplifying Two-Stage Detectors for On-Device Inference in Remote Sensing
Deep learning has been successfully applied to object detection from remotely sensed images. Images are typically processed on the ground rather than on-board due to the computation power of the ground system. Such offloaded processing causes delays in acquiring target mission information, which hinders its application to real-time use cases. For on-device object detection, researches have been conducted on designing efficient detectors or model compression to reduce inference latency. However, highly accurate two-stage detectors still need further exploitation for acceleration. In this paper, we propose a model simplification method for two-stage object detectors. Instead of constructing a general feature pyramid, we utilize only one feature extraction in the two-stage detector. To compensate for the accuracy drop, we apply a high pass filter to the RPN's score map. Our approach is applicable to any two-stage detector using a feature pyramid network. In the experiments with state-of-the-art two-stage detectors such as ReDet, Oriented-RCNN, and LSKNet, our method reduced computation costs upto 61.2% with the accuracy loss within 2.1% on the DOTAv1.5 dataset. Source code will be released.
☆ Post-hurricane building damage assessment using street-view imagery and structured data: A multi-modal deep learning approach
Accurately assessing building damage is critical for disaster response and recovery. However, many existing models for detecting building damage have poor prediction accuracy due to their limited capabilities of identifying detailed, comprehensive structural and/or non-structural damage from the street-view image. Additionally, these models mainly rely on the imagery data for damage classification, failing to account for other critical information, such as wind speed, building characteristics, evacuation zones, and distance of the building to the hurricane track. To address these limitations, in this study, we propose a novel multi-modal (i.e., imagery and structured data) approach for post-hurricane building damage classification, named the Multi-Modal Swin Transformer (MMST). We empirically train and evaluate the proposed MMST using data collected from the 2022 Hurricane Ian in Florida, USA. Results show that MMST outperforms all selected state-of-the-art benchmark models and can achieve an accuracy of 92.67%, which are 7.71% improvement in accuracy compared to Visual Geometry Group 16 (VGG-16). In addition to the street-view imagery data, building value, building age, and wind speed are the most important predictors for damage level classification. The proposed MMST can be deployed to assist in rapid damage assessment and guide reconnaissance efforts in future hurricanes.
☆ Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
Given the destructive impacts of tropical cyclones, it is critical to have a reliable system for cyclone intensity detection. Various techniques are available for this purpose, each with differing levels of accuracy. In this paper, we introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity using visible satellite images. The first model, trained on the entire dataset, is called the global AlexNet model. The second model is a distributed version of AlexNet in which multiple AlexNets are trained separately on subsets of the training data categorized according to the Saffir-Simpson wind speed scale prescribed by the meterologists. We evaluated the performance of both models against a deep learning benchmark model called \textit{Deepti} using a publicly available cyclone image dataset. Results indicate that both the global model (with a root mean square error (RMSE) of 9.03 knots) and the distributed model (with a RMSE of 9.3 knots) outperform the benchmark model (with a RMSE of 13.62 knots). We provide a thorough discussion of our solution approach, including an explanantion of the AlexNet's performance using gradient class activation maps (grad-CAM). Our proposed solution strategy allows future experimentation with various deep learning models in both single and multi-channel settings.
☆ SciFlow: Empowering Lightweight Optical Flow Models with Self-Cleaning Iterations CVPR
Optical flow estimation is crucial to a variety of vision tasks. Despite substantial recent advancements, achieving real-time on-device optical flow estimation remains a complex challenge. First, an optical flow model must be sufficiently lightweight to meet computation and memory constraints to ensure real-time performance on devices. Second, the necessity for real-time on-device operation imposes constraints that weaken the model's capacity to adequately handle ambiguities in flow estimation, thereby intensifying the difficulty of preserving flow accuracy. This paper introduces two synergistic techniques, Self-Cleaning Iteration (SCI) and Regression Focal Loss (RFL), designed to enhance the capabilities of optical flow models, with a focus on addressing optical flow regression ambiguities. These techniques prove particularly effective in mitigating error propagation, a prevalent issue in optical flow models that employ iterative refinement. Notably, these techniques add negligible to zero overhead in model parameters and inference latency, thereby preserving real-time on-device efficiency. The effectiveness of our proposed SCI and RFL techniques, collectively referred to as SciFlow for brevity, is demonstrated across two distinct lightweight optical flow model architectures in our experiments. Remarkably, SciFlow enables substantial reduction in error metrics (EPE and Fl-all) over the baseline models by up to 6.3% and 10.5% for in-domain scenarios and by up to 6.2% and 13.5% for cross-domain scenarios on the Sintel and KITTI 2015 datasets, respectively.
comment: CVPRW 2024
Self-Supervised Learning of Color Constancy
Color constancy (CC) describes the ability of the visual system to perceive an object as having a relatively constant color despite changes in lighting conditions. While CC and its limitations have been carefully characterized in humans, it is still unclear how the visual system acquires this ability during development. Here, we present a first study showing that CC develops in a neural network trained in a self-supervised manner through an invariance learning objective. During learning, objects are presented under changing illuminations, while the network aims to map subsequent views of the same object onto close-by latent representations. This gives rise to representations that are largely invariant to the illumination conditions, offering a plausible example of how CC could emerge during human cognitive development via a form of self-supervised learning.
comment: 7 pages, 5 figures, submitted to the IEEE International Conference on Development and Learning (ICDL 2024)
☆ S3Editor: A Sparse Semantic-Disentangled Self-Training Framework for Face Video Editing
Face attribute editing plays a pivotal role in various applications. However, existing methods encounter challenges in achieving high-quality results while preserving identity, editing faithfulness, and temporal consistency. These challenges are rooted in issues related to the training pipeline, including limited supervision, architecture design, and optimization strategy. In this work, we introduce S3Editor, a Sparse Semantic-disentangled Self-training framework for face video editing. S3Editor is a generic solution that comprehensively addresses these challenges with three key contributions. Firstly, S3Editor adopts a self-training paradigm to enhance the training process through semi-supervision. Secondly, we propose a semantic disentangled architecture with a dynamic routing mechanism that accommodates diverse editing requirements. Thirdly, we present a structured sparse optimization schema that identifies and deactivates malicious neurons to further disentangle impacts from untarget attributes. S3Editor is model-agnostic and compatible with various editing approaches. Our extensive qualitative and quantitative results affirm that our approach significantly enhances identity preservation, editing fidelity, as well as temporal consistency.
☆ Visual Context-Aware Person Fall Detection
As the global population ages, the number of fall-related incidents is on the rise. Effective fall detection systems, specifically in healthcare sector, are crucial to mitigate the risks associated with such events. This study evaluates the role of visual context, including background objects, on the accuracy of fall detection classifiers. We present a segmentation pipeline to semi-automatically separate individuals and objects in images. Well-established models like ResNet-18, EfficientNetV2-S, and Swin-Small are trained and evaluated. During training, pixel-based transformations are applied to segmented objects, and the models are then evaluated on raw images without segmentation. Our findings highlight the significant influence of visual context on fall detection. The application of Gaussian blur to the image background notably improves the performance and generalization capabilities of all models. Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms. However, we demonstrate that object-specific contextual transformations during training effectively mitigate this challenge. Further analysis using saliency maps supports our observation that visual context is crucial in classification tasks. We create both dataset processing API and segmentation pipeline, available at https://github.com/A-NGJ/image-segmentation-cli.
comment: 10 pages, 6 figures, KES IDT-24 conference
☆ Real-Time Detection and Analysis of Vehicles and Pedestrians using Deep Learning
Computer vision, particularly vehicle and pedestrian identification is critical to the evolution of autonomous driving, artificial intelligence, and video surveillance. Current traffic monitoring systems confront major difficulty in recognizing small objects and pedestrians effectively in real-time, posing a serious risk to public safety and contributing to traffic inefficiency. Recognizing these difficulties, our project focuses on the creation and validation of an advanced deep-learning framework capable of processing complex visual input for precise, real-time recognition of cars and people in a variety of environmental situations. On a dataset representing complicated urban settings, we trained and evaluated different versions of the YOLOv8 and RT-DETR models. The YOLOv8 Large version proved to be the most effective, especially in pedestrian recognition, with great precision and robustness. The results, which include Mean Average Precision and recall rates, demonstrate the model's ability to dramatically improve traffic monitoring and safety. This study makes an important addition to real-time, reliable detection in computer vision, establishing new benchmarks for traffic management systems.
comment: 5 pages, 2 figures
☆ DIMAT: Decentralized Iterative Merging-And-Training for Deep Learning Models CVPR 2024
Recent advances in decentralized deep learning algorithms have demonstrated cutting-edge performance on various tasks with large pre-trained models. However, a pivotal prerequisite for achieving this level of competitiveness is the significant communication and computation overheads when updating these models, which prohibits the applications of them to real-world scenarios. To address this issue, drawing inspiration from advanced model merging techniques without requiring additional training, we introduce the Decentralized Iterative Merging-And-Training (DIMAT) paradigm--a novel decentralized deep learning framework. Within DIMAT, each agent is trained on their local data and periodically merged with their neighboring agents using advanced model merging techniques like activation matching until convergence is achieved. DIMAT provably converges with the best available rate for nonconvex functions with various first-order methods, while yielding tighter error bounds compared to the popular existing approaches. We conduct a comprehensive empirical analysis to validate DIMAT's superiority over baselines across diverse computer vision tasks sourced from multiple datasets. Empirical results validate our theoretical claims by showing that DIMAT attains faster and higher initial gain in accuracy with independent and identically distributed (IID) and non-IID data, incurring lower communication overhead. This DIMAT paradigm presents a new opportunity for the future decentralized learning, enhancing its adaptability to real-world with sparse and light-weight communication and computation.
comment: CVPR 2024 accepted paper, 22 pages, 12 figures
☆ Latent Guard: a Safety Framework for Text-to-image Generation
With the ability to generate high-quality images, text-to-image (T2I) models can be exploited for creating inappropriate content. To prevent misuse, existing safety measures are either based on text blacklists, which can be easily circumvented, or harmful content classification, requiring large datasets for training and offering low flexibility. Hence, we propose Latent Guard, a framework designed to improve safety measures in text-to-image generation. Inspired by blacklist-based approaches, Latent Guard learns a latent space on top of the T2I model's text encoder, where it is possible to check the presence of harmful concepts in the input text embeddings. Our proposed framework is composed of a data generation pipeline specific to the task using large language models, ad-hoc architectural components, and a contrastive learning strategy to benefit from the generated data. The effectiveness of our method is verified on three datasets and against four baselines. Code and data will be shared at https://github.com/rt219/LatentGuard.
comment: under review
☆ Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models
Recent text-to-image generative models such as Stable Diffusion are extremely adept at mimicking and generating copyrighted content, raising concerns amongst artists that their unique styles may be improperly copied. Understanding how generative models copy "artistic style" is more complex than duplicating a single image, as style is comprised by a set of elements (or signature) that frequently co-occurs across a body of work, where each individual work may vary significantly. In our paper, we first reformulate the problem of "artistic copyright infringement" to a classification problem over image sets, instead of probing image-wise similarities. We then introduce ArtSavant, a practical (i.e., efficient and easy to understand) tool to (i) determine the unique style of an artist by comparing it to a reference dataset of works from 372 artists curated from WikiArt, and (ii) recognize if the identified style reappears in generated images. We leverage two complementary methods to perform artistic style classification over image sets, includingTagMatch, which is a novel inherently interpretable and attributable method, making it more suitable for broader use by non-technical stake holders (artists, lawyers, judges, etc). Leveraging ArtSavant, we then perform a large-scale empirical study to provide quantitative insight on the prevalence of artistic style copying across 3 popular text-to-image generative models. Namely, amongst a dataset of prolific artists (including many famous ones), only 20% of them appear to have their styles be at a risk of copying via simple prompting of today's popular text-to-image generative models.
♻ ☆ Supervised Fine-tuning in turn Improves Visual Foundation Models
Image-text training like CLIP has dominated the pretraining of vision foundation models in recent years. Subsequent efforts have been made to introduce region-level visual learning into CLIP's pretraining but face scalability challenges due to the lack of large-scale region-level datasets. Drawing inspiration from supervised fine-tuning (SFT) in natural language processing such as instruction tuning, we explore the potential of fine-grained SFT in enhancing the generation of vision foundation models after their pretraining. Thus a two-stage method ViSFT (Vision SFT) is proposed to unleash the fine-grained knowledge of vision foundation models. In ViSFT, the vision foundation model is enhanced by performing visual joint learning on some in-domain tasks and then tested on out-of-domain benchmarks. With updating using ViSFT on 8 V100 GPUs in less than 2 days, a vision transformer with over 4.4B parameters shows improvements across various out-of-domain benchmarks including vision and vision-linguistic scenarios.
comment: 23 pages, 3 figures, Project page: https://github.com/TencentARC/ViSFT/tree/main
♻ ☆ Low-Resource Vision Challenges for Foundation Models CVPR2024
Low-resource settings are well-established in natural language processing, where many languages lack sufficient data for deep learning at scale. However, low-resource problems are under-explored in computer vision. In this paper, we address this gap and explore the challenges of low-resource image tasks with vision foundation models. We first collect a benchmark of genuinely low-resource image data, covering historic maps, circuit diagrams, and mechanical drawings. These low-resource settings all share three challenges: data scarcity, fine-grained differences, and the distribution shift from natural images to the specialized domain of interest. While existing foundation models have shown impressive generalizability, we find they cannot transfer well to our low-resource tasks. To begin to tackle the challenges of low-resource vision, we introduce one simple baseline per challenge. Specifically, we i) enlarge the data space by generative models, ii) adopt the best sub-kernels to encode local regions for fine-grained difference discovery and iii) learn attention for specialized domains. Experiments on our three low-resource tasks demonstrate our proposals already provide a better baseline than transfer learning, data augmentation, and fine-grained methods. This highlights the unique characteristics and challenges of low-resource vision for foundation models that warrant further investigation. Project page: https://xiaobai1217.github.io/Low-Resource-Vision/.
comment: Accepted at CVPR2024
♻ ☆ EgoGen: An Egocentric Synthetic Data Generator CVPR 2024
Understanding the world in first-person view is fundamental in Augmented Reality (AR). This immersive perspective brings dramatic visual changes and unique challenges compared to third-person views. Synthetic data has empowered third-person-view vision models, but its application to embodied egocentric perception tasks remains largely unexplored. A critical challenge lies in simulating natural human movements and behaviors that effectively steer the embodied cameras to capture a faithful egocentric representation of the 3D world. To address this challenge, we introduce EgoGen, a new synthetic data generator that can produce accurate and rich ground-truth training data for egocentric perception tasks. At the heart of EgoGen is a novel human motion synthesis model that directly leverages egocentric visual inputs of a virtual human to sense the 3D environment. Combined with collision-avoiding motion primitives and a two-stage reinforcement learning approach, our motion synthesis model offers a closed-loop solution where the embodied perception and movement of the virtual human are seamlessly coupled. Compared to previous works, our model eliminates the need for a pre-defined global path, and is directly applicable to dynamic environments. Combined with our easy-to-use and scalable data generation pipeline, we demonstrate EgoGen's efficacy in three tasks: mapping and localization for head-mounted cameras, egocentric camera tracking, and human mesh recovery from egocentric views. EgoGen will be fully open-sourced, offering a practical solution for creating realistic egocentric training data and aiming to serve as a useful tool for egocentric computer vision research. Refer to our project page: https://ego-gen.github.io/.
comment: Accepted by CVPR 2024 (Oral). 23 pages, 17 figures. Project page: https://ego-gen.github.io/
♻ ☆ MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection
Recent advancements in anomaly detection have seen the efficacy of CNN- and transformer-based approaches. However, CNNs struggle with long-range dependencies, while transformers are burdened by quadratic computational complexity. Mamba-based models, with their superior long-range modeling and linear efficiency, have garnered substantial attention. This study pioneers the application of Mamba to multi-class unsupervised anomaly detection, presenting MambaAD, which consists of a pre-trained encoder and a Mamba decoder featuring (Locality-Enhanced State Space) LSS modules at multi-scales. The proposed LSS module, integrating parallel cascaded (Hybrid State Space) HSS blocks and multi-kernel convolutions operations, effectively captures both long-range and local information. The HSS block, utilizing (Hybrid Scanning) HS encoders, encodes feature maps into five scanning methods and eight directions, thereby strengthening global connections through the (State Space Model) SSM. The use of Hilbert scanning and eight directions significantly improves feature sequence modeling. Comprehensive experiments on six diverse anomaly detection datasets and seven metrics demonstrate state-of-the-art performance, substantiating the method's effectiveness.
♻ ☆ Uncertainty-aware Evidential Fusion-based Learning for Semi-supervised Medical Image Segmentation
Although the existing uncertainty-based semi-supervised medical segmentation methods have achieved excellent performance, they usually only consider a single uncertainty evaluation, which often fails to solve the problem related to credibility completely. Therefore, based on the framework of evidential deep learning, this paper integrates the evidential predictive results in the cross-region of mixed and original samples to reallocate the confidence degree and uncertainty measure of each voxel, which is realized by emphasizing uncertain information of probability assignments fusion rule of traditional evidence theory. Furthermore, we design a voxel-level asymptotic learning strategy by introducing information entropy to combine with the fused uncertainty measure to estimate voxel prediction more precisely. The model will gradually pay attention to the prediction results with high uncertainty in the learning process, to learn the features that are difficult to master. The experimental results on LA, Pancreas-CT, ACDC and TBAD datasets demonstrate the superior performance of our proposed method in comparison with the existing state of the arts.
♻ ☆ Deep Learning for Event-based Vision: A Comprehensive Survey and Benchmarks
Event cameras are bio-inspired sensors that capture the per-pixel intensity changes asynchronously and produce event streams encoding the time, pixel position, and polarity (sign) of the intensity changes. Event cameras possess a myriad of advantages over canonical frame-based cameras, such as high temporal resolution, high dynamic range, low latency, etc. Being capable of capturing information in challenging visual conditions, event cameras have the potential to overcome the limitations of frame-based cameras in the computer vision and robotics community. In very recent years, deep learning (DL) has been brought to this emerging field and inspired active research endeavors in mining its potential. However, there is still a lack of taxonomies in DL techniques for event-based vision. We first scrutinize the typical event representations with quality enhancement methods as they play a pivotal role as inputs to the DL models. We then provide a comprehensive survey of existing DL-based methods by structurally grouping them into two major categories: 1) image/video reconstruction and restoration; 2) event-based scene understanding and 3D vision. We conduct benchmark experiments for the existing methods in some representative research directions, i.e., image reconstruction, deblurring, and object recognition, to identify some critical insights and problems. Finally, we have discussions regarding the challenges and provide new perspectives for inspiring more research studies.
♻ ☆ MoCha-Stereo: Motif Channel Attention Network for Stereo Matching CVPR 2024
Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
comment: Accepted to CVPR 2024
♻ ☆ Diffusion Time-step Curriculum for One Image to 3D Generation CVPR 2024
Score distillation sampling~(SDS) has been widely adopted to overcome the absence of unseen views in reconstructing 3D objects from a \textbf{single} image. It leverages pre-trained 2D diffusion models as teacher to guide the reconstruction of student 3D models. Despite their remarkable success, SDS-based methods often encounter geometric artifacts and texture saturation. We find out the crux is the overlooked indiscriminate treatment of diffusion time-steps during optimization: it unreasonably treats the student-teacher knowledge distillation to be equal at all time-steps and thus entangles coarse-grained and fine-grained modeling. Therefore, we propose the Diffusion Time-step Curriculum one-image-to-3D pipeline (DTC123), which involves both the teacher and student models collaborating with the time-step curriculum in a coarse-to-fine manner. Extensive experiments on NeRF4, RealFusion15, GSO and Level50 benchmark demonstrate that DTC123 can produce multi-view consistent, high-quality, and diverse 3D assets. Codes and more generation demos will be released in https://github.com/yxymessi/DTC123.
comment: Accepted to CVPR 2024
♻ ☆ Exploring Masked Autoencoders for Sensor-Agnostic Image Retrieval in Remote Sensing
Self-supervised learning through masked autoencoders (MAEs) has recently attracted great attention for remote sensing (RS) image representation learning, and thus embodies a significant potential for content-based image retrieval (CBIR) from ever-growing RS image archives. However, the existing studies on MAEs in RS assume that the considered RS images are acquired by a single image sensor, and thus are only suitable for uni-modal CBIR problems. The effectiveness of MAEs for cross-sensor CBIR, which aims to search semantically similar images across different image modalities, has not been explored yet. In this paper, we take the first step to explore the effectiveness of MAEs for sensor-agnostic CBIR in RS. To this end, we present a systematic overview on the possible adaptations of the vanilla MAE to exploit masked image modeling on multi-sensor RS image archives (denoted as cross-sensor masked autoencoders [CSMAEs]). Based on different adjustments applied to the vanilla MAE, we introduce different CSMAE models. We also provide an extensive experimental analysis of these CSMAE models. We finally derive a guideline to exploit masked image modeling for uni-modal and cross-modal CBIR problems in RS. The code of this work is publicly available at https://github.com/jakhac/CSMAE.
comment: This work has been submitted to the IEEE for possible publication. Our code is available at https://github.com/jakhac/CSMAE
♻ ☆ An Autonomous Vision-Based Algorithm for Interplanetary Navigation
The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking. Self-driving interplanetary satellites represent a solution to this problem. In this work, a full vision-based navigation algorithm is built by combining an orbit determination method with an image processing pipeline suitable for interplanetary transfers of autonomous platforms. To increase the computational efficiency of the algorithm, a non-dimensional extended Kalman filter is selected as state estimator, fed by the positions of the planets extracted from deep-space images. An enhancement of the estimation accuracy is performed by applying an optimal strategy to select the best pair of planets to track. Moreover, a novel analytical measurement model for deep-space navigation is developed providing a first-order approximation of the light-aberration and light-time effects. Algorithm performance is tested on a high-fidelity, Earth--Mars interplanetary transfer, showing the algorithm applicability for deep-space navigation.
♻ ☆ Attention Calibration for Disentangled Text-to-Image Personalization CVPR 2024
Recent thrilling progress in large-scale text-to-image (T2I) models has unlocked unprecedented synthesis quality of AI-generated content (AIGC) including image generation, 3D and video composition. Further, personalized techniques enable appealing customized production of a novel concept given only several images as reference. However, an intriguing problem persists: Is it possible to capture multiple, novel concepts from one single reference image? In this paper, we identify that existing approaches fail to preserve visual consistency with the reference image and eliminate cross-influence from concepts. To alleviate this, we propose an attention calibration mechanism to improve the concept-level understanding of the T2I model. Specifically, we first introduce new learnable modifiers bound with classes to capture attributes of multiple concepts. Then, the classes are separated and strengthened following the activation of the cross-attention operation, ensuring comprehensive and self-contained concepts. Additionally, we suppress the attention activation of different classes to mitigate mutual influence among concepts. Together, our proposed method, dubbed DisenDiff, can learn disentangled multiple concepts from one single image and produce novel customized images with learned concepts. We demonstrate that our method outperforms the current state of the art in both qualitative and quantitative evaluations. More importantly, our proposed techniques are compatible with LoRA and inpainting pipelines, enabling more interactive experiences.
comment: CVPR 2024 (Oral)
♻ ☆ A Deep Learning Method for Simultaneous Denoising and Missing Wedge Reconstruction in Cryogenic Electron Tomography
Cryogenic electron tomography is a technique for imaging biological samples in 3D. A microscope collects a series of 2D projections of the sample, and the goal is to reconstruct the 3D density of the sample called the tomogram. Reconstruction is difficult as the 2D projections are noisy and can not be recorded from all directions, resulting in a missing wedge of information. Tomograms conventionally reconstructed with filtered back-projection suffer from noise and strong artifacts due to the missing wedge. Here, we propose a deep-learning approach for simultaneous denoising and missing wedge reconstruction called DeepDeWedge. The algorithm requires no ground truth data and is based on fitting a neural network to the 2D projections using a self-supervised loss. DeepDeWedge performs better than CryoCARE and IsoNet, which are state-of-the-art methods for denoising and missing wedge reconstruction, and similarly and, in some cases, better than the combination of the two methods. At the same time, DeepDeWedge is simpler than this two-step approach, as it does denoising and missing wedge reconstruction simultaneously rather than sequentially.
♻ ☆ T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in Sports Videos
In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in sports videos. T-DEED addresses multiple challenges in the task, including the need for discriminability among frame representations, high output temporal resolution to maintain prediction precision, and the necessity to capture information at different temporal scales to handle events with varying dynamics. It tackles these challenges through its specifically designed architecture, featuring an encoder-decoder for leveraging multiple temporal scales and achieving high output temporal resolution, along with temporal modules designed to increase token discriminability. Leveraging these characteristics, T-DEED achieves SOTA performance on the FigureSkating and FineDiving datasets. Code is available at https://github.com/arturxe2/T-DEED.
♻ ☆ Flattening the Parent Bias: Hierarchical Semantic Segmentation in the Poincar{é} Ball
Hierarchy is a natural representation of semantic taxonomies, including the ones routinely used in image segmentation. Indeed, recent work on semantic segmentation reports improved accuracy from supervised training leveraging hierarchical label structures. Encouraged by these results, we revisit the fundamental assumptions behind that work. We postulate and then empirically verify that the reasons for the observed improvement in segmentation accuracy may be entirely unrelated to the use of the semantic hierarchy. To demonstrate this, we design a range of cross-domain experiments with a representative hierarchical approach. We find that on the new testing domains, a flat (non-hierarchical) segmentation network, in which the parents are inferred from the children, has superior segmentation accuracy to the hierarchical approach across the board. Complementing these findings and inspired by the intrinsic properties of hyperbolic spaces, we study a more principled approach to hierarchical segmentation using the Poincar\'e ball model. The hyperbolic representation largely outperforms the previous (Euclidean) hierarchical approach as well and is on par with our flat Euclidean baseline in terms of segmentation accuracy. However, it additionally exhibits surprisingly strong calibration quality of the parent nodes in the semantic hierarchy, especially on the more challenging domains. Our combined analysis suggests that the established practice of hierarchical segmentation may be limited to in-domain settings, whereas flat classifiers generalize substantially better, especially if they are modeled in the hyperbolic space.
♻ ☆ Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios CVPR 2024
Self-supervised denoising has attracted widespread attention due to its ability to train without clean images. However, noise in real-world scenarios is often spatially correlated, which causes many self-supervised algorithms that assume pixel-wise independent noise to perform poorly. Recent works have attempted to break noise correlation with downsampling or neighborhood masking. However, denoising on downsampled subgraphs can lead to aliasing effects and loss of details due to a lower sampling rate. Furthermore, the neighborhood masking methods either come with high computational complexity or do not consider local spatial preservation during inference. Through the analysis of existing methods, we point out that the key to obtaining high-quality and texture-rich results in real-world self-supervised denoising tasks is to train at the original input resolution structure and use asymmetric operations during training and inference. Based on this, we propose Asymmetric Tunable Blind-Spot Network (AT-BSN), where the blind-spot size can be freely adjusted, thus better balancing noise correlation suppression and image local spatial destruction during training and inference. In addition, we regard the pre-trained AT-BSN as a meta-teacher network capable of generating various teacher networks by sampling different blind-spots. We propose a blind-spot based multi-teacher distillation strategy to distill a lightweight network, significantly improving performance. Experimental results on multiple datasets prove that our method achieves state-of-the-art, and is superior to other self-supervised algorithms in terms of computational overhead and visual effects.
comment: Accepted by CVPR 2024
♻ ☆ Deep Learning for Satellite Image Time Series Analysis: A Review
Earth observation (EO) satellite missions have been providing detailed images about the state of the Earth and its land cover for over 50 years. Long term missions, such as NASA's Landsat, Terra, and Aqua satellites, and more recently, the ESA's Sentinel missions, record images of the entire world every few days. Although single images provide point-in-time data, repeated images of the same area, or satellite image time series (SITS) provide information about the changing state of vegetation and land use. These SITS are useful for modeling dynamic processes and seasonal changes such as plant phenology. They have potential benefits for many aspects of land and natural resource management, including applications in agricultural, forest, water, and disaster management, urban planning, and mining. However, the resulting satellite image time series (SITS) are complex, incorporating information from the temporal, spatial, and spectral dimensions. Therefore, deep learning methods are often deployed as they can analyze these complex relationships. This review presents a summary of the state-of-the-art methods of modelling environmental, agricultural, and other Earth observation variables from SITS data using deep learning methods. We aim to provide a resource for remote sensing experts interested in using deep learning techniques to enhance Earth observation models with temporal information.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Is Medieval Distant Viewing Possible? : Extending and Enriching Annotation of Legacy Image Collections using Visual Analytics
Distant viewing approaches have typically used image datasets close to the contemporary image data used to train machine learning models. To work with images from other historical periods requires expert annotated data, and the quality of labels is crucial for the quality of results. Especially when working with cultural heritage collections that contain myriad uncertainties, annotating data, or re-annotating, legacy data is an arduous task. In this paper, we describe working with two pre-annotated sets of medieval manuscript images that exhibit conflicting and overlapping metadata. Since a manual reconciliation of the two legacy ontologies would be very expensive, we aim (1) to create a more uniform set of descriptive labels to serve as a "bridge" in the combined dataset, and (2) to establish a high quality hierarchical classification that can be used as a valuable input for subsequent supervised machine learning. To achieve these goals, we developed visualization and interaction mechanisms, enabling medievalists to combine, regularize and extend the vocabulary used to describe these, and other cognate, image datasets. The visual interfaces provide experts an overview of relationships in the data going beyond the sum total of the metadata. Word and image embeddings as well as co-occurrences of labels across the datasets, enable batch re-annotation of images, recommendation of label candidates and support composing a hierarchical classification of labels.
comment: Revision after DSH Peer Review. Paper is now accepted at DSH
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
♻ ☆ 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models
In this work, we show that synthetic data created by generative models is complementary to computer graphics (CG) rendered data for achieving remarkable generalization performance on diverse real-world scenes for 3D human pose and shape estimation (HPS). Specifically, we propose an effective approach based on recent diffusion models, termed HumanWild, which can effortlessly generate human images and corresponding 3D mesh annotations. We first collect a large-scale human-centric dataset with comprehensive annotations, e.g., text captions and surface normal images. Then, we train a customized ControlNet model upon this dataset to generate diverse human images and initial ground-truth labels. At the core of this step is that we can easily obtain numerous surface normal images from a 3D human parametric model, e.g., SMPL-X, by rendering the 3D mesh onto the image plane. As there exists inevitable noise in the initial labels, we then apply an off-the-shelf foundation segmentation model, i.e., SAM, to filter negative data samples. Our data generation pipeline is flexible and customizable to facilitate different real-world tasks, e.g., ego-centric scenes and perspective-distortion scenes. The generated dataset comprises 0.79M images with corresponding 3D annotations, covering versatile viewpoints, scenes, and human identities. We train various HPS regressors on top of the generated data and evaluate them on a wide range of benchmarks (3DPW, RICH, EgoBody, AGORA, SSP-3D) to verify the effectiveness of the generated data. By exclusively employing generative models, we generate large-scale in-the-wild human images and high-quality annotations, eliminating the need for real-world data collection.
comment: project page: https://yongtaoge.github.io/projects/humanwild
♻ ☆ NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors CVPR 2024
Faithfully modeling the space of articulations is a crucial task that allows recovery and generation of realistic poses, and remains a notorious challenge. To this end, we introduce Neural Riemannian Distance Fields (NRDFs), data-driven priors modeling the space of plausible articulations, represented as the zero-level-set of a neural field in a high-dimensional product-quaternion space. To train NRDFs only on positive examples, we introduce a new sampling algorithm, ensuring that the geodesic distances follow a desired distribution, yielding a principled distance field learning paradigm. We then devise a projection algorithm to map any random pose onto the level-set by an adaptive-step Riemannian optimizer, adhering to the product manifold of joint rotations at all times. NRDFs can compute the Riemannian gradient via backpropagation and by mathematical analogy, are related to Riemannian flow matching, a recent generative model. We conduct a comprehensive evaluation of NRDF against other pose priors in various downstream tasks, i.e., pose generation, image-based pose estimation, and solving inverse kinematics, highlighting NRDF's superior performance. Besides humans, NRDF's versatility extends to hand and animal poses, as it can effectively represent any articulation.
comment: Accepted by CVPR 2024. Project page: https://virtualhumans.mpi-inf.mpg.de/nrdf
♻ ☆ ChangeMamba: Remote Sensing Change Detection with Spatio-Temporal State Space Model
Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD). However, both architectures have inherent shortcomings. Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures. In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks. We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively. All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images. For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information. On five benchmark datasets, our proposed frameworks outperform current CNN- and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks. Specifically, we obtained 83.11%, 88.39% and 94.19% F1 scores on the three BCD datasets SYSU, LEVIR-CD+, and WHU-CD; on the SCD dataset SECOND, we obtained 24.11% SeK; and on the BDA dataset xBD, we obtained 81.41% overall F1 score. Further experiments show that our architecture is quite robust to degraded data. The source code will be available in https://github.com/ChenHongruixuan/MambaCD
♻ ☆ RePoseDM: Recurrent Pose Alignment and Gradient Guidance for Pose Guided Image Synthesis CVPR 2024
Pose-guided person image synthesis task requires re-rendering a reference image, which should have a photorealistic appearance and flawless pose transfer. Since person images are highly structured, existing approaches require dense connections for complex deformations and occlusions because these are generally handled through multi-level warping and masking in latent space. The feature maps generated by convolutional neural networks do not have equivariance, and hence multi-level warping is required to perform pose alignment. Inspired by the ability of the diffusion model to generate photorealistic images from the given conditional guidance, we propose recurrent pose alignment to provide pose-aligned texture features as conditional guidance. Due to the leakage of the source pose in conditional guidance, we propose gradient guidance from pose interaction fields, which output the distance from the valid pose manifold given a predicted pose as input. This helps in learning plausible pose transfer trajectories that result in photorealism and undistorted texture details. Extensive results on two large-scale benchmarks and a user study demonstrate the ability of our proposed approach to generate photorealistic pose transfer under challenging scenarios. Additionally, we demonstrate the efficiency of gradient guidance in pose-guided image generation on the HumanArt dataset with fine-tuned stable diffusion.
comment: Accepted at CVPR 2024 SyntaGen Workshop, 13 pages, 4 tables, 7 figures
♻ ☆ COTR: Compact Occupancy TRansformer for Vision-based 3D Occupancy Prediction CVPR2024
The autonomous driving community has shown significant interest in 3D occupancy prediction, driven by its exceptional geometric perception and general object recognition capabilities. To achieve this, current works try to construct a Tri-Perspective View (TPV) or Occupancy (OCC) representation extending from the Bird-Eye-View perception. However, compressed views like TPV representation lose 3D geometry information while raw and sparse OCC representation requires heavy but redundant computational costs. To address the above limitations, we propose Compact Occupancy TRansformer (COTR), with a geometry-aware occupancy encoder and a semantic-aware group decoder to reconstruct a compact 3D OCC representation. The occupancy encoder first generates a compact geometrical OCC feature through efficient explicit-implicit view transformation. Then, the occupancy decoder further enhances the semantic discriminability of the compact OCC representation by a coarse-to-fine semantic grouping strategy. Empirical experiments show that there are evident performance gains across multiple baselines, e.g., COTR outperforms baselines with a relative improvement of 8%-15%, demonstrating the superiority of our method.
comment: CVPR2024. Code is available at https://github.com/NotACracker/COTR
♻ ☆ IIDM: Inter and Intra-domain Mixing for Semi-supervised Domain Adaptation in Semantic Segmentation
Despite recent advances in semantic segmentation, an inevitable challenge is the performance degradation caused by the domain shift in real applications. Current dominant approach to solve this problem is unsupervised domain adaptation (UDA). However, the absence of labeled target data in UDA is overly restrictive and limits performance. To overcome this limitation, a more practical scenario called semi-supervised domain adaptation (SSDA) has been proposed. Existing SSDA methods are derived from the UDA paradigm and primarily focus on leveraging the unlabeled target data and source data. In this paper, we highlight the significance of exploiting the intra-domain information between the labeled target data and unlabeled target data. Instead of solely using the scarce labeled target data for supervision, we propose a novel SSDA framework that incorporates both Inter and Intra Domain Mixing (IIDM), where inter-domain mixing mitigates the source-target domain gap and intra-domain mixing enriches the available target domain information, and the network can capture more domain-invariant features. We also explore different domain mixing strategies to better exploit the target domain information. Comprehensive experiments conducted on the GTA5 to Cityscapes and SYNTHIA to Cityscapes benchmarks demonstrate the effectiveness of IIDM, surpassing previous methods by a large margin.
comment: 7 pages, 4 figures
♻ ☆ WWW: A Unified Framework for Explaining What, Where and Why of Neural Networks by Interpretation of Neuron Concepts CVPR 2024
Recent advancements in neural networks have showcased their remarkable capabilities across various domains. Despite these successes, the "black box" problem still remains. Addressing this, we propose a novel framework, WWW, that offers the 'what', 'where', and 'why' of the neural network decisions in human-understandable terms. Specifically, WWW utilizes adaptive selection for concept discovery, employing adaptive cosine similarity and thresholding techniques to effectively explain 'what'. To address the 'where' and 'why', we proposed a novel combination of neuron activation maps (NAMs) with Shapley values, generating localized concept maps and heatmaps for individual inputs. Furthermore, WWW introduces a method for predicting uncertainty, leveraging heatmap similarities to estimate 'how' reliable the prediction is. Experimental evaluations of WWW demonstrate superior performance in both quantitative and qualitative metrics, outperforming existing methods in interpretability. WWW provides a unified solution for explaining 'what', 'where', and 'why', introducing a method for localized explanations from global interpretations and offering a plug-and-play solution adaptable to various architectures.
comment: CVPR 2024
♻ ☆ Samba: Semantic Segmentation of Remotely Sensed Images with State Space Model
High-resolution remotely sensed images pose a challenge for commonly used semantic segmentation methods such as Convolutional Neural Network (CNN) and Vision Transformer (ViT). CNN-based methods struggle with handling such high-resolution images due to their limited receptive field, while ViT faces challenges in handling long sequences. Inspired by Mamba, which adopts a State Space Model (SSM) to efficiently capture global semantic information, we propose a semantic segmentation framework for high-resolution remotely sensed images, named Samba. Samba utilizes an encoder-decoder architecture, with Samba blocks serving as the encoder for efficient multi-level semantic information extraction, and UperNet functioning as the decoder. We evaluate Samba on the LoveDA, ISPRS Vaihingen, and ISPRS Potsdam datasets, comparing its performance against top-performing CNN and ViT methods. The results reveal that Samba achieved unparalleled performance on commonly used remote sensing datasets for semantic segmentation. Our proposed Samba demonstrates for the first time the effectiveness of SSM in semantic segmentation of remotely sensed images, setting a new benchmark in performance for Mamba-based techniques in this specific application. The source code and baseline implementations are available at https://github.com/zhuqinfeng1999/Samba.
♻ ☆ Driver Attention Tracking and Analysis
We propose a novel method to estimate a driver's points-of-gaze using a pair of ordinary cameras mounted on the windshield and dashboard of a car. This is a challenging problem due to the dynamics of traffic environments with 3D scenes of unknown depths. This problem is further complicated by the volatile distance between the driver and the camera system. To tackle these challenges, we develop a novel convolutional network that simultaneously analyzes the image of the scene and the image of the driver's face. This network has a camera calibration module that can compute an embedding vector that represents the spatial configuration between the driver and the camera system. This calibration module improves the overall network's performance, which can be jointly trained end to end. We also address the lack of annotated data for training and evaluation by introducing a large-scale driving dataset with point-of-gaze annotations. This is an in situ dataset of real driving sessions in an urban city, containing synchronized images of the driving scene as well as the face and gaze of the driver. Experiments on this dataset show that the proposed method outperforms various baseline methods, having the mean prediction error of 29.69 pixels, which is relatively small compared to the $1280{\times}720$ resolution of the scene camera.
♻ ☆ SpikeNVS: Enhancing Novel View Synthesis from Blurry Images via Spike Camera
One of the most critical factors in achieving sharp Novel View Synthesis (NVS) using neural field methods like Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) is the quality of the training images. However, Conventional RGB cameras are susceptible to motion blur. In contrast, neuromorphic cameras like event and spike cameras inherently capture more comprehensive temporal information, which can provide a sharp representation of the scene as additional training data. Recent methods have explored the integration of event cameras to improve the quality of NVS. The event-RGB approaches have some limitations, such as high training costs and the inability to work effectively in the background. Instead, our study introduces a new method that uses the spike camera to overcome these limitations. By considering texture reconstruction from spike streams as ground truth, we design the Texture from Spike (TfS) loss. Since the spike camera relies on temporal integration instead of temporal differentiation used by event cameras, our proposed TfS loss maintains manageable training costs. It handles foreground objects with backgrounds simultaneously. We also provide a real-world dataset captured with our spike-RGB camera system to facilitate future research endeavors. We conduct extensive experiments using synthetic and real-world datasets to demonstrate that our design can enhance novel view synthesis across NeRF and 3DGS. The code and dataset will be made available for public access.
♻ ☆ Learning Object Permanence from Videos via Latent Imaginations
While human infants exhibit knowledge about object permanence from two months of age onwards, deep-learning approaches still largely fail to recognize objects' continued existence. We introduce a slot-based autoregressive deep learning system, the looped location and identity tracking model Loci-Looped, which learns to adaptively fuse latent imaginations with pixel-space observations into consistent latent object-specific what and where encodings over time. The novel loop empowers Loci-Looped to learn the physical concepts of object permanence, directional inertia, and object solidity through observation alone. As a result, Loci-Looped tracks objects through occlusions, anticipates their reappearance, and shows signs of surprise and internal revisions when observing implausible object behavior. Notably, Loci-Looped outperforms state-of-the-art baseline models in handling object occlusions and temporary sensory interruptions while exhibiting more compositional, interpretable internal activity patterns. Our work thus introduces the first self-supervised interpretable learning model that learns about object permanence directly from video data without supervision.
♻ ☆ VSCode: General Visual Salient and Camouflaged Object Detection with 2D Prompt Learning CVPR2024
Salient object detection (SOD) and camouflaged object detection (COD) are related yet distinct binary mapping tasks. These tasks involve multiple modalities, sharing commonalities and unique cues. Existing research often employs intricate task-specific specialist models, potentially leading to redundancy and suboptimal results. We introduce VSCode, a generalist model with novel 2D prompt learning, to jointly address four SOD tasks and three COD tasks. We utilize VST as the foundation model and introduce 2D prompts within the encoder-decoder architecture to learn domain and task-specific knowledge on two separate dimensions. A prompt discrimination loss helps disentangle peculiarities to benefit model optimization. VSCode outperforms state-of-the-art methods across six tasks on 26 datasets and exhibits zero-shot generalization to unseen tasks by combining 2D prompts, such as RGB-D COD. Source code has been available at https://github.com/Sssssuperior/VSCode.
comment: Accepted by CVPR2024
♻ ☆ Extended Reality for Mental Health Evaluation -A Scoping Review
Mental health disorders are the leading cause of health-related problems globally. It is projected that mental health disorders will be the leading cause of morbidity among adults as the incidence rates of anxiety and depression grows globally. Recently, extended reality (XR), a general term covering virtual reality (VR), augmented reality (AR) and mixed reality (MR), is paving a new way to deliver mental health care. In this paper, we conduct a scoping review on the development and application of XR in the area of mental disorders. We performed a scoping database search to identify the relevant studies indexed in Google Scholar, PubMed, and the ACM Digital Library. A search period between August 2016 and December 2023 was defined to select articles related to the usage of VR, AR, and MR in a mental health context. We identified a total of 85 studies from 27 countries across the globe. By performing data analysis, we found that most of the studies focused on developed countries such as the US (16.47%) and Germany (12.94%). None of the studies were for African countries. The majority of the articles reported that XR techniques led to a significant reduction in symptoms of anxiety or depression. More studies were published in the year 2021, i.e., 31.76% (n = 31). This could indicate that mental disorder intervention received a higher attention when COVID-19 emerged. Most studies (n = 65) focused on a population between 18 and 65 years old, only a few studies focused on teenagers (n = 2). Also, more studies were done experimentally (n = 67, 78.82%) rather than by analytical and modeling approaches (n = 8, 9.41%). This shows that there is a rapid development of XR technology for mental health care. Furthermore, these studies showed that XR technology can effectively be used for evaluating mental disorders in similar or better way as the conventional approaches.
♻ ☆ VST++: Efficient and Stronger Visual Saliency Transformer
While previous CNN-based models have exhibited promising results for salient object detection (SOD), their ability to explore global long-range dependencies is restricted. Our previous work, the Visual Saliency Transformer (VST), addressed this constraint from a transformer-based sequence-to-sequence perspective, to unify RGB and RGB-D SOD. In VST, we developed a multi-task transformer decoder that concurrently predicts saliency and boundary outcomes in a pure transformer architecture. Moreover, we introduced a novel token upsampling method called reverse T2T for predicting a high-resolution saliency map effortlessly within transformer-based structures. Building upon the VST model, we further propose an efficient and stronger VST version in this work, i.e. VST++. To mitigate the computational costs of the VST model, we propose a Select-Integrate Attention (SIA) module, partitioning foreground into fine-grained segments and aggregating background information into a single coarse-grained token. To incorporate 3D depth information with low cost, we design a novel depth position encoding method tailored for depth maps. Furthermore, we introduce a token-supervised prediction loss to provide straightforward guidance for the task-related tokens. We evaluate our VST++ model across various transformer-based backbones on RGB, RGB-D, and RGB-T SOD benchmark datasets. Experimental results show that our model outperforms existing methods while achieving a 25% reduction in computational costs without significant performance compromise. The demonstrated strong ability for generalization, enhanced performance, and heightened efficiency of our VST++ model highlight its potential.
♻ ☆ Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty
Medical image segmentation is critical for disease diagnosis and treatment assessment. However, concerns regarding the reliability of segmentation regions persist among clinicians, mainly attributed to the absence of confidence assessment, robustness, and calibration to accuracy. To address this, we introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks. DEviS not only enhances the calibration and robustness of baseline segmentation accuracy but also provides high-efficiency uncertainty estimation for reliable predictions. By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation. Here, the Dirichlet distribution parameterizes the distribution of probabilities for different classes of the segmentation results. To generate calibrated predictions and uncertainty, we develop a trainable calibrated uncertainty penalty. Furthermore, DEviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data within the dataset. We conducted validation studies to assess both the accuracy and robustness of DEviS segmentation, along with evaluating the efficiency and reliability of uncertainty estimation. These evaluations were performed using publicly available datasets including ISIC2018, LiTS2017, and BraTS2019. Additionally, two potential clinical trials are being conducted at Johns Hopkins OCT, Duke-OCT-DME, and FIVES datasets to demonstrate their efficacy in filtering high-quality or out-of-distribution data. Our code has been released in https://github.com/Cocofeat/DEviS.
comment: 34 pages, 11 figures
♻ ☆ Analyzing the Internals of Neural Radiance Fields CVPR
Modern Neural Radiance Fields (NeRFs) learn a mapping from position to volumetric density leveraging proposal network samplers. In contrast to the coarse-to-fine sampling approach with two NeRFs, this offers significant potential for acceleration using lower network capacity. Given that NeRFs utilize most of their network capacity to estimate radiance, they could store valuable density information in their parameters or their deep features. To investigate this proposition, we take one step back and analyze large, trained ReLU-MLPs used in coarse-to-fine sampling. Building on our novel activation visualization method, we find that trained NeRFs, Mip-NeRFs and proposal network samplers map samples with high density to local minima along a ray in activation feature space. We show how these large MLPs can be accelerated by transforming intermediate activations to a weight estimate, without any modifications to the training protocol or the network architecture. With our approach, we can reduce the computational requirements of trained NeRFs by up to 50% with only a slight hit in rendering quality. Extensive experimental evaluation on a variety of datasets and architectures demonstrates the effectiveness of our approach. Consequently, our methodology provides valuable insight into the inner workings of NeRFs.
comment: Accepted to CVPRW'24! Project Page: https://r4dl.github.io/nerfinternals/
♻ ☆ S^2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering CVPR2024
Anchor-based large-scale multi-view clustering has attracted considerable attention for its effectiveness in handling massive datasets. However, current methods mainly seek the consensus embedding feature for clustering by exploring global correlations between anchor graphs or projection matrices.In this paper, we propose a simple yet efficient scalable multi-view tensor clustering (S^2MVTC) approach, where our focus is on learning correlations of embedding features within and across views. Specifically, we first construct the embedding feature tensor by stacking the embedding features of different views into a tensor and rotating it. Additionally, we build a novel tensor low-frequency approximation (TLFA) operator, which incorporates graph similarity into embedding feature learning, efficiently achieving smooth representation of embedding features within different views. Furthermore, consensus constraints are applied to embedding features to ensure inter-view semantic consistency. Experimental results on six large-scale multi-view datasets demonstrate that S^2MVTC significantly outperforms state-of-the-art algorithms in terms of clustering performance and CPU execution time, especially when handling massive data. The code of S^2MVTC is publicly available at https://github.com/longzhen520/S2MVTC.
comment: Accepted by CVPR2024
♻ ☆ Multi-Label Continual Learning for the Medical Domain: A Novel Benchmark
Multi-label image classification in dynamic environments is a problem that poses significant challenges. Previous studies have primarily focused on scenarios such as Domain Incremental Learning and Class Incremental Learning, which do not fully capture the complexity of real-world applications. In this paper, we study the problem of classification of medical imaging in the scenario termed New Instances and New Classes, which combines the challenges of both new class arrivals and domain shifts in a single framework. Unlike traditional scenarios, it reflects the realistic nature of CL in domains such as medical imaging, where updates may introduce both new classes and changes in domain characteristics. To address the unique challenges posed by this complex scenario, we introduce a novel approach called Pseudo-Label Replay. This method aims to mitigate forgetting while adapting to new classes and domain shifts by combining the advantages of the Replay and Pseudo-Label methods and solving their limitations in the proposed scenario. We evaluate our proposed approach on a challenging benchmark consisting of two datasets, seven tasks, and nineteen classes, modeling a realistic Continual Learning scenario. Our experimental findings demonstrate the effectiveness of Pseudo-Label Replay in addressing the challenges posed by the complex scenario proposed. Our method surpasses existing approaches, exhibiting superior performance while showing minimal forgetting.
♻ ☆ FloCoDe: Unbiased Dynamic Scene Graph Generation with Temporal Consistency and Correlation Debiasing CVPR 2024
Dynamic scene graph generation (SGG) from videos requires not only a comprehensive understanding of objects across scenes but also a method to capture the temporal motions and interactions with different objects. Moreover, the long-tailed distribution of visual relationships is a crucial bottleneck for most dynamic SGG methods. This is because many of them focus on capturing spatio-temporal context using complex architectures, leading to the generation of biased scene graphs. To address these challenges, we propose \textsc{FloCoDe}: \textbf{Flo}w-aware Temporal Consistency and \textbf{Co}rrelation \textbf{De}biasing with uncertainty attenuation for unbiased dynamic scene graphs. \textsc{FloCoDe} employs feature warping using flow to detect temporally consistent objects across frames. To address the long-tail issue of visual relationships, we propose correlation debiasing and a label correlation-based loss to learn unbiased relation representations for long-tailed classes. Specifically, we propose to incorporate label correlations using contrastive loss to capture commonly co-occurring relations, which aids in learning robust representations for long-tailed classes. Further, we adopt the uncertainty attenuation-based classifier framework to handle noisy annotations in the SGG data. Extensive experimental evaluation shows a performance gain as high as 4.1\%, demonstrating the superiority of generating more unbiased scene graphs.
comment: Accepted at CVPR 2024 SG2RL, 11 pages, 5 tables, 4 figures
♻ ☆ Test-Time Zero-Shot Temporal Action Localization CVPR 2024
Zero-Shot Temporal Action Localization (ZS-TAL) seeks to identify and locate actions in untrimmed videos unseen during training. Existing ZS-TAL methods involve fine-tuning a model on a large amount of annotated training data. While effective, training-based ZS-TAL approaches assume the availability of labeled data for supervised learning, which can be impractical in some applications. Furthermore, the training process naturally induces a domain bias into the learned model, which may adversely affect the model's generalization ability to arbitrary videos. These considerations prompt us to approach the ZS-TAL problem from a radically novel perspective, relaxing the requirement for training data. To this aim, we introduce a novel method that performs Test-Time adaptation for Temporal Action Localization (T3AL). In a nutshell, T3AL adapts a pre-trained Vision and Language Model (VLM). T3AL operates in three steps. First, a video-level pseudo-label of the action category is computed by aggregating information from the entire video. Then, action localization is performed adopting a novel procedure inspired by self-supervised learning. Finally, frame-level textual descriptions extracted with a state-of-the-art captioning model are employed for refining the action region proposals. We validate the effectiveness of T3AL by conducting experiments on the THUMOS14 and the ActivityNet-v1.3 datasets. Our results demonstrate that T3AL significantly outperforms zero-shot baselines based on state-of-the-art VLMs, confirming the benefit of a test-time adaptation approach.
comment: CVPR 2024
♻ ☆ Finding Regions of Interest in Whole Slide Images Using Multiple Instance Learning
Whole Slide Images (WSI), obtained by high-resolution digital scanning of microscope slides at multiple scales, are the cornerstone of modern Digital Pathology. However, they represent a particular challenge to AI-based/AI-mediated analysis because pathology labeling is typically done at slide-level, instead of tile-level. It is not just that medical diagnostics is recorded at the specimen level, the detection of oncogene mutation is also experimentally obtained, and recorded by initiatives like The Cancer Genome Atlas (TCGA), at the slide level. This configures a dual challenge: a) accurately predicting the overall cancer phenotype and b) finding out what cellular morphologies are associated with it at the tile level. To address these challenges, a weakly supervised Multiple Instance Learning (MIL) approach was explored for two prevalent cancer types, Invasive Breast Carcinoma (TCGA-BRCA) and Lung Squamous Cell Carcinoma (TCGA-LUSC). This approach was explored for tumor detection at low magnification levels and TP53 mutations at various levels. Our results show that a novel additive implementation of MIL matched the performance of reference implementation (AUC 0.96), and was only slightly outperformed by Attention MIL (AUC 0.97). More interestingly from the perspective of the molecular pathologist, these different AI architectures identify distinct sensitivities to morphological features (through the detection of Regions of Interest, RoI) at different amplification levels. Tellingly, TP53 mutation was most sensitive to features at the higher applications where cellular morphology is resolved.
♻ ☆ Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales
Developing robust and interpretable vision systems is a crucial step towards trustworthy artificial intelligence. In this regard, a promising paradigm considers embedding task-required invariant structures, e.g., geometric invariance, in the fundamental image representation. However, such invariant representations typically exhibit limited discriminability, limiting their applications in larger-scale trustworthy vision tasks. For this open problem, we conduct a systematic investigation of hierarchical invariance, exploring this topic from theoretical, practical, and application perspectives. At the theoretical level, we show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture yet in a fully interpretable manner. The general blueprint, specific definitions, invariant properties, and numerical implementations are provided. At the practical level, we discuss how to customize this theoretical framework into a given task. With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner. We demonstrate the above arguments with accuracy, invariance, and efficiency results on texture, digit, and parasite classification experiments. Furthermore, at the application level, our representations are explored in real-world forensics tasks on adversarial perturbations and Artificial Intelligence Generated Content (AIGC). Such applications reveal that the proposed strategy not only realizes the theoretically promised invariance, but also exhibits competitive discriminability even in the era of deep learning. For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
♻ ☆ CoBra: Complementary Branch Fusing Class and Semantic Knowledge for Robust Weakly Supervised Semantic Segmentation
Leveraging semantically precise pseudo masks derived from image-level class knowledge for segmentation, namely image-level Weakly Supervised Semantic Segmentation (WSSS), still remains challenging. While Class Activation Maps (CAMs) using CNNs have steadily been contributing to the success of WSSS, the resulting activation maps often narrowly focus on class-specific parts (e.g., only face of human). On the other hand, recent works based on vision transformers (ViT) have shown promising results based on their self-attention mechanism to capture the semantic parts but fail in capturing complete class-specific details (e.g., entire body parts of human but also with a dog nearby). In this work, we propose Complementary Branch (CoBra), a novel dual branch framework consisting of two distinct architectures which provide valuable complementary knowledge of class (from CNN) and semantic (from ViT) to each branch. In particular, we learn Class-Aware Projection (CAP) for the CNN branch and Semantic-Aware Projection (SAP) for the ViT branch to explicitly fuse their complementary knowledge and facilitate a new type of extra patch-level supervision. Our model, through CoBra, fuses CNN and ViT's complementary outputs to create robust pseudo masks that integrate both class and semantic information effectively. Extensive experiments qualitatively and quantitatively investigate how CNN and ViT complement each other on the PASCAL VOC 2012 dataset, showing a state-of-the-art WSSS result. This includes not only the masks generated by our model, but also the segmentation results derived from utilizing these masks as pseudo labels.
♻ ☆ MV-Adapter: Multimodal Video Transfer Learning for Video Text Retrieval
State-of-the-art video-text retrieval (VTR) methods typically involve fully fine-tuning a pre-trained model (e.g. CLIP) on specific datasets. However, this can result in significant storage costs in practical applications as a separate model per task must be stored. To address this issue, we present our pioneering work that enables parameter-efficient VTR using a pre-trained model, with only a small number of tunable parameters during training. Towards this goal, we propose a new method dubbed Multimodal Video Adapter (MV-Adapter) for efficiently transferring the knowledge in the pre-trained CLIP from image-text to video-text. Specifically, MV-Adapter utilizes bottleneck structures in both video and text branches, along with two novel components. The first is a Temporal Adaptation Module that is incorporated in the video branch to introduce global and local temporal contexts. We also train weights calibrations to adjust to dynamic variations across frames. The second is Cross Modality Tying that generates weights for video/text branches through sharing cross modality factors, for better aligning between modalities. Thanks to above innovations, MV-Adapter can achieve comparable or better performance than standard full fine-tuning with negligible parameters overhead. Notably, MV-Adapter consistently outperforms various competing methods in V2T/T2V tasks with large margins on five widely used VTR benchmarks (MSR-VTT, MSVD, LSMDC, DiDemo, and ActivityNet).
♻ ☆ Diff-Plugin: Revitalizing Details for Diffusion-based Low-level Tasks CVPR2024
Diffusion models trained on large-scale datasets have achieved remarkable progress in image synthesis. However, due to the randomness in the diffusion process, they often struggle with handling diverse low-level tasks that require details preservation. To overcome this limitation, we present a new Diff-Plugin framework to enable a single pre-trained diffusion model to generate high-fidelity results across a variety of low-level tasks. Specifically, we first propose a lightweight Task-Plugin module with a dual branch design to provide task-specific priors, guiding the diffusion process in preserving image content. We then propose a Plugin-Selector that can automatically select different Task-Plugins based on the text instruction, allowing users to edit images by indicating multiple low-level tasks with natural language. We conduct extensive experiments on 8 low-level vision tasks. The results demonstrate the superiority of Diff-Plugin over existing methods, particularly in real-world scenarios. Our ablations further validate that Diff-Plugin is stable, schedulable, and supports robust training across different dataset sizes.
comment: Accepted to CVPR2024. Replaced some celebrity images to avoid copyright disputes
♻ ☆ HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention CVPR2024
Predicting the trajectories of road agents is essential for autonomous driving systems. The recent mainstream methods follow a static paradigm, which predicts the future trajectory by using a fixed duration of historical frames. These methods make the predictions independently even at adjacent time steps, which leads to potential instability and temporal inconsistency. As successive time steps have largely overlapping historical frames, their forecasting should have intrinsic correlation, such as overlapping predicted trajectories should be consistent, or be different but share the same motion goal depending on the road situation. Motivated by this, in this work, we introduce HPNet, a novel dynamic trajectory forecasting method. Aiming for stable and accurate trajectory forecasting, our method leverages not only historical frames including maps and agent states, but also historical predictions. Specifically, we newly design a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions. Besides, it also extends the attention range beyond the currently visible window benefitting from the use of historical predictions. The proposed Historical Prediction Attention together with the Agent Attention and Mode Attention is further formulated as the Triple Factorized Attention module, serving as the core design of HPNet.Experiments on the Argoverse and INTERACTION datasets show that HPNet achieves state-of-the-art performance, and generates accurate and stable future trajectories. Our code are available at https://github.com/XiaolongTang23/HPNet.
comment: CVPR2024
♻ ☆ MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models SemEval '24
This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git
comment: Ranked 3rd in SemEval '24 Task 3 with F1 of 0.3435, close to 1st & 2nd by 0.0339 & 0.0025
♻ ☆ DriveDreamer-2: LLM-Enhanced World Models for Diverse Driving Video Generation
World models have demonstrated superiority in autonomous driving, particularly in the generation of multi-view driving videos. However, significant challenges still exist in generating customized driving videos. In this paper, we propose DriveDreamer-2, which builds upon the framework of DriveDreamer and incorporates a Large Language Model (LLM) to generate user-defined driving videos. Specifically, an LLM interface is initially incorporated to convert a user's query into agent trajectories. Subsequently, a HDMap, adhering to traffic regulations, is generated based on the trajectories. Ultimately, we propose the Unified Multi-View Model to enhance temporal and spatial coherence in the generated driving videos. DriveDreamer-2 is the first world model to generate customized driving videos, it can generate uncommon driving videos (e.g., vehicles abruptly cut in) in a user-friendly manner. Besides, experimental results demonstrate that the generated videos enhance the training of driving perception methods (e.g., 3D detection and tracking). Furthermore, video generation quality of DriveDreamer-2 surpasses other state-of-the-art methods, showcasing FID and FVD scores of 11.2 and 55.7, representing relative improvements of 30% and 50%.
comment: Project Page: https://drivedreamer2.github.io
♻ ☆ Deep Multi-Threshold Spiking-UNet for Image Processing
U-Net, known for its simple yet efficient architecture, is widely utilized for image processing tasks and is particularly suitable for deployment on neuromorphic chips. This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture. To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy. To address the issue of information loss, we introduce multi-threshold spiking neurons, which improve the efficiency of information transmission within the Spiking-UNet. For the training strategy, we adopt a conversion and fine-tuning pipeline that leverage pre-trained U-Net models. During the conversion process, significant variability in data distribution across different parts is observed when utilizing skip connections. Therefore, we propose a connection-wise normalization method to prevent inaccurate firing rates. Furthermore, we adopt a flow-based training method to fine-tune the converted models, reducing time steps while preserving performance. Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart, surpassing existing SNN methods. Compared with the converted Spiking-UNet without fine-tuning, our Spiking-UNet reduces inference time by approximately 90\%. This research broadens the application scope of SNNs in image processing and is expected to inspire further exploration in the field of neuromorphic engineering. The code for our Spiking-UNet implementation is available at https://github.com/SNNresearch/Spiking-UNet.
comment: Accepted in NeuroComputing
♻ ☆ GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis SIGGRAPH 2024
We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.
comment: Webpage: https://lodurality.github.io/GEM3D/ -- Cond. accept. to SIGGRAPH 2024 (conf. track) -- Changes (based on reviews): changed style to sigconf; rearranged figures for readability; added missing citations; fixed misaligned centers in Fig. 3; added failure cases (Fig. 10); rewrote discussion; added categories averages to Tab. 8; added Tab. 10 with model capacities
♻ ☆ Fourier Prompt Tuning for Modality-Incomplete Scene Segmentation
Integrating information from multiple modalities enhances the robustness of scene perception systems in autonomous vehicles, providing a more comprehensive and reliable sensory framework. However, the modality incompleteness in multi-modal segmentation remains under-explored. In this work, we establish a task called Modality-Incomplete Scene Segmentation (MISS), which encompasses both system-level modality absence and sensor-level modality errors. To avoid the predominant modality reliance in multi-modal fusion, we introduce a Missing-aware Modal Switch (MMS) strategy to proactively manage missing modalities during training. Utilizing bit-level batch-wise sampling enhances the model's performance in both complete and incomplete testing scenarios. Furthermore, we introduce the Fourier Prompt Tuning (FPT) method to incorporate representative spectral information into a limited number of learnable prompts that maintain robustness against all MISS scenarios. Akin to fine-tuning effects but with fewer tunable parameters (1.1%). Extensive experiments prove the efficacy of our proposed approach, showcasing an improvement of 5.84% mIoU over the prior state-of-the-art parameter-efficient methods in modality missing. The source code is publicly available at https://github.com/RuipingL/MISS.
comment: Accepted to IEEE IV 2024. The source code is publicly available at https://github.com/RuipingL/MISS
♻ ☆ Tensor Decomposition Based Attention Module for Spiking Neural Networks
The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.
comment: Accepted by Knowledge-Based Systems
♻ ☆ TC4D: Trajectory-Conditioned Text-to-4D Generation
Recent techniques for text-to-4D generation synthesize dynamic 3D scenes using supervision from pre-trained text-to-video models. However, existing representations for motion, such as deformation models or time-dependent neural representations, are limited in the amount of motion they can generate-they cannot synthesize motion extending far beyond the bounding box used for volume rendering. The lack of a more flexible motion model contributes to the gap in realism between 4D generation methods and recent, near-photorealistic video generation models. Here, we propose TC4D: trajectory-conditioned text-to-4D generation, which factors motion into global and local components. We represent the global motion of a scene's bounding box using rigid transformation along a trajectory parameterized by a spline. We learn local deformations that conform to the global trajectory using supervision from a text-to-video model. Our approach enables the synthesis of scenes animated along arbitrary trajectories, compositional scene generation, and significant improvements to the realism and amount of generated motion, which we evaluate qualitatively and through a user study. Video results can be viewed on our website: https://sherwinbahmani.github.io/tc4d.
comment: Project Page: https://sherwinbahmani.github.io/tc4d
♻ ☆ Exploring Effective Priors and Efficient Models for Weakly-Supervised Change Detection
Weakly-supervised change detection (WSCD) aims to detect pixel-level changes with only image-level annotations. Owing to its label efficiency, WSCD is drawing increasing attention recently. However, current WSCD methods often encounter the challenge of change missing and fabricating, i.e., the inconsistency between image-level annotations and pixel-level predictions. Specifically, change missing refer to the situation that the WSCD model fails to predict any changed pixels, even though the image-level label indicates changed, and vice versa for change fabricating. To address this challenge, in this work, we leverage global-scale and local-scale priors in WSCD and propose two components: a Dilated Prior (DP) decoder and a Label Gated (LG) constraint. The DP decoder decodes samples with the changed image-level label, skips samples with the unchanged label, and replaces them with an all-unchanged pixel-level label. The LG constraint is derived from the correspondence between changed representations and image-level labels, penalizing the model when it mispredicts the change status. Additionally, we develop TransWCD, a simple yet powerful transformer-based model, showcasing the potential of weakly-supervised learning in change detection. By integrating the DP decoder and LG constraint into TransWCD, we form TransWCD-DL. Our proposed TransWCD and TransWCD-DL achieve significant +6.33% and +9.55% F1 score improvements over the state-of-the-art methods on the WHU-CD dataset, respectively. Some performance metrics even exceed several fully-supervised change detection (FSCD) competitors. Code will be available at https://github.com/zhenghuizhao/TransWCD.
♻ ☆ One-Prompt to Segment All Medical Images
Large foundation models, known for their strong zero-shot generalization, have excelled in visual and language applications. However, applying them to medical image segmentation, a domain with diverse imaging types and target labels, remains an open challenge. Current approaches, such as adapting interactive segmentation models like Segment Anything Model (SAM), require user prompts for each sample during inference. Alternatively, transfer learning methods like few/one-shot models demand labeled samples, leading to high costs. This paper introduces a new paradigm toward the universal medical image segmentation, termed 'One-Prompt Segmentation.' One-Prompt Segmentation combines the strengths of one-shot and interactive methods. In the inference stage, with just \textbf{one prompted sample}, it can adeptly handle the unseen task in a single forward pass. We train One-Prompt Model on 64 open-source medical datasets, accompanied by the collection of over 3,000 clinician-labeled prompts. Tested on 14 previously unseen datasets, the One-Prompt Model showcases superior zero-shot segmentation capabilities, outperforming a wide range of related methods. The code and data is released as \url{https://github.com/KidsWithTokens/one-prompt}.
comment: arXiv admin note: text overlap with arXiv:2304.12620
♻ ☆ Large-Scale Multi-Hypotheses Cell Tracking Using Ultrametric Contours Maps
In this work, we describe a method for large-scale 3D cell-tracking through a segmentation selection approach. The proposed method is effective at tracking cells across large microscopy datasets on two fronts: (i) It can solve problems containing millions of segmentation instances in terabyte-scale 3D+t datasets; (ii) It achieves competitive results with or without deep learning, which requires 3D annotated data, that is scarce in the fluorescence microscopy field. The proposed method computes cell tracks and segments using a hierarchy of segmentation hypotheses and selects disjoint segments by maximizing the overlap between adjacent frames. We show that this method achieves state-of-the-art results in 3D images from the cell tracking challenge and has a faster integer linear programming formulation. Moreover, our framework is flexible and supports segmentations from off-the-shelf cell segmentation models and can combine them into an ensemble that improves tracking. The code is available https://github.com/royerlab/ultrack.
comment: 13 pages, 7 figures, 4 tables
♻ ☆ ASDF: Assembly State Detection Utilizing Late Fusion by Integrating 6D Pose Estimation
In medical and industrial domains, providing guidance for assembly processes is critical to ensure efficiency and safety. Errors in assembly can lead to significant consequences such as extended surgery times, and prolonged manufacturing or maintenance times in industry. Assembly scenarios can benefit from in-situ AR visualization to provide guidance, reduce assembly times and minimize errors. To enable in-situ visualization 6D pose estimation can be leveraged. Existing 6D pose estimation techniques primarily focus on individual objects and static captures. However, assembly scenarios have various dynamics including occlusion during assembly and dynamics in the assembly objects appearance. Existing work, combining object detection/6D pose estimation and assembly state detection focuses either on pure deep learning-based approaches, or limit the assembly state detection to building blocks. To address the challenges of 6D pose estimation in combination with assembly state detection, our approach ASDF builds upon the strengths of YOLOv8, a real-time capable object detection framework. We extend this framework, refine the object pose and fuse pose knowledge with network-detected pose information. Utilizing our late fusion in our Pose2State module results in refined 6D pose estimation and assembly state detection. By combining both pose and state information, our Pose2State module predicts the final assembly state with precision. Our evaluation on our ASDF dataset shows that our Pose2State module leads to an improved assembly state detection and that the improvement of the assembly state further leads to a more robust 6D pose estimation. Moreover, on the GBOT dataset, we outperform the pure deep learning-based network, and even outperform the hybrid and pure tracking-based approaches.
♻ ☆ Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge
A common practice in deep learning consists of training large neural networks on massive datasets to perform accurately for different domains and tasks. While this methodology may work well in numerous application areas, it only applies across modalities due to a larger distribution shift in data captured using different sensors. This paper focuses on the problem of adapting a large object detection model to one or multiple modalities while being efficient. To do so, we propose ModTr as an alternative to the common approach of fine-tuning large models. ModTr consists of adapting the input with a small transformation network trained to minimize the detection loss directly. The original model can therefore work on the translated inputs without any further change or fine-tuning to its parameters. Experimental results on translating from IR to RGB images on two well-known datasets show that this simple ModTr approach provides detectors that can perform comparably or better than the standard fine-tuning without forgetting the original knowledge. This opens the doors to a more flexible and efficient service-based detection pipeline in which, instead of using a different detector for each modality, a unique and unaltered server is constantly running, where multiple modalities with the corresponding translations can query it. Code: https://github.com/heitorrapela/ModTr.
♻ ☆ Putting the Object Back into Video Object Segmentation CVPR 2024
We present Cutie, a video object segmentation (VOS) network with object-level memory reading, which puts the object representation from memory back into the video object segmentation result. Recent works on VOS employ bottom-up pixel-level memory reading which struggles due to matching noise, especially in the presence of distractors, resulting in lower performance in more challenging data. In contrast, Cutie performs top-down object-level memory reading by adapting a small set of object queries. Via those, it interacts with the bottom-up pixel features iteratively with a query-based object transformer (qt, hence Cutie). The object queries act as a high-level summary of the target object, while high-resolution feature maps are retained for accurate segmentation. Together with foreground-background masked attention, Cutie cleanly separates the semantics of the foreground object from the background. On the challenging MOSE dataset, Cutie improves by 8.7 J&F over XMem with a similar running time and improves by 4.2 J&F over DeAOT while being three times faster. Code is available at: https://hkchengrex.github.io/Cutie
comment: CVPR 2024 Highlight. Project page: https://hkchengrex.github.io/Cutie
♻ ☆ Sat2Cap: Mapping Fine-Grained Textual Descriptions from Satellite Images
We propose a weakly supervised approach for creating maps using free-form textual descriptions. We refer to this work of creating textual maps as zero-shot mapping. Prior works have approached mapping tasks by developing models that predict a fixed set of attributes using overhead imagery. However, these models are very restrictive as they can only solve highly specific tasks for which they were trained. Mapping text, on the other hand, allows us to solve a large variety of mapping problems with minimal restrictions. To achieve this, we train a contrastive learning framework called Sat2Cap on a new large-scale dataset with 6.1M pairs of overhead and ground-level images. For a given location and overhead image, our model predicts the expected CLIP embeddings of the ground-level scenery. The predicted CLIP embeddings are then used to learn about the textual space associated with that location. Sat2Cap is also conditioned on date-time information, allowing it to model temporally varying concepts over a location. Our experimental results demonstrate that our models successfully capture ground-level concepts and allow large-scale mapping of fine-grained textual queries. Our approach does not require any text-labeled data, making the training easily scalable. The code, dataset, and models will be made publicly available.
comment: 16 pages
♻ ☆ Learning county from pixels: Corn yield prediction with attention-weighted multiple instance learning
Remote sensing technology has become a promising tool in yield prediction. Most prior work employs satellite imagery for county-level corn yield prediction by spatially aggregating all pixels within a county into a single value, potentially overlooking the detailed information and valuable insights offered by more granular data. To this end, this research examines each county at the pixel level and applies multiple instance learning to leverage detailed information within a county. In addition, our method addresses the "mixed pixel" issue caused by the inconsistent resolution between feature datasets and crop mask, which may introduce noise into the model and therefore hinder accurate yield prediction. Specifically, the attention mechanism is employed to automatically assign weights to different pixels, which can mitigate the influence of mixed pixels. The experimental results show that the developed model outperforms four other machine learning models over the past five years in the U.S. corn belt and demonstrates its best performance in 2022, achieving a coefficient of determination (R2) value of 0.84 and a root mean square error (RMSE) of 0.83. This paper demonstrates the advantages of our approach from both spatial and temporal perspectives. Furthermore, through an in-depth study of the relationship between mixed pixels and attention, it is verified that our approach can capture critical feature information while filtering out noise from mixed pixels.
comment: I am writing to request the withdrawal of my paper submitted to arXiv. Upon further review, I have identified an error in the paper that significantly affects the results and conclusions. To maintain the integrity of the scientific record and prevent the dissemination of incorrect information, I believe it is necessary to withdraw the paper from the archive
♻ ☆ Fooling Contrastive Language-Image Pre-trained Models with CLIPMasterPrints
Models leveraging both visual and textual data such as Contrastive Language-Image Pre-training (CLIP), are the backbone of many recent advances in artificial intelligence. In this work, we show that despite their versatility, such models are vulnerable to what we refer to as fooling master images. Fooling master images are capable of maximizing the confidence score of a CLIP model for a significant number of widely varying prompts, while being either unrecognizable or unrelated to the attacked prompts for humans. The existence of such images is problematic as it could be used by bad actors to maliciously interfere with CLIP-trained image retrieval models in production with comparably small effort as a single image can attack many different prompts. We demonstrate how fooling master images for CLIP (CLIPMasterPrints) can be mined using stochastic gradient descent, projected gradient descent, or blackbox optimization. Contrary to many common adversarial attacks, the blackbox optimization approach allows us to mine CLIPMasterPrints even when the weights of the model are not accessible. We investigate the properties of the mined images, and find that images trained on a small number of image captions generalize to a much larger number of semantically related captions. We evaluate possible mitigation strategies, where we increase the robustness of the model and introduce an approach to automatically detect CLIPMasterPrints to sanitize the input of vulnerable models. Finally, we find that vulnerability to CLIPMasterPrints is related to a modality gap in contrastive pre-trained multi-modal networks. Code available at https://github.com/matfrei/CLIPMasterPrints.
♻ ☆ Efficient Representation of Natural Image Patches
Utilizing an abstract information processing model based on minimal yet realistic assumptions inspired by biological systems, we study how to achieve the early visual system's two ultimate objectives: efficient information transmission and accurate sensor probability distribution modeling. We prove that optimizing for information transmission does not guarantee optimal probability distribution modeling in general. We illustrate, using a two-pixel (2D) system and image patches, that an efficient representation can be realized through a nonlinear population code driven by two types of biologically plausible loss functions that depend solely on output. After unsupervised learning, our abstract information processing model bears remarkable resemblances to biological systems, despite not mimicking many features of real neurons, such as spiking activity. A preliminary comparison with a contemporary deep learning model suggests that our model offers a significant efficiency advantage. Our model provides novel insights into the computational theory of early visual systems as well as a potential new approach to enhance the efficiency of deep learning models.
♻ ☆ DQ-DETR: DETR with Dynamic Query for Tiny Object Detection
Despite previous DETR-like methods having performed successfully in generic object detection, tiny object detection is still a challenging task for them since the positional information of object queries is not customized for detecting tiny objects, whose scale is extraordinarily smaller than general objects. Also, DETR-like methods using a fixed number of queries make them unsuitable for aerial datasets, which only contain tiny objects, and the numbers of instances are imbalanced between different images. Thus, we present a simple yet effective model, named DQ-DETR, which consists of three different components: categorical counting module, counting-guided feature enhancement, and dynamic query selection to solve the above-mentioned problems. DQ-DETR uses the prediction and density maps from the categorical counting module to dynamically adjust the number of object queries and improve the positional information of queries. Our model DQ-DETR outperforms previous CNN-based and DETR-like methods, achieving state-of-the-art mAP 30.2% on the AI-TOD-V2 dataset, which mostly consists of tiny objects.
♻ ☆ EFHQ: Multi-purpose ExtremePose-Face-HQ dataset
The existing facial datasets, while having plentiful images at near frontal views, lack images with extreme head poses, leading to the downgraded performance of deep learning models when dealing with profile or pitched faces. This work aims to address this gap by introducing a novel dataset named Extreme Pose Face High-Quality Dataset (EFHQ), which includes a maximum of 450k high-quality images of faces at extreme poses. To produce such a massive dataset, we utilize a novel and meticulous dataset processing pipeline to curate two publicly available datasets, VFHQ and CelebV-HQ, which contain many high-resolution face videos captured in various settings. Our dataset can complement existing datasets on various facial-related tasks, such as facial synthesis with 2D/3D-aware GAN, diffusion-based text-to-image face generation, and face reenactment. Specifically, training with EFHQ helps models generalize well across diverse poses, significantly improving performance in scenarios involving extreme views, confirmed by extensive experiments. Additionally, we utilize EFHQ to define a challenging cross-view face verification benchmark, in which the performance of SOTA face recognition models drops 5-37% compared to frontal-to-frontal scenarios, aiming to stimulate studies on face recognition under severe pose conditions in the wild.
comment: Project Page: https://bomcon123456.github.io/efhq/
♻ ☆ IISAN: Efficiently Adapting Multimodal Representation for Sequential Recommendation with Decoupled PEFT SIGIR2024
Multimodal foundation models are transformative in sequential recommender systems, leveraging powerful representation learning capabilities. While Parameter-efficient Fine-tuning (PEFT) is commonly used to adapt foundation models for recommendation tasks, most research prioritizes parameter efficiency, often overlooking critical factors like GPU memory efficiency and training speed. Addressing this gap, our paper introduces IISAN (Intra- and Inter-modal Side Adapted Network for Multimodal Representation), a simple plug-and-play architecture using a Decoupled PEFT structure and exploiting both intra- and inter-modal adaptation. IISAN matches the performance of full fine-tuning (FFT) and state-of-the-art PEFT. More importantly, it significantly reduces GPU memory usage - from 47GB to just 3GB for multimodal sequential recommendation tasks. Additionally, it accelerates training time per epoch from 443s to 22s compared to FFT. This is also a notable improvement over the Adapter and LoRA, which require 37-39 GB GPU memory and 350-380 seconds per epoch for training. Furthermore, we propose a new composite efficiency metric, TPME (Training-time, Parameter, and GPU Memory Efficiency) to alleviate the prevalent misconception that "parameter efficiency represents overall efficiency". TPME provides more comprehensive insights into practical efficiency comparisons between different methods. Besides, we give an accessible efficiency analysis of all PEFT and FFT approaches, which demonstrate the superiority of IISAN. We release our codes and other materials at https://github.com/GAIR-Lab/IISAN.
comment: Accepted by SIGIR2024
Information Retrieval 15
☆ Manipulating Large Language Models to Increase Product Visibility
Large language models (LLMs) are increasingly being integrated into search engines to provide natural language responses tailored to user queries. Customers and end-users are also becoming more dependent on these models for quick and easy purchase decisions. In this work, we investigate whether recommendations from LLMs can be manipulated to enhance a product's visibility. We demonstrate that adding a strategic text sequence (STS) -- a carefully crafted message -- to a product's information page can significantly increase its likelihood of being listed as the LLM's top recommendation. To understand the impact of STS, we use a catalog of fictitious coffee machines and analyze its effect on two target products: one that seldom appears in the LLM's recommendations and another that usually ranks second. We observe that the strategic text sequence significantly enhances the visibility of both products by increasing their chances of appearing as the top recommendation. This ability to manipulate LLM-generated search responses provides vendors with a considerable competitive advantage and has the potential to disrupt fair market competition. Just as search engine optimization (SEO) revolutionized how webpages are customized to rank higher in search engine results, influencing LLM recommendations could profoundly impact content optimization for AI-driven search services. Code for our experiments is available at https://github.com/aounon/llm-rank-optimizer.
☆ Auditing health-related recommendations in social media: A Case Study of Abortion on YouTube
Recommendation algorithms (RS) used by social media, like YouTube, significantly shape our information consumption across various domains, especially in healthcare. Hence, algorithmic auditing becomes crucial to uncover their potential bias and misinformation, particularly in the context of controversial topics like abortion. We introduce a simple yet effective sock puppet auditing approach to investigate how YouTube recommends abortion-related videos to individuals with different backgrounds. Our framework allows for efficient auditing of RS, regardless of the complexity of the underlying algorithms
☆ M-scan: A Multi-Scenario Causal-driven Adaptive Network for Recommendation
We primarily focus on the field of multi-scenario recommendation, which poses a significant challenge in effectively leveraging data from different scenarios to enhance predictions in scenarios with limited data. Current mainstream efforts mainly center around innovative model network architectures, with the aim of enabling the network to implicitly acquire knowledge from diverse scenarios. However, the uncertainty of implicit learning in networks arises from the absence of explicit modeling, leading to not only difficulty in training but also incomplete user representation and suboptimal performance. Furthermore, through causal graph analysis, we have discovered that the scenario itself directly influences click behavior, yet existing approaches directly incorporate data from other scenarios during the training of the current scenario, leading to prediction biases when they directly utilize click behaviors from other scenarios to train models. To address these problems, we propose the Multi-Scenario Causal-driven Adaptive Network M-scan). This model incorporates a Scenario-Aware Co-Attention mechanism that explicitly extracts user interests from other scenarios that align with the current scenario. Additionally, it employs a Scenario Bias Eliminator module utilizing causal counterfactual inference to mitigate biases introduced by data from other scenarios. Extensive experiments on two public datasets demonstrate the efficacy of our M-scan compared to the existing baseline models.
☆ Can Large Language Models Assess Serendipity in Recommender Systems?
Serendipity-oriented recommender systems aim to counteract over-specialization in user preferences. However, evaluating a user's serendipitous response towards a recommended item can be challenging because of its emotional nature. In this study, we address this issue by leveraging the rich knowledge of large language models (LLMs), which can perform a variety of tasks. First, this study explored the alignment between serendipitous evaluations made by LLMs and those made by humans. In this investigation, a binary classification task was given to the LLMs to predict whether a user would find the recommended item serendipitously. The predictive performances of three LLMs on a benchmark dataset in which humans assigned the ground truth of serendipitous items were measured. The experimental findings reveal that LLM-based assessment methods did not have a very high agreement rate with human assessments. However, they performed as well as or better than the baseline methods. Further validation results indicate that the number of user rating histories provided to LLM prompts should be carefully chosen to avoid both insufficient and excessive inputs and that the output of LLMs that show high classification performance is difficult to interpret.
☆ Adaptive Fair Representation Learning for Personalized Fairness in Recommendations via Information Alignment SIGIR'24
Personalized fairness in recommendations has been attracting increasing attention from researchers. The existing works often treat a fairness requirement, represented as a collection of sensitive attributes, as a hyper-parameter, and pursue extreme fairness by completely removing information of sensitive attributes from the learned fair embedding, which suffer from two challenges: huge training cost incurred by the explosion of attribute combinations, and the suboptimal trade-off between fairness and accuracy. In this paper, we propose a novel Adaptive Fair Representation Learning (AFRL) model, which achieves a real personalized fairness due to its advantage of training only one model to adaptively serve different fairness requirements during inference phase. Particularly, AFRL treats fairness requirements as inputs and can learn an attribute-specific embedding for each attribute from the unfair user embedding, which endows AFRL with the adaptability during inference phase to determine the non-sensitive attributes under the guidance of the user's unique fairness requirement. To achieve a better trade-off between fairness and accuracy in recommendations, AFRL conducts a novel Information Alignment to exactly preserve discriminative information of non-sensitive attributes and incorporate a debiased collaborative embedding into the fair embedding to capture attribute-independent collaborative signals, without loss of fairness. Finally, the extensive experiments conducted on real datasets together with the sound theoretical analysis demonstrate the superiority of AFRL.
comment: This paper has been accepted by SIGIR'24
☆ Generative Information Retrieval Evaluation
In this chapter, we consider generative information retrieval evaluation from two distinct but interrelated perspectives. First, large language models (LLMs) themselves are rapidly becoming tools for evaluation, with current research indicating that LLMs may be superior to crowdsource workers and other paid assessors on basic relevance judgement tasks. We review past and ongoing related research, including speculation on the future of shared task initiatives, such as TREC, and a discussion on the continuing need for human assessments. Second, we consider the evaluation of emerging LLM-based generative information retrieval (GenIR) systems, including retrieval augmented generation (RAG) systems. We consider approaches that focus both on the end-to-end evaluation of GenIR systems and on the evaluation of a retrieval component as an element in a RAG system. Going forward, we expect the evaluation of GenIR systems to be at least partially based on LLM-based assessment, creating an apparent circularity, with a system seemingly evaluating its own output. We resolve this apparent circularity in two ways: 1) by viewing LLM-based assessment as a form of "slow search", where a slower IR system is used for evaluation and training of a faster production IR system; and 2) by recognizing a continuing need to ground evaluation in human assessment, even if the characteristics of that human assessment must change.
comment: Draft of a chapter intended to appear in a forthcoming book on generative information retrieval, co-edited by Chirag Shah and Ryen White
☆ Extending Translate-Train for ColBERT-X to African Language CLIR
This paper describes the submission runs from the HLTCOE team at the CIRAL CLIR tasks for African languages at FIRE 2023. Our submissions use machine translation models to translate the documents and the training passages, and ColBERT-X as the retrieval model. Additionally, we present a set of unofficial runs that use an alternative training procedure with a similar training setting.
comment: 10 pages, 2 figures. System description paper for HLTCOE's participation in CIRAL@FIRE 2023
☆ HLTCOE at TREC 2023 NeuCLIR Track
The HLTCOE team applied PLAID, an mT5 reranker, and document translation to the TREC 2023 NeuCLIR track. For PLAID we included a variety of models and training techniques -- the English model released with ColBERT v2, translate-train~(TT), Translate Distill~(TD) and multilingual translate-train~(MTT). TT trains a ColBERT model with English queries and passages automatically translated into the document language from the MS-MARCO v1 collection. This results in three cross-language models for the track, one per language. MTT creates a single model for all three document languages by combining the translations of MS-MARCO passages in all three languages into mixed-language batches. Thus the model learns about matching queries to passages simultaneously in all languages. Distillation uses scores from the mT5 model over non-English translated document pairs to learn how to score query-document pairs. The team submitted runs to all NeuCLIR tasks: the CLIR and MLIR news task as well as the technical documents task.
comment: 6 pages. Part of TREC 2023 Proceedings
Overview of the TREC 2023 NeuCLIR Track
The principal goal of the TREC Neural Cross-Language Information Retrieval (NeuCLIR) track is to study the impact of neural approaches to cross-language information retrieval. The track has created four collections, large collections of Chinese, Persian, and Russian newswire and a smaller collection of Chinese scientific abstracts. The principal tasks are ranked retrieval of news in one of the three languages, using English topics. Results for a multilingual task, also with English topics but with documents from all three newswire collections, are also reported. New in this second year of the track is a pilot technical documents CLIR task for ranked retrieval of Chinese technical documents using English topics. A total of 220 runs across all tasks were submitted by six participating teams and, as baselines, by track coordinators. Task descriptions and results are presented.
comment: 27 pages, 17 figures. Part of the TREC 2023 Proceedings
☆ Augmenting Knowledge Graph Hierarchies Using Neural Transformers
Knowledge graphs are useful tools to organize, recommend and sort data. Hierarchies in knowledge graphs provide significant benefit in improving understanding and compartmentalization of the data within a knowledge graph. This work leverages large language models to generate and augment hierarchies in an existing knowledge graph. For small (<100,000 node) domain-specific KGs, we find that a combination of few-shot prompting with one-shot generation works well, while larger KG may require cyclical generation. We present techniques for augmenting hierarchies, which led to coverage increase by 98% for intents and 99% for colors in our knowledge graph.
comment: European Conference on Information Retrieval 2024
♻ ☆ Set-Encoder: Permutation-Invariant Inter-Passage Attention for Listwise Passage Re-Ranking with Cross-Encoders
Cross-encoders are effective passage re-rankers. But when re-ranking multiple passages at once, existing cross-encoders inefficiently optimize the output ranking over several input permutations, as their passage interactions are not permutation-invariant. Moreover, their high memory footprint constrains the number of passages during listwise training. To tackle these issues, we propose the Set-Encoder, a new cross-encoder architecture that (1) introduces inter-passage attention with parallel passage processing to ensure permutation invariance between input passages, and that (2) uses fused-attention kernels to enable training with more passages at a time. In experiments on TREC Deep Learning and TIREx, the Set-Encoder is more effective than previous cross-encoders with a similar number of parameters. Compared to larger models, the Set-Encoder is more efficient and either on par or even more effective.
♻ ☆ OpenP5: An Open-Source Platform for Developing, Training, and Evaluating LLM-based Recommender Systems SIGIR 2024
In recent years, the integration of Large Language Models (LLMs) into recommender systems has garnered interest among both practitioners and researchers. Despite this interest, the field is still emerging, and the lack of open-source R&D platforms may impede the exploration of LLM-based recommendations. This paper introduces OpenP5, an open-source platform designed as a resource to facilitate the development, training, and evaluation of LLM-based generative recommender systems for research purposes. The platform is implemented using encoder-decoder LLMs (e.g., T5) and decoder-only LLMs (e.g., Llama-2) across 10 widely recognized public datasets, catering to two fundamental recommendation tasks: sequential and straightforward recommendations. Recognizing the crucial role of item IDs in LLM-based recommendations, we have also incorporated three item indexing methods within the OpenP5 platform: random indexing, sequential indexing and collaborative indexing. Built on the Transformers library, the platform facilitates easy customization of LLM-based recommendations for users. OpenP5 boasts a range of features including extensible data processing, task-centric optimization, comprehensive datasets and checkpoints, efficient acceleration, and standardized evaluations, making it a valuable tool for the implementation and evaluation of LLM-based recommender systems. The open-source code and pre-trained checkpoints for the OpenP5 library are publicly available at https://github.com/agiresearch/OpenP5.
comment: In SIGIR 2024 Resource & Reproducibility Track
♻ ☆ From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications
Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed ``Revision Distance,'' utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, ``Revision Distance'' is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.
comment: 9 pages, 2 figures, under review
♻ ☆ Multi-granular Adversarial Attacks against Black-box Neural Ranking Models SIGIR2024
Adversarial ranking attacks have gained increasing attention due to their success in probing vulnerabilities, and, hence, enhancing the robustness, of neural ranking models. Conventional attack methods employ perturbations at a single granularity, e.g., word or sentence level, to target documents. However, limiting perturbations to a single level of granularity may reduce the flexibility of adversarial examples, thereby diminishing the potential threat of the attack. Therefore, we focus on generating high-quality adversarial examples by incorporating multi-granular perturbations. Achieving this objective involves tackling a combinatorial explosion problem, which requires identifying an optimal combination of perturbations across all possible levels of granularity, positions, and textual pieces. To address this challenge, we transform the multi-granular adversarial attack into a sequential decision-making process, where perturbations in the next attack step build on the perturbed document in the current attack step. Since the attack process can only access the final state without direct intermediate signals, we use reinforcement learning to perform multi-granular attacks. During the reinforcement learning process, two agents work cooperatively to identify multi-granular vulnerabilities as attack targets and organize perturbation candidates into a final perturbation sequence. Experimental results show that our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
comment: Accepted by SIGIR2024
♻ ☆ IISAN: Efficiently Adapting Multimodal Representation for Sequential Recommendation with Decoupled PEFT SIGIR2024
Multimodal foundation models are transformative in sequential recommender systems, leveraging powerful representation learning capabilities. While Parameter-efficient Fine-tuning (PEFT) is commonly used to adapt foundation models for recommendation tasks, most research prioritizes parameter efficiency, often overlooking critical factors like GPU memory efficiency and training speed. Addressing this gap, our paper introduces IISAN (Intra- and Inter-modal Side Adapted Network for Multimodal Representation), a simple plug-and-play architecture using a Decoupled PEFT structure and exploiting both intra- and inter-modal adaptation. IISAN matches the performance of full fine-tuning (FFT) and state-of-the-art PEFT. More importantly, it significantly reduces GPU memory usage - from 47GB to just 3GB for multimodal sequential recommendation tasks. Additionally, it accelerates training time per epoch from 443s to 22s compared to FFT. This is also a notable improvement over the Adapter and LoRA, which require 37-39 GB GPU memory and 350-380 seconds per epoch for training. Furthermore, we propose a new composite efficiency metric, TPME (Training-time, Parameter, and GPU Memory Efficiency) to alleviate the prevalent misconception that "parameter efficiency represents overall efficiency". TPME provides more comprehensive insights into practical efficiency comparisons between different methods. Besides, we give an accessible efficiency analysis of all PEFT and FFT approaches, which demonstrate the superiority of IISAN. We release our codes and other materials at https://github.com/GAIR-Lab/IISAN.
comment: Accepted by SIGIR2024
Machine Learning 126
☆ Any2Point: Empowering Any-modality Large Models for Efficient 3D Understanding
Large foundation models have recently emerged as a prominent focus of interest, attaining superior performance in widespread scenarios. Due to the scarcity of 3D data, many efforts have been made to adapt pre-trained transformers from vision to 3D domains. However, such 2D-to-3D approaches are still limited, due to the potential loss of spatial geometries and high computation cost. More importantly, their frameworks are mainly designed for 2D models, lacking a general any-to-3D paradigm. In this paper, we introduce Any2Point, a parameter-efficient method to empower any-modality large models (vision, language, audio) for 3D understanding. Given a frozen transformer from any source modality, we propose a 3D-to-any (1D or 2D) virtual projection strategy that correlates the input 3D points to the original 1D or 2D positions within the source modality. This mechanism enables us to assign each 3D token with a positional encoding paired with the pre-trained model, which avoids 3D geometry loss caused by the true projection and better motivates the transformer for 3D learning with 1D/2D positional priors. Then, within each transformer block, we insert an any-to-3D guided adapter module for parameter-efficient fine-tuning. The adapter incorporates prior spatial knowledge from the source modality to guide the local feature aggregation of 3D tokens, compelling the semantic adaption of any-modality transformers. We conduct extensive experiments to showcase the effectiveness and efficiency of our method. Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point.
comment: Code and models are released at https://github.com/Ivan-Tang-3D/Any2Point
☆ ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback
To enhance the controllability of text-to-image diffusion models, existing efforts like ControlNet incorporated image-based conditional controls. In this paper, we reveal that existing methods still face significant challenges in generating images that align with the image conditional controls. To this end, we propose ControlNet++, a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls. Specifically, for an input conditional control, we use a pre-trained discriminative reward model to extract the corresponding condition of the generated images, and then optimize the consistency loss between the input conditional control and extracted condition. A straightforward implementation would be generating images from random noises and then calculating the consistency loss, but such an approach requires storing gradients for multiple sampling timesteps, leading to considerable time and memory costs. To address this, we introduce an efficient reward strategy that deliberately disturbs the input images by adding noise, and then uses the single-step denoised images for reward fine-tuning. This avoids the extensive costs associated with image sampling, allowing for more efficient reward fine-tuning. Extensive experiments show that ControlNet++ significantly improves controllability under various conditional controls. For example, it achieves improvements over ControlNet by 7.9% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions.
comment: Project Page: https://liming-ai.github.io/ControlNet_Plus_Plus
☆ Two Effects, One Trigger: On the Modality Gap, Object Bias, and Information Imbalance in Contrastive Vision-Language Representation Learning
Contrastive vision-language models like CLIP have gained popularity for their versatile applicable learned representations in various downstream tasks. Despite their successes in some tasks, like zero-shot image recognition, they also perform surprisingly poor on other tasks, like attribute detection. Previous work has attributed these challenges to the modality gap, a separation of image and text in the shared representation space, and a bias towards objects over other factors, such as attributes. In this work we investigate both phenomena. We find that only a few embedding dimensions drive the modality gap. Further, we propose a measure for object bias and find that object bias does not lead to worse performance on other concepts, such as attributes. But what leads to the emergence of the modality gap and object bias? To answer this question we carefully designed an experimental setting which allows us to control the amount of shared information between the modalities. This revealed that the driving factor behind both, the modality gap and the object bias, is the information imbalance between images and captions.
☆ Language Imbalance Can Boost Cross-lingual Generalisation
Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
☆ LLoCO: Learning Long Contexts Offline
Processing long contexts remains a challenge for large language models (LLMs) due to the quadratic computational and memory overhead of the self-attention mechanism and the substantial KV cache sizes during generation. We propose a novel approach to address this problem by learning contexts offline through context compression and in-domain parameter-efficient finetuning. Our method enables an LLM to create a concise representation of the original context and efficiently retrieve relevant information to answer questions accurately. We introduce LLoCO, a technique that combines context compression, retrieval, and parameter-efficient finetuning using LoRA. Our approach extends the effective context window of a 4k token LLaMA2-7B model to handle up to 128k tokens. We evaluate our approach on several long-context question-answering datasets, demonstrating that LLoCO significantly outperforms in-context learning while using $30\times$ fewer tokens during inference. LLoCO achieves up to $7.62\times$ speed-up and substantially reduces the cost of long document question answering, making it a promising solution for efficient long context processing. Our code is publicly available at https://github.com/jeffreysijuntan/lloco.
comment: The first two authors contributed equally to this work
☆ Differentiable All-pole Filters for Time-varying Audio Systems
Infinite impulse response filters are an essential building block of many time-varying audio systems, such as audio effects and synthesisers. However, their recursive structure impedes end-to-end training of these systems using automatic differentiation. Although non-recursive filter approximations like frequency sampling and frame-based processing have been proposed and widely used in previous works, they cannot accurately reflect the gradient of the original system. We alleviate this difficulty by re-expressing a time-varying all-pole filter to backpropagate the gradients through itself, so the filter implementation is not bound to the technical limitations of automatic differentiation frameworks. This implementation can be employed within any audio system containing filters with poles for efficient gradient evaluation. We demonstrate its training efficiency and expressive capabilities for modelling real-world dynamic audio systems on a phaser, time-varying subtractive synthesiser, and feed-forward compressor. We make our code available and provide the trained audio effect and synth models in a VST plugin at https://christhetree.github.io/all_pole_filters/.
comment: Submitted to DAFx 2024
☆ Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation for Efficient Synthesis and Verification
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control. However, formal (Lyapunov) stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain, and most existing approaches rely on expensive solvers such as sums-of-squares (SOS), mixed-integer programming (MIP), or satisfiability modulo theories (SMT). In this paper, we demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations. We propose a novel formulation that defines a larger verifiable region-of-attraction (ROA) than shown in the literature, and refines the conventional restrictive constraints on Lyapunov derivatives to focus only on certifiable ROAs. The Lyapunov condition is rigorously verified post-hoc using branch-and-bound with scalable linear bound propagation-based NN verification techniques. The approach is efficient and flexible, and the full training and verification procedure is accelerated on GPUs without relying on expensive solvers for SOS, MIP, nor SMT. The flexibility and efficiency of our framework allow us to demonstrate Lyapunov-stable output feedback control with synthesized NN-based controllers and NN-based observers with formal stability guarantees, for the first time in literature. Source code at https://github.com/Verified-Intelligence/Lyapunov_Stable_NN_Controllers.
☆ Rate-Optimal Non-Asymptotics for the Quadratic Prediction Error Method
We study the quadratic prediction error method -- i.e., nonlinear least squares -- for a class of time-varying parametric predictor models satisfying a certain identifiability condition. While this method is known to asymptotically achieve the optimal rate for a wide range of problems, there have been no non-asymptotic results matching these optimal rates outside of a select few, typically linear, model classes. By leveraging modern tools from learning with dependent data, we provide the first rate-optimal non-asymptotic analysis of this method for our more general setting of nonlinearly parametrized model classes. Moreover, we show that our results can be applied to a particular class of identifiable AutoRegressive Moving Average (ARMA) models, resulting in the first optimal non-asymptotic rates for identification of ARMA models.
☆ A Parsimonious Setup for Streamflow Forecasting using CNN-LSTM
Significant strides have been made in advancing streamflow predictions, notably with the introduction of cutting-edge machine-learning models. Predominantly, Long Short-Term Memories (LSTMs) and Convolution Neural Networks (CNNs) have been widely employed in this domain. While LSTMs are applicable in both rainfall-runoff and time series settings, CNN-LSTMs have primarily been utilized in rainfall-runoff scenarios. In this study, we extend the application of CNN-LSTMs to time series settings, leveraging lagged streamflow data in conjunction with precipitation and temperature data to predict streamflow. Our results show a substantial improvement in predictive performance in 21 out of 32 HUC8 basins in Nebraska, showcasing noteworthy increases in the Kling-Gupta Efficiency (KGE) values. These results highlight the effectiveness of CNN-LSTMs in time series settings, particularly for spatiotemporal hydrological modeling, for more accurate and robust streamflow predictions.
☆ LaVy: Vietnamese Multimodal Large Language Model
Large Language Models (LLMs) and Multimodal Large language models (MLLMs) have taken the world by storm with impressive abilities in complex reasoning and linguistic comprehension. Meanwhile there are plethora of works related to Vietnamese Large Language Models, the lack of high-quality resources in multimodality limits the progress of Vietnamese MLLMs. In this paper, we pioneer in address this by introducing LaVy, a state-of-the-art Vietnamese MLLM, and we also introduce LaVy-Bench benchmark designated for evaluating MLLMs's understanding on Vietnamese visual language tasks. All code and model weights are public at https://github.com/baochi0212/LaVy
comment: 7 pages
☆ Low-rank Adaptation for Spatio-Temporal Forecasting
Spatio-temporal forecasting is crucial in real-world dynamic systems, predicting future changes using historical data from diverse locations. Existing methods often prioritize the development of intricate neural networks to capture the complex dependencies of the data, yet their accuracy fails to show sustained improvement. Besides, these methods also overlook node heterogeneity, hindering customized prediction modules from handling diverse regional nodes effectively. In this paper, our goal is not to propose a new model but to present a novel low-rank adaptation framework as an off-the-shelf plugin for existing spatial-temporal prediction models, termed ST-LoRA, which alleviates the aforementioned problems through node-level adjustments. Specifically, we first tailor a node adaptive low-rank layer comprising multiple trainable low-rank matrices. Additionally, we devise a multi-layer residual fusion stacking module, injecting the low-rank adapters into predictor modules of various models. Across six real-world traffic datasets and six different types of spatio-temporal prediction models, our approach minimally increases the parameters and training time of the original models by less than 4%, still achieving consistent and sustained performance enhancement.
☆ Anomaly Detection in Power Grids via Context-Agnostic Learning
An important tool grid operators use to safeguard against failures, whether naturally occurring or malicious, involves detecting anomalies in the power system SCADA data. In this paper, we aim to solve a real-time anomaly detection problem. Given time-series measurement values coming from a fixed set of sensors on the grid, can we identify anomalies in the network topology or measurement data? Existing methods, primarily optimization-based, mostly use only a single snapshot of the measurement values and do not scale well with the network size. Recent data-driven ML techniques have shown promise by using a combination of current and historical data for anomaly detection but generally do not consider physical attributes like the impact of topology or load/generation changes on sensor measurements and thus cannot accommodate regular context-variability in the historical data. To address this gap, we propose a novel context-aware anomaly detection algorithm, GridCAL, that considers the effect of regular topology and load/generation changes. This algorithm converts the real-time power flow measurements to context-agnostic values, which allows us to analyze measurement coming from different grid contexts in an aggregate fashion, enabling us to derive a unified statistical model that becomes the basis of anomaly detection. Through numerical simulations on networks up to 2383 nodes, we show that our approach is accurate, outperforming state-of-the-art approaches, and is computationally efficient.
☆ Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing
We consider the problem of localizing change points in high-dimensional linear regression. We propose an Approximate Message Passing (AMP) algorithm for estimating both the signals and the change point locations. Assuming Gaussian covariates, we give an exact asymptotic characterization of its estimation performance in the limit where the number of samples grows proportionally to the signal dimension. Our algorithm can be tailored to exploit any prior information on the signal, noise, and change points. It also enables uncertainty quantification in the form of an efficiently computable approximate posterior distribution, whose asymptotic form we characterize exactly. We validate our theory via numerical experiments, and demonstrate the favorable performance of our estimators on both synthetic data and images.
comment: 24 pages, 8 figures
☆ Streaming detection of significant delay changes in public transport systems CCS 2022
Public transport systems are expected to reduce pollution and contribute to sustainable development. However, disruptions in public transport such as delays may negatively affect mobility choices. To quantify delays, aggregated data from vehicle locations systems are frequently used. However, delays observed at individual stops are caused inter alia by fluctuations in running times and propagation of delays occurring in other locations. Hence, in this work, we propose both the method detecting significant delays and reference architecture, relying on stream processing engines, in which the method is implemented. The method can complement the calculation of delays defined as deviation from schedules. This provides both online rather than batch identification of significant and repetitive delays, and resilience to the limited quality of location data. The method we propose can be used with different change detectors, such as ADWIN, applied to location data stream shuffled to individual edges of a transport graph. It can detect in an online manner at which edges statistically significant delays are observed and at which edges delays arise and are reduced. Detections can be used to model mobility choices and quantify the impact of repetitive rather than random disruptions on feasible trips with multimodal trip modelling engines. The evaluation performed with the public transport data of over 2000 vehicles confirms the merits of the method and reveals that a limited-size subgraph of a transport system graph causes statistically significant delays
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this contribution is published in Computational Science - ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham, and is available online at https://doi.org/10.1007/978-3-031-08760-8_41
☆ Overparameterized Multiple Linear Regression as Hyper-Curve Fitting
The paper shows that the application of the fixed-effect multiple linear regression model to an overparameterized dataset is equivalent to fitting the data with a hyper-curve parameterized by a single scalar parameter. This equivalence allows for a predictor-focused approach, where each predictor is described by a function of the chosen parameter. It is proven that a linear model will produce exact predictions even in the presence of nonlinear dependencies that violate the model assumptions. Parameterization in terms of the dependent variable and the monomial basis in the predictor function space are applied here to both synthetic and experimental data. The hyper-curve approach is especially suited for the regularization of problems with noise in predictor variables and can be used to remove noisy and "improper" predictors from the model.
☆ On Training Data Influence of GPT Models
Amidst the rapid advancements in generative language models, the investigation of how training data shapes the performance of GPT models is still emerging. This paper presents GPTfluence, a novel approach that leverages a featurized simulation to assess the impact of training examples on the training dynamics of GPT models. Our approach not only traces the influence of individual training instances on performance trajectories, such as loss and other key metrics, on targeted test points but also enables a comprehensive comparison with existing methods across various training scenarios in GPT models, ranging from 14 million to 2.8 billion parameters, across a range of downstream tasks. Contrary to earlier methods that struggle with generalization to new data, GPTfluence introduces a parameterized simulation of training dynamics, demonstrating robust generalization capabilities to unseen training data. This adaptability is evident across both fine-tuning and instruction-tuning scenarios, spanning tasks in natural language understanding and generation. We will make our code and data publicly available.
☆ RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
We introduce RecurrentGemma, an open language model which uses Google's novel Griffin architecture. Griffin combines linear recurrences with local attention to achieve excellent performance on language. It has a fixed-sized state, which reduces memory use and enables efficient inference on long sequences. We provide a pre-trained model with 2B non-embedding parameters, and an instruction tuned variant. Both models achieve comparable performance to Gemma-2B despite being trained on fewer tokens.
☆ Streamlined Photoacoustic Image Processing with Foundation Models: A Training-Free Solution
Foundation models have rapidly evolved and have achieved significant accomplishments in computer vision tasks. Specifically, the prompt mechanism conveniently allows users to integrate image prior information into the model, making it possible to apply models without any training. Therefore, we propose a method based on foundation models and zero training to solve the tasks of photoacoustic (PA) image segmentation. We employed the segment anything model (SAM) by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks, including: (1) removing the skin signal in three-dimensional PA image rendering; (2) dual speed-of-sound reconstruction, and (3) segmentation of finger blood vessels. Through these demonstrations, we have concluded that deep learning can be directly applied in PA imaging without the requirement for network design and training. This potentially allows for a hands-on, convenient approach to achieving efficient and accurate segmentation of PA images. This letter serves as a comprehensive tutorial, facilitating the mastery of the technique through the provision of code and sample datasets.
☆ On the Sample Efficiency of Abstractions and Potential-Based Reward Shaping in Reinforcement Learning
The use of Potential Based Reward Shaping (PBRS) has shown great promise in the ongoing research effort to tackle sample inefficiency in Reinforcement Learning (RL). However, the choice of the potential function is critical for this technique to be effective. Additionally, RL techniques are usually constrained to use a finite horizon for computational limitations. This introduces a bias when using PBRS, thus adding an additional layer of complexity. In this paper, we leverage abstractions to automatically produce a "good" potential function. We analyse the bias induced by finite horizons in the context of PBRS producing novel insights. Finally, to asses sample efficiency and performance impact, we evaluate our approach on four environments including a goal-oriented navigation task and three Arcade Learning Environments (ALE) games demonstrating that we can reach the same level of performance as CNN-based solutions with a simple fully-connected network.
☆ Calibration of Continual Learning Models
Continual Learning (CL) focuses on maximizing the predictive performance of a model across a non-stationary stream of data. Unfortunately, CL models tend to forget previous knowledge, thus often underperforming when compared with an offline model trained jointly on the entire data stream. Given that any CL model will eventually make mistakes, it is of crucial importance to build calibrated CL models: models that can reliably tell their confidence when making a prediction. Model calibration is an active research topic in machine learning, yet to be properly investigated in CL. We provide the first empirical study of the behavior of calibration approaches in CL, showing that CL strategies do not inherently learn calibrated models. To mitigate this issue, we design a continual calibration approach that improves the performance of post-processing calibration methods over a wide range of different benchmarks and CL strategies. CL does not necessarily need perfect predictive models, but rather it can benefit from reliable predictive models. We believe our study on continual calibration represents a first step towards this direction.
☆ Post-Hoc Reversal: Are We Selecting Models Prematurely?
Trained models are often composed with post-hoc transforms such as temperature scaling (TS), ensembling and stochastic weight averaging (SWA) to improve performance, robustness, uncertainty estimation, etc. However, such transforms are typically applied only after the base models have already been finalized by standard means. In this paper, we challenge this practice with an extensive empirical study. In particular, we demonstrate a phenomenon that we call post-hoc reversal, where performance trends are reversed after applying these post-hoc transforms. This phenomenon is especially prominent in high-noise settings. For example, while base models overfit badly early in training, both conventional ensembling and SWA favor base models trained for more epochs. Post-hoc reversal can also suppress the appearance of double descent and mitigate mismatches between test loss and test error seen in base models. Based on our findings, we propose post-hoc selection, a simple technique whereby post-hoc metrics inform model development decisions such as early stopping, checkpointing, and broader hyperparameter choices. Our experimental analyses span real-world vision, language, tabular and graph datasets from domains like satellite imaging, language modeling, census prediction and social network analysis. On an LLM instruction tuning dataset, post-hoc selection results in > 1.5x MMLU improvement compared to naive selection. Code is available at https://github.com/rishabh-ranjan/post-hoc-reversal.
comment: 9 pages + references + appendix, 7 figures
☆ Nostra Domina at EvaLatin 2024: Improving Latin Polarity Detection through Data Augmentation
This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the $k$-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-$F_1$ score on the shared task's test set.
comment: Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages
☆ Unsupervised Concept Drift Detection based on Parallel Activations of Neural Network
Practical applications of artificial intelligence increasingly often have to deal with the streaming properties of real data, which, considering the time factor, are subject to phenomena such as periodicity and more or less chaotic degeneration - resulting directly in the concept drifts. The modern concept drift detectors almost always assume immediate access to labels, which due to their cost, limited availability and possible delay has been shown to be unrealistic. This work proposes an unsupervised Parallel Activations Drift Detector, utilizing the outputs of an untrained neural network, presenting its key design elements, intuitions about processing properties, and a pool of computer experiments demonstrating its competitiveness with state-of-the-art methods.
☆ Discourse-Aware In-Context Learning for Temporal Expression Normalization NAACL 2024
Temporal expression (TE) normalization is a well-studied problem. However, the predominately used rule-based systems are highly restricted to specific settings, and upcoming machine learning approaches suffer from a lack of labeled data. In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization using in-context learning to inject task, document, and example information into the model. We explore various sample selection strategies to retrieve the most relevant set of examples. By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model. Our experiments show competitive results to models designed for this task. In particular, our method achieves large performance improvements for non-standard settings by dynamically including relevant examples during inference.
comment: Accepted at NAACL 2024
☆ Sketch-Plan-Generalize: Continual Few-Shot Learning of Inductively Generalizable Spatial Concepts for Language-Guided Robot Manipulation
Our goal is to build embodied agents that can learn inductively generalizable spatial concepts in a continual manner, e.g, constructing a tower of a given height. Existing work suffers from certain limitations (a) (Liang et al., 2023) and their multi-modal extensions, rely heavily on prior knowledge and are not grounded in the demonstrations (b) (Liu et al., 2023) lack the ability to generalize due to their purely neural approach. A key challenge is to achieve a fine balance between symbolic representations which have the capability to generalize, and neural representations that are physically grounded. In response, we propose a neuro-symbolic approach by expressing inductive concepts as symbolic compositions over grounded neural concepts. Our key insight is to decompose the concept learning problem into the following steps 1) Sketch: Getting a programmatic representation for the given instruction 2) Plan: Perform Model-Based RL over the sequence of grounded neural action concepts to learn a grounded plan 3) Generalize: Abstract out a generic (lifted) Python program to facilitate generalizability. Continual learning is achieved by interspersing learning of grounded neural concepts with higher level symbolic constructs. Our experiments demonstrate that our approach significantly outperforms existing baselines in terms of its ability to learn novel concepts and generalize inductively.
☆ An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization
Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
☆ AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports LREC
Monitoring the threat landscape to be aware of actual or potential attacks is of utmost importance to cybersecurity professionals. Information about cyber threats is typically distributed using natural language reports. Natural language processing can help with managing this large amount of unstructured information, yet to date, the topic has received little attention. With this paper, we present AnnoCTR, a new CC-BY-SA-licensed dataset of cyber threat reports. The reports have been annotated by a domain expert with named entities, temporal expressions, and cybersecurity-specific concepts including implicitly mentioned techniques and tactics. Entities and concepts are linked to Wikipedia and the MITRE ATT&CK knowledge base, the most widely-used taxonomy for classifying types of attacks. Prior datasets linking to MITRE ATT&CK either provide a single label per document or annotate sentences out-of-context; our dataset annotates entire documents in a much finer-grained way. In an experimental study, we model the annotations of our dataset using state-of-the-art neural models. In our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.
comment: Accepted at LREC-COLING 2024. Corpus available at https://github.com/boschresearch/anno-ctr-lrec-coling-2024
☆ Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
Novel deep-learning (DL) architectures have reached a level where they can generate digital media, including photorealistic images, that are difficult to distinguish from real data. These technologies have already been used to generate training data for Machine Learning (ML) models, and large text-to-image models like DALL-E 2, Imagen, and Stable Diffusion are achieving remarkable results in realistic high-resolution image generation. Given these developments, issues of data authentication in monitoring and verification deserve a careful and systematic analysis: How realistic are synthetic images? How easily can they be generated? How useful are they for ML researchers, and what is their potential for Open Science? In this work, we use novel DL models to explore how synthetic satellite images can be created using conditioning mechanisms. We investigate the challenges of synthetic satellite image generation and evaluate the results based on authenticity and state-of-the-art metrics. Furthermore, we investigate how synthetic data can alleviate the lack of data in the context of ML methods for remote-sensing. Finally we discuss implications of synthetic satellite imagery in the context of monitoring and verification.
comment: https://resources.inmm.org/annual-meeting-proceedings/generating-synthetic-satellite-imagery-deep-learning-text-image-models
☆ Mitigating Vulnerable Road Users Occlusion Risk Via Collective Perception: An Empirical Analysis
Recent reports from the World Health Organization highlight that Vulnerable Road Users (VRUs) have been involved in over half of the road fatalities in recent years, with occlusion risk - a scenario where VRUs are hidden from drivers' view by obstacles like parked vehicles - being a critical contributing factor. To address this, we present a novel algorithm that quantifies occlusion risk based on the dynamics of both vehicles and VRUs. This algorithm has undergone testing and evaluation using a real-world dataset from German intersections. Additionally, we introduce the concept of Maximum Tracking Loss (MTL), which measures the longest consecutive duration a VRU remains untracked by any vehicle in a given scenario. Our study extends to examining the role of the Collective Perception Service (CPS) in VRU safety. CPS enhances safety by enabling vehicles to share sensor information, thereby potentially reducing occlusion risks. Our analysis reveals that a 25% market penetration of CPS-equipped vehicles can substantially diminish occlusion risks and significantly curtail MTL. These findings demonstrate how various scenarios pose different levels of risk to VRUs and how the deployment of Collective Perception can markedly improve their safety. Furthermore, they underline the efficacy of our proposed metrics to capture occlusion risk as a safety factor.
comment: Accepted for 35th IEEE Intelligent Vehicles Symposium 2024
☆ 3D-CSAD: Untrained 3D Anomaly Detection for Complex Manufacturing Surfaces
The surface quality inspection of manufacturing parts based on 3D point cloud data has attracted increasing attention in recent years. The reason is that the 3D point cloud can capture the entire surface of manufacturing parts, unlike the previous practices that focus on some key product characteristics. However, achieving accurate 3D anomaly detection is challenging, due to the complex surfaces of manufacturing parts and the difficulty of collecting sufficient anomaly samples. To address these challenges, we propose a novel untrained anomaly detection method based on 3D point cloud data for complex manufacturing parts, which can achieve accurate anomaly detection in a single sample without training data. In the proposed framework, we transform an input sample into two sets of profiles along different directions. Based on one set of the profiles, a novel segmentation module is devised to segment the complex surface into multiple basic and simple components. In each component, another set of profiles, which have the nature of similar shapes, can be modeled as a low-rank matrix. Thus, accurate 3D anomaly detection can be achieved by using Robust Principal Component Analysis (RPCA) on these low-rank matrices. Extensive numerical experiments on different types of parts show that our method achieves promising results compared with the benchmark methods.
☆ ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models
Scientific Research, vital for improving human life, is hindered by its inherent complexity, slow pace, and the need for specialized experts. To enhance its productivity, we propose a ResearchAgent, a large language model-powered research idea writing agent, which automatically generates problems, methods, and experiment designs while iteratively refining them based on scientific literature. Specifically, starting with a core paper as the primary focus to generate ideas, our ResearchAgent is augmented not only with relevant publications through connecting information over an academic graph but also entities retrieved from an entity-centric knowledge store based on their underlying concepts, mined and shared across numerous papers. In addition, mirroring the human approach to iteratively improving ideas with peer discussions, we leverage multiple ReviewingAgents that provide reviews and feedback iteratively. Further, they are instantiated with human preference-aligned large language models whose criteria for evaluation are derived from actual human judgments. We experimentally validate our ResearchAgent on scientific publications across multiple disciplines, showcasing its effectiveness in generating novel, clear, and valid research ideas based on human and model-based evaluation results.
☆ Monte Carlo Tree Search with Boltzmann Exploration NeurIPS2023
Monte-Carlo Tree Search (MCTS) methods, such as Upper Confidence Bound applied to Trees (UCT), are instrumental to automated planning techniques. However, UCT can be slow to explore an optimal action when it initially appears inferior to other actions. Maximum ENtropy Tree-Search (MENTS) incorporates the maximum entropy principle into an MCTS approach, utilising Boltzmann policies to sample actions, naturally encouraging more exploration. In this paper, we highlight a major limitation of MENTS: optimal actions for the maximum entropy objective do not necessarily correspond to optimal actions for the original objective. We introduce two algorithms, Boltzmann Tree Search (BTS) and Decaying ENtropy Tree-Search (DENTS), that address these limitations and preserve the benefits of Boltzmann policies, such as allowing actions to be sampled faster by using the Alias method. Our empirical analysis shows that our algorithms show consistent high performance across several benchmark domains, including the game of Go.
comment: Camera ready version of NeurIPS2023 paper
☆ Realistic Continual Learning Approach using Pre-trained Models
Continual learning (CL) is crucial for evaluating adaptability in learning solutions to retain knowledge. Our research addresses the challenge of catastrophic forgetting, where models lose proficiency in previously learned tasks as they acquire new ones. While numerous solutions have been proposed, existing experimental setups often rely on idealized class-incremental learning scenarios. We introduce Realistic Continual Learning (RealCL), a novel CL paradigm where class distributions across tasks are random, departing from structured setups. We also present CLARE (Continual Learning Approach with pRE-trained models for RealCL scenarios), a pre-trained model-based solution designed to integrate new knowledge while preserving past learning. Our contributions include pioneering RealCL as a generalization of traditional CL setups, proposing CLARE as an adaptable approach for RealCL tasks, and conducting extensive experiments demonstrating its effectiveness across various RealCL scenarios. Notably, CLARE outperforms existing models on RealCL benchmarks, highlighting its versatility and robustness in unpredictable learning environments.
☆ Applying Guidance in a Limited Interval Improves Sample and Distribution Quality in Diffusion Models
Guidance is a crucial technique for extracting the best performance out of image-generating diffusion models. Traditionally, a constant guidance weight has been applied throughout the sampling chain of an image. We show that guidance is clearly harmful toward the beginning of the chain (high noise levels), largely unnecessary toward the end (low noise levels), and only beneficial in the middle. We thus restrict it to a specific range of noise levels, improving both the inference speed and result quality. This limited guidance interval improves the record FID in ImageNet-512 significantly, from 1.81 to 1.40. We show that it is quantitatively and qualitatively beneficial across different sampler parameters, network architectures, and datasets, including the large-scale setting of Stable Diffusion XL. We thus suggest exposing the guidance interval as a hyperparameter in all diffusion models that use guidance.
☆ Progressive Semantic-Guided Vision Transformer for Zero-Shot Learning CVPR'24
Zero-shot learning (ZSL) recognizes the unseen classes by conducting visual-semantic interactions to transfer semantic knowledge from seen classes to unseen ones, supported by semantic information (e.g., attributes). However, existing ZSL methods simply extract visual features using a pre-trained network backbone (i.e., CNN or ViT), which fail to learn matched visual-semantic correspondences for representing semantic-related visual features as lacking of the guidance of semantic information, resulting in undesirable visual-semantic interactions. To tackle this issue, we propose a progressive semantic-guided vision transformer for zero-shot learning (dubbed ZSLViT). ZSLViT mainly considers two properties in the whole network: i) discover the semantic-related visual representations explicitly, and ii) discard the semantic-unrelated visual information. Specifically, we first introduce semantic-embedded token learning to improve the visual-semantic correspondences via semantic enhancement and discover the semantic-related visual tokens explicitly with semantic-guided token attention. Then, we fuse low semantic-visual correspondence visual tokens to discard the semantic-unrelated visual information for visual enhancement. These two operations are integrated into various encoders to progressively learn semantic-related visual representations for accurate visual-semantic interactions in ZSL. The extensive experiments show that our ZSLViT achieves significant performance gains on three popular benchmark datasets, i.e., CUB, SUN, and AWA2.
comment: Accepted to CVPR'24
☆ Learning Hamiltonian Dynamics with Reproducing Kernel Hilbert Spaces and Random Features
A method for learning Hamiltonian dynamics from a limited and noisy dataset is proposed. The method learns a Hamiltonian vector field on a reproducing kernel Hilbert space (RKHS) of inherently Hamiltonian vector fields, and in particular, odd Hamiltonian vector fields. This is done with a symplectic kernel, and it is shown how the kernel can be modified to an odd symplectic kernel to impose the odd symmetry. A random feature approximation is developed for the proposed kernel to reduce the problem size. This includes random feature approximations for odd kernels. The performance of the method is validated in simulations for three Hamiltonian systems. It is demonstrated that the use of an odd symplectic kernel improves prediction accuracy, and that the learned vector fields are Hamiltonian and exhibit the imposed odd symmetry characteristics.
comment: arXiv admin note: substantial text overlap with arXiv:2312.09734
☆ Point Cloud Geometry Scalable Coding with a Quality-Conditioned Latents Probability Estimator ICIP 2024
The widespread usage of point clouds (PC) for immersive visual applications has resulted in the use of very heterogeneous receiving conditions and devices, notably in terms of network, hardware, and display capabilities. In this scenario, quality scalability, i.e., the ability to reconstruct a signal at different qualities by progressively decoding a single bitstream, is a major requirement that has yet to be conveniently addressed, notably in most learning-based PC coding solutions. This paper proposes a quality scalability scheme, named Scalable Quality Hyperprior (SQH), adaptable to learning-based static point cloud geometry codecs, which uses a Quality-conditioned Latents Probability Estimator (QuLPE) to decode a high-quality version of a PC learning-based representation, based on an available lower quality base layer. SQH is integrated in the future JPEG PC coding standard, allowing to create a layered bitstream that can be used to progressively decode the PC geometry with increasing quality and fidelity. Experimental results show that SQH offers the quality scalability feature with very limited or no compression performance penalty at all when compared with the corresponding non-scalable solution, thus preserving the significant compression gains over other state-of-the-art PC codecs.
comment: Submitted at ICIP 2024
☆ Flatness Improves Backbone Generalisation in Few-shot Classification
Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. Surprisingly, most efforts have only focused on developing architectures for easing the adaptation to the target domain without considering the importance of backbone training for good generalisation. We show that flatness-aware backbone training with vanilla fine-tuning results in a simpler yet competitive baseline compared to the state-of-the-art. Our results indicate that for in- and cross-domain FSC, backbone training is crucial to achieving good generalisation across different adaptation methods. We advocate more care should be taken when training these models.
☆ Curated Datasets and Neural Models for Machine Translation of Informal Registers between Mayan and Spanish Vernaculars NAACL 2024
The Mayan languages comprise a language family with an ancient history, millions of speakers, and immense cultural value, that, nevertheless, remains severely underrepresented in terms of resources and global exposure. In this paper we develop, curate, and publicly release a set of corpora in several Mayan languages spoken in Guatemala and Southern Mexico, which we call MayanV. The datasets are parallel with Spanish, the dominant language of the region, and are taken from official native sources focused on representing informal, day-to-day, and non-domain-specific language. As such, and according to our dialectometric analysis, they differ in register from most other available resources. Additionally, we present neural machine translation models, trained on as many resources and Mayan languages as possible, and evaluated exclusively on our datasets. We observe lexical divergences between the dialects of Spanish in our resources and the more widespread written standard of Spanish, and that resources other than the ones we present do not seem to improve translation performance, indicating that many such resources may not accurately capture common, real-life language usage. The MayanV dataset is available at https://github.com/transducens/mayanv.
comment: 13 pages, 3 figures, 8 tables, Submitted to NAACL 2024
☆ Interactive Ontology Matching with Cost-Efficient Learning
The creation of high-quality ontologies is crucial for data integration and knowledge-based reasoning, specifically in the context of the rising data economy. However, automatic ontology matchers are often bound to the heuristics they are based on, leaving many matches unidentified. Interactive ontology matching systems involving human experts have been introduced, but they do not solve the fundamental issue of flexibly finding additional matches outside the scope of the implemented heuristics, even though this is highly demanded in industrial settings. Active machine learning methods appear to be a promising path towards a flexible interactive ontology matcher. However, off-the-shelf active learning mechanisms suffer from low query efficiency due to extreme class imbalance, resulting in a last-mile problem where high human effort is required to identify the remaining matches. To address the last-mile problem, this work introduces DualLoop, an active learning method tailored to ontology matching. DualLoop offers three main contributions: (1) an ensemble of tunable heuristic matchers, (2) a short-term learner with a novel query strategy adapted to highly imbalanced data, and (3) long-term learners to explore potential matches by creating and tuning new heuristics. We evaluated DualLoop on three datasets of varying sizes and domains. Compared to existing active learning methods, we consistently achieved better F1 scores and recall, reducing the expected query cost spent on finding 90% of all matches by over 50%. Compared to traditional interactive ontology matchers, we are able to find additional, last-mile matches. Finally, we detail the successful deployment of our approach within an actual product and report its operational performance results within the Architecture, Engineering, and Construction (AEC) industry sector, showcasing its practical value and efficiency.
☆ PINNACLE: PINN Adaptive ColLocation and Experimental points selection ICLR 2024
Physics-Informed Neural Networks (PINNs), which incorporate PDEs as soft constraints, train with a composite loss function that contains multiple training point types: different types of collocation points chosen during training to enforce each PDE and initial/boundary conditions, and experimental points which are usually costly to obtain via experiments or simulations. Training PINNs using this loss function is challenging as it typically requires selecting large numbers of points of different types, each with different training dynamics. Unlike past works that focused on the selection of either collocation or experimental points, this work introduces PINN Adaptive ColLocation and Experimental points selection (PINNACLE), the first algorithm that jointly optimizes the selection of all training point types, while automatically adjusting the proportion of collocation point types as training progresses. PINNACLE uses information on the interaction among training point types, which had not been considered before, based on an analysis of PINN training dynamics via the Neural Tangent Kernel (NTK). We theoretically show that the criterion used by PINNACLE is related to the PINN generalization error, and empirically demonstrate that PINNACLE is able to outperform existing point selection methods for forward, inverse, and transfer learning problems.
comment: Accepted to 12th International Conference on Learning Representations (ICLR 2024), 36 pages
☆ Robust performance metrics for imbalanced classification problems
We show that established performance metrics in binary classification, such as the F-score, the Jaccard similarity coefficient or Matthews' correlation coefficient (MCC), are not robust to class imbalance in the sense that if the proportion of the minority class tends to $0$, the true positive rate (TPR) of the Bayes classifier under these metrics tends to $0$ as well. Thus, in imbalanced classification problems, these metrics favour classifiers which ignore the minority class. To alleviate this issue we introduce robust modifications of the F-score and the MCC for which, even in strongly imbalanced settings, the TPR is bounded away from $0$. We numerically illustrate the behaviour of the various performance metrics in simulations as well as on a credit default data set. We also discuss connections to the ROC and precision-recall curves and give recommendations on how to combine their usage with performance metrics.
☆ Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain LREC
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
comment: LREC-COLING 2024
☆ Attention based End to end network for Offline Writer Identification on Word level data
Writer identification due to its widespread application in various fields has gained popularity over the years. In scenarios where optimum handwriting samples are available, whether they be in the form of a single line, a sentence, or an entire page, writer identification algorithms have demonstrated noteworthy levels of accuracy. However, in scenarios where only a limited number of handwritten samples are available, particularly in the form of word images, there is a significant scope for improvement. In this paper, we propose a writer identification system based on an attention-driven Convolutional Neural Network (CNN). The system is trained utilizing image segments, known as fragments, extracted from word images, employing a pyramid-based strategy. This methodology enables the system to capture a comprehensive representation of the data, encompassing both fine-grained details and coarse features across various levels of abstraction. These extracted fragments serve as the training data for the convolutional network, enabling it to learn a more robust representation compared to traditional convolution-based networks trained on word images. Additionally, the paper explores the integration of an attention mechanism to enhance the representational power of the learned features. The efficacy of the proposed algorithm is evaluated on three benchmark databases, demonstrating its proficiency in writer identification tasks, particularly in scenarios with limited access to handwriting data.
☆ Weakly-Supervised Learning via Multi-Lateral Decoder Branching for Guidewire Segmentation in Robot-Assisted Cardiovascular Catheterization
Although robot-assisted cardiovascular catheterization is commonly performed for intervention of cardiovascular diseases, more studies are needed to support the procedure with automated tool segmentation. This can aid surgeons on tool tracking and visualization during intervention. Learning-based segmentation has recently offered state-of-the-art segmentation performances however, generating ground-truth signals for fully-supervised methods is labor-intensive and time consuming for the interventionists. In this study, a weakly-supervised learning method with multi-lateral pseudo labeling is proposed for tool segmentation in cardiac angiograms. The method includes a modified U-Net model with one encoder and multiple lateral-branched decoders that produce pseudo labels as supervision signals under different perturbation. The pseudo labels are self-generated through a mixed loss function and shared consistency in the decoders. We trained the model end-to-end with weakly-annotated data obtained during robotic cardiac catheterization. Experiments with the proposed model shows weakly annotated data has closer performance to when fully annotated data is used. Compared to three existing weakly-supervised methods, our approach yielded higher segmentation performance across three different cardiac angiogram data. With ablation study, we showed consistent performance under different parameters. Thus, we offer a less expensive method for real-time tool segmentation and tracking during robot-assisted cardiac catheterization.
☆ Diffusion posterior sampling for simulation-based inference in tall data settings
Determining which parameters of a non-linear model could best describe a set of experimental data is a fundamental problem in science and it has gained much traction lately with the rise of complex large-scale simulators (a.k.a. black-box simulators). The likelihood of such models is typically intractable, which is why classical MCMC methods can not be used. Simulation-based inference (SBI) stands out in this context by only requiring a dataset of simulations to train deep generative models capable of approximating the posterior distribution that relates input parameters to a given observation. In this work, we consider a tall data extension in which multiple observations are available and one wishes to leverage their shared information to better infer the parameters of the model. The method we propose is built upon recent developments from the flourishing score-based diffusion literature and allows us to estimate the tall data posterior distribution simply using information from the score network trained on individual observations. We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
comment: 38 pages, 20 figures, 3 tables, 11 appendices
☆ Generating Comprehensive Lithium Battery Charging Data with Generative AI
In optimizing performance and extending the lifespan of lithium batteries, accurate state prediction is pivotal. Traditional regression and classification methods have achieved some success in battery state prediction. However, the efficacy of these data-driven approaches heavily relies on the availability and quality of public datasets. Additionally, generating electrochemical data predominantly through battery experiments is a lengthy and costly process, making it challenging to acquire high-quality electrochemical data. This difficulty, coupled with data incompleteness, significantly impacts prediction accuracy. Addressing these challenges, this study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity, which is then processed by the RCVAE model. Coupled with customized training and inference algorithms, this model can generate specific electrochemical data for EOL and ECL under supervised conditions. This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities for lithium battery performance prediction.
☆ Can Vehicle Motion Planning Generalize to Realistic Long-tail Scenarios?
Real-world autonomous driving systems must make safe decisions in the face of rare and diverse traffic scenarios. Current state-of-the-art planners are mostly evaluated on real-world datasets like nuScenes (open-loop) or nuPlan (closed-loop). In particular, nuPlan seems to be an expressive evaluation method since it is based on real-world data and closed-loop, yet it mostly covers basic driving scenarios. This makes it difficult to judge a planner's capabilities to generalize to rarely-seen situations. Therefore, we propose a novel closed-loop benchmark interPlan containing several edge cases and challenging driving scenarios. We assess existing state-of-the-art planners on our benchmark and show that neither rule-based nor learning-based planners can safely navigate the interPlan scenarios. A recently evolving direction is the usage of foundation models like large language models (LLM) to handle generalization. We evaluate an LLM-only planner and introduce a novel hybrid planner that combines an LLM-based behavior planner with a rule-based motion planner that achieves state-of-the-art performance on our benchmark.
☆ Differentially Private Reinforcement Learning with Self-Play
We study the problem of multi-agent reinforcement learning (multi-agent RL) with differential privacy (DP) constraints. This is well-motivated by various real-world applications involving sensitive data, where it is critical to protect users' private information. We first extend the definitions of Joint DP (JDP) and Local DP (LDP) to two-player zero-sum episodic Markov Games, where both definitions ensure trajectory-wise privacy protection. Then we design a provably efficient algorithm based on optimistic Nash value iteration and privatization of Bernstein-type bonuses. The algorithm is able to satisfy JDP and LDP requirements when instantiated with appropriate privacy mechanisms. Furthermore, for both notions of DP, our regret bound generalizes the best known result under the single-agent RL case, while our regret could also reduce to the best known result for multi-agent RL without privacy constraints. To the best of our knowledge, these are the first line of results towards understanding trajectory-wise privacy protection in multi-agent RL.
comment: 32 pages
☆ IITP-VDLand: A Comprehensive Dataset on Decentraland Parcels
This paper presents IITP-VDLand, a comprehensive dataset of Decentraland parcels sourced from diverse platforms. Unlike existing datasets which have limited attributes and records, IITP-VDLand offers a rich array of attributes, encompassing parcel characteristics, trading history, past activities, transactions, and social media interactions. Alongside, we introduce a key attribute in the dataset, namely Rarity score, which measures the uniqueness of each parcel within the virtual world. Addressing the significant challenge posed by the dispersed nature of this data across various sources, we employ a systematic approach, utilizing both available APIs and custom scripts, to gather it. Subsequently, we meticulously curate and organize the information into four distinct segments: (1) Characteristics Data-Fragment, (2) OpenSea Trading History Data-Fragment, (3) Ethereum Activity Transactions Data-Fragment, and (4) Social Media Data-Fragment. We envisage that this dataset would serve as a robust resource for training machine- and deep-learning models specifically designed to address real-world challenges within the domain of Decentraland parcels. The performance benchmarking of more than 20 state-of-the-art price prediction models on our dataset yields promising results, achieving a maximum R2 score of 0.8251 and an accuracy of 74.23% in case of Extra Trees Regressor and Classifier. The key findings reveal that the ensemble models performs better than both deep learning and linear models for our dataset. We observe a significant impact of coordinates, geographical proximity, rarity score, and few other economic indicators on the prediction of parcel prices.
☆ Bayesian Federated Model Compression for Communication and Computation Efficiency
In this paper, we investigate Bayesian model compression in federated learning (FL) to construct sparse models that can achieve both communication and computation efficiencies. We propose a decentralized Turbo variational Bayesian inference (D-Turbo-VBI) FL framework where we firstly propose a hierarchical sparse prior to promote a clustered sparse structure in the weight matrix. Then, by carefully integrating message passing and VBI with a decentralized turbo framework, we propose the D-Turbo-VBI algorithm which can (i) reduce both upstream and downstream communication overhead during federated training, and (ii) reduce the computational complexity during local inference. Additionally, we establish the convergence property for thr proposed D-Turbo-VBI algorithm. Simulation results show the significant gain of our proposed algorithm over the baselines in reducing communication overhead during federated training and computational complexity of final model.
☆ Enhancing Policy Gradient with the Polyak Step-Size Adaption
Policy gradient is a widely utilized and foundational algorithm in the field of reinforcement learning (RL). Renowned for its convergence guarantees and stability compared to other RL algorithms, its practical application is often hindered by sensitivity to hyper-parameters, particularly the step-size. In this paper, we introduce the integration of the Polyak step-size in RL, which automatically adjusts the step-size without prior knowledge. To adapt this method to RL settings, we address several issues, including unknown f* in the Polyak step-size. Additionally, we showcase the performance of the Polyak step-size in RL through experiments, demonstrating faster convergence and the attainment of more stable policies.
☆ GNN-based Probabilistic Supply and Inventory Predictions in Supply Chain Networks
Successful supply chain optimization must mitigate imbalances between supply and demand over time. While accurate demand prediction is essential for supply planning, it alone does not suffice. The key to successful supply planning for optimal and viable execution lies in maximizing predictability for both demand and supply throughout an execution horizon. Therefore, enhancing the accuracy of supply predictions is imperative to create an attainable supply plan that matches demand without overstocking or understocking. However, in complex supply chain networks with numerous nodes and edges, accurate supply predictions are challenging due to dynamic node interactions, cascading supply delays, resource availability, production and logistic capabilities. Consequently, supply executions often deviate from their initial plans. To address this, we present the Graph-based Supply Prediction (GSP) probabilistic model. Our attention-based graph neural network (GNN) model predicts supplies, inventory, and imbalances using graph-structured historical data, demand forecasting, and original supply plan inputs. The experiments, conducted using historical data from a global consumer goods company's large-scale supply chain, demonstrate that GSP significantly improves supply and inventory prediction accuracy, potentially offering supply plan corrections to optimize executions.
☆ Remembering Transformer for Continual Learning
Neural networks encounter the challenge of Catastrophic Forgetting (CF) in continual learning, where new task knowledge interferes with previously learned knowledge. We propose Remembering Transformer, inspired by the brain's Complementary Learning Systems (CLS), to tackle this issue. Remembering Transformer employs a mixture-of-adapters and a generative model-based routing mechanism to alleviate CF by dynamically routing task data to relevant adapters. Our approach demonstrated a new SOTA performance in various vision continual learning tasks and great parameter efficiency.
☆ Generative Probabilistic Planning for Optimizing Supply Chain Networks
Supply chain networks in enterprises are typically composed of complex topological graphs involving various types of nodes and edges, accommodating numerous products with considerable demand and supply variability. However, as supply chain networks expand in size and complexity, traditional supply chain planning methods (e.g., those found in heuristic rule-based and operations research-based systems) tend to become locally optimal or lack computational scalability, resulting in substantial imbalances between supply and demand across nodes in the network. This paper introduces a novel Generative AI technique, which we call Generative Probabilistic Planning (GPP). GPP generates dynamic supply action plans that are globally optimized across all network nodes over the time horizon for changing objectives like maximizing profits or service levels, factoring in time-varying probabilistic demand, lead time, and production conditions. GPP leverages attention-based graph neural networks (GNN), offline deep reinforcement learning (Offline RL), and policy simulations to train generative policy models and create optimal plans through probabilistic simulations, effectively accounting for various uncertainties. Our experiments using historical data from a global consumer goods company with complex supply chain networks demonstrate that GPP accomplishes objective-adaptable, probabilistically resilient, and dynamic planning for supply chain networks, leading to significant improvements in performance and profitability for enterprises. Our work plays a pivotal role in shaping the trajectory of AI adoption within the supply chain domain.
☆ Generating Counterfactual Explanations Using Cardinality Constraints
Providing explanations about how machine learning algorithms work and/or make particular predictions is one of the main tools that can be used to improve their trusworthiness, fairness and robustness. Among the most intuitive type of explanations are counterfactuals, which are examples that differ from a given point only in the prediction target and some set of features, presenting which features need to be changed in the original example to flip the prediction for that example. However, such counterfactuals can have many different features than the original example, making their interpretation difficult. In this paper, we propose to explicitly add a cardinality constraint to counterfactual generation limiting how many features can be different from the original example, thus providing more interpretable and easily understantable counterfactuals.
☆ Interactive Prompt Debugging with Sequence Salience
We present Sequence Salience, a visual tool for interactive prompt debugging with input salience methods. Sequence Salience builds on widely used salience methods for text classification and single-token prediction, and extends this to a system tailored for debugging complex LLM prompts. Our system is well-suited for long texts, and expands on previous work by 1) providing controllable aggregation of token-level salience to the word, sentence, or paragraph level, making salience over long inputs tractable; and 2) supporting rapid iteration where practitioners can act on salience results, refine prompts, and run salience on the new output. We include case studies showing how Sequence Salience can help practitioners work with several complex prompting strategies, including few-shot, chain-of-thought, and constitutional principles. Sequence Salience is built on the Learning Interpretability Tool, an open-source platform for ML model visualizations, and code, notebooks, and tutorials are available at http://goo.gle/sequence-salience.
☆ Characterizing the Influence of Topology on Graph Learning Tasks
Graph neural networks (GNN) have achieved remarkable success in a wide range of tasks by encoding features combined with topology to create effective representations. However, the fundamental problem of understanding and analyzing how graph topology influences the performance of learning models on downstream tasks has not yet been well understood. In this paper, we propose a metric, TopoInf, which characterizes the influence of graph topology by measuring the level of compatibility between the topological information of graph data and downstream task objectives. We provide analysis based on the decoupled GNNs on the contextual stochastic block model to demonstrate the effectiveness of the metric. Through extensive experiments, we demonstrate that TopoInf is an effective metric for measuring topological influence on corresponding tasks and can be further leveraged to enhance graph learning.
☆ Laissez-Faire Harms: Algorithmic Biases in Generative Language Models
The rapid deployment of generative language models (LMs) has raised concerns about social biases affecting the well-being of diverse consumers. The extant literature on generative LMs has primarily examined bias via explicit identity prompting. However, prior research on bias in earlier language-based technology platforms, including search engines, has shown that discrimination can occur even when identity terms are not specified explicitly. Studies of bias in LM responses to open-ended prompts (where identity classifications are left unspecified) are lacking and have not yet been grounded in end-consumer harms. Here, we advance studies of generative LM bias by considering a broader set of natural use cases via open-ended prompting. In this "laissez-faire" setting, we find that synthetically generated texts from five of the most pervasive LMs (ChatGPT3.5, ChatGPT4, Claude2.0, Llama2, and PaLM2) perpetuate harms of omission, subordination, and stereotyping for minoritized individuals with intersectional race, gender, and/or sexual orientation identities (AI/AN, Asian, Black, Latine, MENA, NH/PI, Female, Non-binary, Queer). We find widespread evidence of bias to an extent that such individuals are hundreds to thousands of times more likely to encounter LM-generated outputs that portray their identities in a subordinated manner compared to representative or empowering portrayals. We also document a prevalence of stereotypes (e.g. perpetual foreigner) in LM-generated outputs that are known to trigger psychological harms that disproportionately affect minoritized individuals. These include stereotype threat, which leads to impaired cognitive performance and increased negative self-perception. Our findings highlight the urgent need to protect consumers from discriminatory harms caused by language models and invest in critical AI education programs tailored towards empowering diverse consumers.
comment: 16 pages (44 if including supplementals), 4 figures (20 if including supplementals)
☆ LUCF-Net: Lightweight U-shaped Cascade Fusion Network for Medical Image Segmentation
In this study, the performance of existing U-shaped neural network architectures was enhanced for medical image segmentation by adding Transformer. Although Transformer architectures are powerful at extracting global information, its ability to capture local information is limited due to its high complexity. To address this challenge, we proposed a new lightweight U-shaped cascade fusion network (LUCF-Net) for medical image segmentation. It utilized an asymmetrical structural design and incorporated both local and global modules to enhance its capacity for local and global modeling. Additionally, a multi-layer cascade fusion decoding network was designed to further bolster the network's information fusion capabilities. Validation results achieved on multi-organ datasets in CT format, cardiac segmentation datasets in MRI format, and dermatology datasets in image format demonstrated that the proposed model outperformed other state-of-the-art methods in handling local-global information, achieving an improvement of 1.54% in Dice coefficient and 2.6 mm in Hausdorff distance on multi-organ segmentation. Furthermore, as a network that combines Convolutional Neural Network and Transformer architectures, it achieves competitive segmentation performance with only 6.93 million parameters and 6.6 gigabytes of floating point operations, without the need of pre-training. In summary, the proposed method demonstrated enhanced performance while retaining a simpler model design compared to other Transformer-based segmentation networks.
☆ Leveraging Domain-Unlabeled Data in Offline Reinforcement Learning across Two Domains
In this paper, we investigate an offline reinforcement learning (RL) problem where datasets are collected from two domains. In this scenario, having datasets with domain labels facilitates efficient policy training. However, in practice, the task of assigning domain labels can be resource-intensive or infeasible at a large scale, leading to a prevalence of domain-unlabeled data. To formalize this challenge, we introduce a novel offline RL problem setting named Positive-Unlabeled Offline RL (PUORL), which incorporates domain-unlabeled data. To address PUORL, we develop an offline RL algorithm utilizing positive-unlabeled learning to predict the domain labels of domain-unlabeled data, enabling the integration of this data into policy training. Our experiments show the effectiveness of our method in accurately identifying domains and learning policies that outperform baselines in the PUORL setting, highlighting its capability to leverage domain-unlabeled data effectively.
☆ Representation Learning of Tangled Key-Value Sequence Data for Early Classification ICDE2024
Key-value sequence data has become ubiquitous and naturally appears in a variety of real-world applications, ranging from the user-product purchasing sequences in e-commerce, to network packet sequences forwarded by routers in networking. Classifying these key-value sequences is important in many scenarios such as user profiling and malicious applications identification. In many time-sensitive scenarios, besides the requirement of classifying a key-value sequence accurately, it is also desired to classify a key-value sequence early, in order to respond fast. However, these two goals are conflicting in nature, and it is challenging to achieve them simultaneously. In this work, we formulate a novel tangled key-value sequence early classification problem, where a tangled key-value sequence is a mixture of several concurrent key-value sequences with different keys. The goal is to classify each individual key-value sequence sharing a same key both accurately and early. To address this problem, we propose a novel method, i.e., Key-Value sequence Early Co-classification (KVEC), which leverages both inner- and inter-correlations of items in a tangled key-value sequence through key correlation and value correlation to learn a better sequence representation. Meanwhile, a time-aware halting policy decides when to stop the ongoing key-value sequence and classify it based on current sequence representation. Experiments on both real-world and synthetic datasets demonstrate that our method outperforms the state-of-the-art baselines significantly. KVEC improves the prediction accuracy by up to $4.7 - 17.5\%$ under the same prediction earliness condition, and improves the harmonic mean of accuracy and earliness by up to $3.7 - 14.0\%$.
comment: 12 pages, 31 figures, Accepted by ICDE2024
☆ RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data
The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.
comment: 24 pages, 7 figures, 5 tables, 1 algorithm
☆ Graph Attention Network for Lane-Wise and Topology-Invariant Intersection Traffic Simulation
Traffic congestion has significant economic, environmental, and social ramifications. Intersection traffic flow dynamics are influenced by numerous factors. While microscopic traffic simulators are valuable tools, they are computationally intensive and challenging to calibrate. Moreover, existing machine-learning approaches struggle to provide lane-specific waveforms or adapt to intersection topology and traffic patterns. In this study, we propose two efficient and accurate "Digital Twin" models for intersections, leveraging Graph Attention Neural Networks (GAT). These attentional graph auto-encoder digital twins capture temporal, spatial, and contextual aspects of traffic within intersections, incorporating various influential factors such as high-resolution loop detector waveforms, signal state records, driving behaviors, and turning-movement counts. Trained on diverse counterfactual scenarios across multiple intersections, our models generalize well, enabling the estimation of detailed traffic waveforms for any intersection approach and exit lanes. Multi-scale error metrics demonstrate that our models perform comparably to microsimulations. The primary application of our study lies in traffic signal optimization, a pivotal area in transportation systems research. These lightweight digital twins can seamlessly integrate into corridor and network signal timing optimization frameworks. Furthermore, our study's applications extend to lane reconfiguration, driving behavior analysis, and facilitating informed decisions regarding intersection safety and efficiency enhancements. A promising avenue for future research involves extending this approach to urban freeway corridors and integrating it with measures of effectiveness metrics.
comment: T-TIS Journal, 12 pages, 8 figures, 4 tables
☆ 1-bit Quantized On-chip Hybrid Diffraction Neural Network Enabled by Authentic All-optical Fully-connected Architecture
Optical Diffraction Neural Networks (DNNs), a subset of Optical Neural Networks (ONNs), show promise in mirroring the prowess of electronic networks. This study introduces the Hybrid Diffraction Neural Network (HDNN), a novel architecture that incorporates matrix multiplication into DNNs, synergizing the benefits of conventional ONNs with those of DNNs to surmount the modulation limitations inherent in optical diffraction neural networks. Utilizing a singular phase modulation layer and an amplitude modulation layer, the trained neural network demonstrated remarkable accuracies of 96.39% and 89% in digit recognition tasks in simulation and experiment, respectively. Additionally, we develop the Binning Design (BD) method, which effectively mitigates the constraints imposed by sampling intervals on diffraction units, substantially streamlining experimental procedures. Furthermore, we propose an on-chip HDNN that not only employs a beam-splitting phase modulation layer for enhanced integration level but also significantly relaxes device fabrication requirements, replacing metasurfaces with relief surfaces designed by 1-bit quantization. Besides, we conceptualized an all-optical HDNN-assisted lesion detection network, achieving detection outcomes that were 100% aligned with simulation predictions. This work not only advances the performance of DNNs but also streamlines the path towards industrial optical neural network production.
☆ Data-Driven Portfolio Management for Motion Pictures Industry: A New Data-Driven Optimization Methodology Using a Large Language Model as the Expert
Portfolio management is one of the unresponded problems of the Motion Pictures Industry (MPI). To design an optimal portfolio for an MPI distributor, it is essential to predict the box office of each project. Moreover, for an accurate box office prediction, it is critical to consider the effect of the celebrities involved in each MPI project, which was impossible with any precedent expert-based method. Additionally, the asymmetric characteristic of MPI data decreases the performance of any predictive algorithm. In this paper, firstly, the fame score of the celebrities is determined using a large language model. Then, to tackle the asymmetric character of MPI's data, projects are classified. Furthermore, the box office prediction takes place for each class of projects. Finally, using a hybrid multi-attribute decision-making technique, the preferability of each project for the distributor is calculated, and benefiting from a bi-objective optimization model, the optimal portfolio is designed.
☆ AdaDemo: Data-Efficient Demonstration Expansion for Generalist Robotic Agent
Encouraged by the remarkable achievements of language and vision foundation models, developing generalist robotic agents through imitation learning, using large demonstration datasets, has become a prominent area of interest in robot learning. The efficacy of imitation learning is heavily reliant on the quantity and quality of the demonstration datasets. In this study, we aim to scale up demonstrations in a data-efficient way to facilitate the learning of generalist robotic agents. We introduce AdaDemo (Adaptive Online Demonstration Expansion), a general framework designed to improve multi-task policy learning by actively and continually expanding the demonstration dataset. AdaDemo strategically collects new demonstrations to address the identified weakness in the existing policy, ensuring data efficiency is maximized. Through a comprehensive evaluation on a total of 22 tasks across two robotic manipulation benchmarks (RLBench and Adroit), we demonstrate AdaDemo's capability to progressively improve policy performance by guiding the generation of high-quality demonstration datasets in a data-efficient manner.
☆ Improving Shift Invariance in Convolutional Neural Networks with Translation Invariant Polyphase Sampling
Downsampling operators break the shift invariance of convolutional neural networks (CNNs) and this affects the robustness of features learned by CNNs when dealing with even small pixel-level shift. Through a large-scale correlation analysis framework, we study shift invariance of CNNs by inspecting existing downsampling operators in terms of their maximum-sampling bias (MSB), and find that MSB is negatively correlated with shift invariance. Based on this crucial insight, we propose a learnable pooling operator called Translation Invariant Polyphase Sampling (TIPS) and two regularizations on the intermediate feature maps of TIPS to reduce MSB and learn translation-invariant representations. TIPS can be integrated into any CNN and can be trained end-to-end with marginal computational overhead. Our experiments demonstrate that TIPS results in consistent performance gains in terms of accuracy, shift consistency, and shift fidelity on multiple benchmarks for image classification and semantic segmentation compared to previous methods and also leads to improvements in adversarial and distributional robustness. TIPS results in the lowest MSB compared to all previous methods, thus explaining our strong empirical results.
☆ Global versus Local: Evaluating AlexNet Architectures for Tropical Cyclone Intensity Estimation
Given the destructive impacts of tropical cyclones, it is critical to have a reliable system for cyclone intensity detection. Various techniques are available for this purpose, each with differing levels of accuracy. In this paper, we introduce two ensemble-based models based on AlexNet architecture to estimate tropical cyclone intensity using visible satellite images. The first model, trained on the entire dataset, is called the global AlexNet model. The second model is a distributed version of AlexNet in which multiple AlexNets are trained separately on subsets of the training data categorized according to the Saffir-Simpson wind speed scale prescribed by the meterologists. We evaluated the performance of both models against a deep learning benchmark model called \textit{Deepti} using a publicly available cyclone image dataset. Results indicate that both the global model (with a root mean square error (RMSE) of 9.03 knots) and the distributed model (with a RMSE of 9.3 knots) outperform the benchmark model (with a RMSE of 13.62 knots). We provide a thorough discussion of our solution approach, including an explanantion of the AlexNet's performance using gradient class activation maps (grad-CAM). Our proposed solution strategy allows future experimentation with various deep learning models in both single and multi-channel settings.
♻ ☆ BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development
Despite the widespread applications of machine learning force field (MLFF) on solids and small molecules, there is a notable gap in applying MLFF to complex liquid electrolytes. In this work, we introduce BAMBOO (ByteDance AI Molecular Simulation Booster), a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries. We design a physics-inspired graph equivariant transformer architecture as the backbone of BAMBOO to learn from quantum mechanical simulations. Additionally, we pioneer an ensemble knowledge distillation approach and apply it on MLFFs to improve the stability of MD simulations. Finally, we propose the density alignment algorithm to align BAMBOO with experimental measurements. BAMBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity across various solvents and salt combinations. Our current model, trained on more than 15 chemical species, achieves the average density error of 0.01 g/cm$^3$ on various compositions compared with experimental data. Moreover, our model demonstrates transferability to molecules not included in the quantum mechanical dataset. We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
♻ ☆ Disguised Copyright Infringement of Latent Diffusion Models
Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access.
♻ ☆ Performance is not enough: the story told by a Rashomon quartet
The usual goal of supervised learning is to find the best model, the one that optimizes a particular performance measure. However, what if the explanation provided by this model is completely different from another model and different again from another model despite all having similarly good fit statistics? Is it possible that the equally effective models put the spotlight on different relationships in the data? Inspired by Anscombe's quartet, this paper introduces a Rashomon Quartet, i.e. a set of four models built on a synthetic dataset which have practically identical predictive performance. However, the visual exploration reveals distinct explanations of the relations in the data. This illustrative example aims to encourage the use of methods for model visualization to compare predictive models beyond their performance.
♻ ☆ Neural population geometry and optimal coding of tasks with shared latent structure
Humans and animals can recognize latent structures in their environment and apply this information to efficiently navigate the world. However, it remains unclear what aspects of neural activity contribute to these computational capabilities. Here, we develop an analytical theory linking the geometry of a neural population's activity to the generalization performance of a linear readout on a set of tasks that depend on a common latent structure. We show that four geometric measures of the activity determine performance across tasks. Using this theory, we find that experimentally observed disentangled representations naturally emerge as an optimal solution to the multi-task learning problem. When data is scarce, these optimal neural codes compress less informative latent variables, and when data is abundant, they expand these variables in the state space. We validate our theory using macaque ventral stream recordings. Our results therefore tie population geometry to multi-task learning.
comment: 26 Pages and 7 figures in main text. 20 Pages and 7 figures in supplemental material
♻ ☆ Neural Hilbert Ladders: Multi-Layer Neural Networks in Function Space ICML 2023
To characterize the function space explored by neural networks (NNs) is an important aspect of learning theory. In this work, noticing that a multi-layer NN generates implicitly a hierarchy of reproducing kernel Hilbert spaces (RKHSs) - named a neural Hilbert ladder (NHL) - we define the function space as an infinite union of RKHSs, which generalizes the existing Barron space theory of two-layer NNs. We then establish several theoretical properties of the new space. First, we prove a correspondence between functions expressed by L-layer NNs and those belonging to L-level NHLs. Second, we prove generalization guarantees for learning an NHL with a controlled complexity measure. Third, we derive a non-Markovian dynamics of random fields that governs the evolution of the NHL which is induced by the training of multi-layer NNs in an infinite-width mean-field limit. Fourth, we show examples of depth separation in NHLs under the ReLU activation function. Finally, we perform numerical experiments to illustrate the feature learning aspect of NN training through the lens of NHLs.
comment: 65 pages, 3 figures. Published by the Journal of Machine Learning Research and presented partially at the 40th International Conference on Machine Learning (ICML 2023)
♻ ☆ A Systematic Comparison of Syllogistic Reasoning in Humans and Language Models NAACL 2024
A central component of rational behavior is logical inference: the process of determining which conclusions follow from a set of premises. Psychologists have documented several ways in which humans' inferences deviate from the rules of logic. Do language models, which are trained on text generated by humans, replicate such human biases, or are they able to overcome them? Focusing on the case of syllogisms -- inferences from two simple premises -- we show that, within the PaLM2 family of transformer language models, larger models are more logical than smaller ones, and also more logical than humans. At the same time, even the largest models make systematic errors, some of which mirror human reasoning biases: they show sensitivity to the (irrelevant) ordering of the variables in the syllogism, and draw confident but incorrect inferences from particular syllogisms (syllogistic fallacies). Overall, we find that language models often mimic the human biases included in their training data, but are able to overcome them in some cases.
comment: NAACL 2024
♻ ☆ KTbench: A Novel Data Leakage-Free Framework for Knowledge Tracing
Knowledge Tracing (KT) is concerned with predicting students' future performance on learning items in intelligent tutoring systems. Learning items are tagged with skill labels called knowledge concepts (KCs). Many KT models expand the sequence of item-student interactions into KC-student interactions by replacing learning items with their constituting KCs. This often results in a longer sequence length. This approach addresses the issue of sparse item-student interactions and minimises model parameters. However, two problems have been identified with such models. The first problem is the model's ability to learn correlations between KCs belonging to the same item, which can result in the leakage of ground truth labels and hinder performance. This problem can lead to a significant decrease in performance on datasets with a higher number of KCs per item. The second problem is that the available benchmark implementations ignore accounting for changes in sequence length when expanding KCs, leading to different models being tested with varying sequence lengths but still compared against the same benchmark. To address these problems, we introduce a general masking framework that mitigates the first problem and enhances the performance of such KT models while preserving the original model architecture without significant alterations. Additionally, we introduce KTbench, an open-source benchmark library designed to ensure the reproducibility of this work while mitigating the second problem.
comment: preprint
♻ ☆ Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
State-of-the-art methods for conditional average treatment effect (CATE) estimation make widespread use of representation learning. Here, the idea is to reduce the variance of the low-sample CATE estimation by a (potentially constrained) low-dimensional representation. However, low-dimensional representations can lose information about the observed confounders and thus lead to bias, because of which the validity of representation learning for CATE estimation is typically violated. In this paper, we propose a new, representation-agnostic refutation framework for estimating bounds on the representation-induced confounding bias that comes from dimensionality reduction (or other constraints on the representations) in CATE estimation. First, we establish theoretically under which conditions CATE is non-identifiable given low-dimensional (constrained) representations. Second, as our remedy, we propose a neural refutation framework which performs partial identification of CATE or, equivalently, aims at estimating lower and upper bounds of the representation-induced confounding bias. We demonstrate the effectiveness of our bounds in a series of experiments. In sum, our refutation framework is of direct relevance in practice where the validity of CATE estimation is of importance.
♻ ☆ SE(3)-Stochastic Flow Matching for Protein Backbone Generation ICLR 2024
The computational design of novel protein structures has the potential to impact numerous scientific disciplines greatly. Toward this goal, we introduce FoldFlow, a series of novel generative models of increasing modeling power based on the flow-matching paradigm over $3\mathrm{D}$ rigid motions -- i.e. the group $\text{SE}(3)$ -- enabling accurate modeling of protein backbones. We first introduce FoldFlow-Base, a simulation-free approach to learning deterministic continuous-time dynamics and matching invariant target distributions on $\text{SE}(3)$. We next accelerate training by incorporating Riemannian optimal transport to create FoldFlow-OT, leading to the construction of both more simple and stable flows. Finally, we design FoldFlow-SFM, coupling both Riemannian OT and simulation-free training to learn stochastic continuous-time dynamics over $\text{SE}(3)$. Our family of FoldFlow, generative models offers several key advantages over previous approaches to the generative modeling of proteins: they are more stable and faster to train than diffusion-based approaches, and our models enjoy the ability to map any invariant source distribution to any invariant target distribution over $\text{SE}(3)$. Empirically, we validate FoldFlow, on protein backbone generation of up to $300$ amino acids leading to high-quality designable, diverse, and novel samples.
comment: ICLR 2024 Spotlight
♻ ☆ Is Your Anomaly Detector Ready for Change? Adapting AIOps Solutions to the Real World
Anomaly detection techniques are essential in automating the monitoring of IT systems and operations. These techniques imply that machine learning algorithms are trained on operational data corresponding to a specific period of time and that they are continuously evaluated on newly emerging data. Operational data is constantly changing over time, which affects the performance of deployed anomaly detection models. Therefore, continuous model maintenance is required to preserve the performance of anomaly detectors over time. In this work, we analyze two different anomaly detection model maintenance techniques in terms of the model update frequency, namely blind model retraining and informed model retraining. We further investigate the effects of updating the model by retraining it on all the available data (full-history approach) and only the newest data (sliding window approach). Moreover, we investigate whether a data change monitoring tool is capable of determining when the anomaly detection model needs to be updated through retraining.
♻ ☆ Automatic nonlinear MPC approximation with closed-loop guarantees
Safety guarantees are vital in many control applications, such as robotics. Model predictive control (MPC) provides a constructive framework for controlling safety-critical systems, but is limited by its computational complexity. We address this problem by presenting a novel algorithm that automatically computes an explicit approximation to nonlinear MPC schemes while retaining closed-loop guarantees. Specifically, the problem can be reduced to a function approximation problem, which we then tackle by proposing ALKIA-X, the Adaptive and Localized Kernel Interpolation Algorithm with eXtrapolated reproducing kernel Hilbert space norm. ALKIA-X is a non-iterative algorithm that ensures numerically well-conditioned computations, a fast-to-evaluate approximating function, and the guaranteed satisfaction of any desired bound on the approximation error. Hence, ALKIA-X automatically computes an explicit function that approximates the MPC, yielding a controller suitable for safety-critical systems and high sampling rates. We apply ALKIA-X to approximate two nonlinear MPC schemes, demonstrating reduced computational demand and applicability to realistic problems.
comment: Submitted to IEEE Transactions on Automatic Control. Compared to the previously uploaded version, this version contains an additional numerical example
♻ ☆ Grokking as the Transition from Lazy to Rich Training Dynamics
We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function $y(x)$. We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels $y(x)$ are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.
comment: Adding new experiments on higher degree Hermite polynomials, multi-index targets, removed DMFT analysis from this version
♻ ☆ CAVIAR: Categorical-Variable Embeddings for Accurate and Robust Inference
Social science research often hinges on the relationship between categorical variables and outcomes. We introduce CAVIAR, a novel method for embedding categorical variables that assume values in a high-dimensional ambient space but are sampled from an underlying manifold. Our theoretical and numerical analyses outline challenges posed by such categorical variables in causal inference. Specifically, dynamically varying and sparse levels can lead to violations of the Donsker conditions and a failure of the estimation functionals to converge to a tight Gaussian process. Traditional approaches, including the exclusion of rare categorical levels and principled variable selection models like LASSO, fall short. CAVIAR embeds the data into a lower-dimensional global coordinate system. The mapping can be derived from both structured and unstructured data, and ensures stable and robust estimates through dimensionality reduction. In a dataset of direct-to-consumer apparel sales, we illustrate how high-dimensional categorical variables, such as zip codes, can be succinctly represented, facilitating inference and analysis.
♻ ☆ FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
Federated learning (FL) is a promising framework for learning from distributed data while maintaining privacy. The development of efficient FL algorithms encounters various challenges, including heterogeneous data and systems, limited communication capacities, and constrained local computational resources. Recently developed FedADMM methods show great resilience to both data and system heterogeneity. However, they still suffer from performance deterioration if the hyperparameters are not carefully tuned. To address this issue, we propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa. First, we design an inexactness criterion for the clients' local updates to eliminate the need for empirically setting the local training accuracy. This inexactness criterion can be assessed by each client independently based on its unique condition, thereby reducing the local computational cost and mitigating the undesirable straggle effect. The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions. Additionally, we present a self-adaptive scheme that dynamically adjusts each client's penalty parameter, enhancing algorithm robustness by mitigating the need for empirical penalty parameter choices for each client. Extensive numerical experiments on both synthetic and real-world datasets are conducted. As validated by some numerical tests, our proposed algorithm can reduce the clients' local computational load significantly and also accelerate the learning process compared to the vanilla FedADMM.
♻ ☆ Group Decision-Making among Privacy-Aware Agents
How can individuals exchange information to learn from each other despite their privacy needs and security concerns? For example, consider individuals deliberating a contentious topic and being concerned about divulging their private experiences. Preserving individual privacy and enabling efficient social learning are both important desiderata but seem fundamentally at odds with each other and very hard to reconcile. We do so by controlling information leakage using rigorous statistical guarantees that are based on differential privacy (DP). Our agents use log-linear rules to update their beliefs after communicating with their neighbors. Adding DP randomization noise to beliefs provides communicating agents with plausible deniability with regard to their private information and their network neighborhoods. We consider two learning environments one for distributed maximum-likelihood estimation given a finite number of private signals and another for online learning from an infinite, intermittent signal stream. Noisy information aggregation in the finite case leads to interesting tradeoffs between rejecting low-quality states and making sure all high-quality states are accepted in the algorithm output. Our results flesh out the nature of the trade-offs in both cases between the quality of the group decision outcomes, learning accuracy, communication cost, and the level of privacy protections that the agents are afforded.
♻ ☆ Wu's Method can Boost Symbolic AI to Rival Silver Medalists and AlphaGeometry to Outperform Gold Medalists at IMO Geometry
Proving geometric theorems constitutes a hallmark of visual reasoning combining both intuitive and logical skills. Therefore, automated theorem proving of Olympiad-level geometry problems is considered a notable milestone in human-level automated reasoning. The introduction of AlphaGeometry, a neuro-symbolic model trained with 100 million synthetic samples, marked a major breakthrough. It solved 25 of 30 International Mathematical Olympiad (IMO) problems whereas the reported baseline based on Wu's method solved only ten. In this note, we revisit the IMO-AG-30 Challenge introduced with AlphaGeometry, and find that Wu's method is surprisingly strong. Wu's method alone can solve 15 problems, and some of them are not solved by any of the other methods. This leads to two key findings: (i) Combining Wu's method with the classic synthetic methods of deductive databases and angle, ratio, and distance chasing solves 21 out of 30 methods by just using a CPU-only laptop with a time limit of 5 minutes per problem. Essentially, this classic method solves just 4 problems less than AlphaGeometry and establishes the first fully symbolic baseline strong enough to rival the performance of an IMO silver medalist. (ii) Wu's method even solves 2 of the 5 problems that AlphaGeometry failed to solve. Thus, by combining AlphaGeometry with Wu's method we set a new state-of-the-art for automated theorem proving on IMO-AG-30, solving 27 out of 30 problems, the first AI method which outperforms an IMO gold medalist.
comment: Work in Progress. Released for wider feedback
♻ ☆ Enhancing Data Efficiency and Feature Identification for Lithium-Ion Battery Lifespan Prediction by Deciphering Interpretation of Temporal Patterns and Cyclic Variability Using Attention-Based Models
Accurately predicting the lifespan of lithium-ion batteries is crucial for optimizing operational strategies and mitigating risks. While numerous studies have aimed at predicting battery lifespan, few have examined the interpretability of their models or how such insights could improve predictions. Addressing this gap, we introduce three innovative models that integrate shallow attention layers into a foundational model from our previous work, which combined elements of recurrent and convolutional neural networks. Utilizing a well-known public dataset, we showcase our methodology's effectiveness. Temporal attention is applied to identify critical timesteps and highlight differences among test cell batches, particularly underscoring the significance of the "rest" phase. Furthermore, by applying cyclic attention via self-attention to context vectors, our approach effectively identifies key cycles, enabling us to strategically decrease the input size for quicker predictions. Employing both single- and multi-head attention mechanisms, we have systematically minimized the required input from 100 to 50 and then to 30 cycles, refining this process based on cyclic attention scores. Our refined model exhibits strong regression capabilities, accurately forecasting the initiation of rapid capacity fade with an average deviation of only 58 cycles by analyzing just the initial 30 cycles of easily accessible input data.
♻ ☆ Minimizing Chebyshev Prototype Risk Magically Mitigates the Perils of Overfitting
Overparameterized deep neural networks (DNNs), if not sufficiently regularized, are susceptible to overfitting their training examples and not generalizing well to test data. To discourage overfitting, researchers have developed multicomponent loss functions that reduce intra-class feature correlation and maximize inter-class feature distance in one or more layers of the network. By analyzing the penultimate feature layer activations output by a DNN's feature extraction section prior to the linear classifier, we find that modified forms of the intra-class feature covariance and inter-class prototype separation are key components of a fundamental Chebyshev upper bound on the probability of misclassification, which we designate the Chebyshev Prototype Risk (CPR). While previous approaches' covariance loss terms scale quadratically with the number of network features, our CPR bound indicates that an approximate covariance loss in log-linear time is sufficient to reduce the bound and is scalable to large architectures. We implement the terms of the CPR bound into our Explicit CPR (exCPR) loss function and observe from empirical results on multiple datasets and network architectures that our training algorithm reduces overfitting and improves upon previous approaches in many settings. Our code is available at https://github.com/Deano1718/Regularization_exCPR .
comment: 17 pages, 2 figures
♻ ☆ A Deep Learning Method for Simultaneous Denoising and Missing Wedge Reconstruction in Cryogenic Electron Tomography
Cryogenic electron tomography is a technique for imaging biological samples in 3D. A microscope collects a series of 2D projections of the sample, and the goal is to reconstruct the 3D density of the sample called the tomogram. Reconstruction is difficult as the 2D projections are noisy and can not be recorded from all directions, resulting in a missing wedge of information. Tomograms conventionally reconstructed with filtered back-projection suffer from noise and strong artifacts due to the missing wedge. Here, we propose a deep-learning approach for simultaneous denoising and missing wedge reconstruction called DeepDeWedge. The algorithm requires no ground truth data and is based on fitting a neural network to the 2D projections using a self-supervised loss. DeepDeWedge performs better than CryoCARE and IsoNet, which are state-of-the-art methods for denoising and missing wedge reconstruction, and similarly and, in some cases, better than the combination of the two methods. At the same time, DeepDeWedge is simpler than this two-step approach, as it does denoising and missing wedge reconstruction simultaneously rather than sequentially.
♻ ☆ Optimal Regret with Limited Adaptivity for Generalized Linear Contextual Bandits
We study the generalized linear contextual bandit problem within the requirements of limited adaptivity. In this paper, we present two algorithms, B-GLinCB and RS-GLinCB, that address, respectively, two prevalent limited adaptivity models: batch learning with stochastic contexts and rare policy switches with adversarial contexts. For both these models, we establish essentially tight regret bounds. Notably, in the obtained bounds, we manage to eliminate a dependence on a key parameter $\kappa$, which captures the non-linearity of the underlying reward model. For our batch learning algorithm B-GLinCB, with $\Omega\left( \log{\log T} \right)$ batches, the regret scales as $\tilde{O}(\sqrt{T})$. Further, we establish that our rarely switching algorithm RS-GLinCB updates its policy at most $\tilde{O}(\log^2 T)$ times and achieves a regret of $\tilde{O}(\sqrt{T})$. Our approach for removing the dependence on $\kappa$ for generalized linear contextual bandits might be of independent interest.
comment: 31 pages
♻ ☆ CLUE: A Clinical Language Understanding Evaluation for LLMs
Large Language Models (LLMs) have shown the potential to significantly contribute to patient care, diagnostics, and administrative processes. Emerging biomedical LLMs address healthcare-specific challenges, including privacy demands and computational constraints. However, evaluation of these models has primarily been limited to non-clinical tasks, which do not reflect the complexity of practical clinical applications. Additionally, there has been no thorough comparison between biomedical and general-domain LLMs for clinical tasks. To fill this gap, we present the Clinical Language Understanding Evaluation (CLUE), a benchmark tailored to evaluate LLMs on real-world clinical tasks. CLUE includes two novel datasets derived from MIMIC IV discharge letters and four existing tasks designed to test the practical applicability of LLMs in healthcare settings. Our evaluation covers several biomedical and general domain LLMs, providing insights into their clinical performance and applicability. CLUE represents a step towards a standardized approach to evaluating and developing LLMs in healthcare to align future model development with the real-world needs of clinical application. We publish our evaluation and data generation scripts: https://github.com/TIO-IKIM/CLUE.
♻ ☆ AdvNF: Reducing Mode Collapse in Conditional Normalising Flows using Adversarial Learning
Deep generative models complement Markov-chain-Monte-Carlo methods for efficiently sampling from high-dimensional distributions. Among these methods, explicit generators, such as Normalising Flows (NFs), in combination with the Metropolis Hastings algorithm have been extensively applied to get unbiased samples from target distributions. We systematically study central problems in conditional NFs, such as high variance, mode collapse and data efficiency. We propose adversarial training for NFs to ameliorate these problems. Experiments are conducted with low-dimensional synthetic datasets and XY spin models in two spatial dimensions.
comment: 29 pages, submitted to Scipost Physics
♻ ☆ Deep Learning for Satellite Image Time Series Analysis: A Review
Earth observation (EO) satellite missions have been providing detailed images about the state of the Earth and its land cover for over 50 years. Long term missions, such as NASA's Landsat, Terra, and Aqua satellites, and more recently, the ESA's Sentinel missions, record images of the entire world every few days. Although single images provide point-in-time data, repeated images of the same area, or satellite image time series (SITS) provide information about the changing state of vegetation and land use. These SITS are useful for modeling dynamic processes and seasonal changes such as plant phenology. They have potential benefits for many aspects of land and natural resource management, including applications in agricultural, forest, water, and disaster management, urban planning, and mining. However, the resulting satellite image time series (SITS) are complex, incorporating information from the temporal, spatial, and spectral dimensions. Therefore, deep learning methods are often deployed as they can analyze these complex relationships. This review presents a summary of the state-of-the-art methods of modelling environmental, agricultural, and other Earth observation variables from SITS data using deep learning methods. We aim to provide a resource for remote sensing experts interested in using deep learning techniques to enhance Earth observation models with temporal information.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible
♻ ☆ Efficient Online Unlearning via Hessian-Free Recollection of Individual Data Statistics
Machine unlearning strives to uphold the data owners' right to be forgotten by enabling models to selectively forget specific data. Recent methods suggest that one approach of data forgetting is by precomputing and storing statistics carrying second-order information to improve computational and memory efficiency. However, they rely on restrictive assumptions and the computation/storage suffer from the curse of model parameter dimensionality, making it challenging to apply to most deep neural networks. In this work, we propose a Hessian-free online unlearning method. We propose to maintain a statistical vector for each data point, computed through affine stochastic recursion approximation of the difference between retrained and learned models. Our proposed algorithm achieves near-instantaneous online unlearning as it only requires a vector addition operation. Based on the strategy that recollecting statistics for forgetting data, the proposed method significantly reduces the unlearning runtime. Experimental studies demonstrate that the proposed scheme surpasses existing results by orders of magnitude in terms of time and memory costs, while also enhancing accuracy.
comment: 25 pages, 8 figures
♻ ☆ Distilled Self-Critique of LLMs with Synthetic Data: a Bayesian Perspective ICLR 2024
This paper proposes an interpretation of RLAIF as Bayesian inference by introducing distilled Self-Critique (dSC), which refines the outputs of a LLM through a Gibbs sampler that is later distilled into a fine-tuned model. Only requiring synthetic data, dSC is exercised in experiments regarding safety, sentiment, and privacy control, showing it can be a viable and cheap alternative to align LLMs. Code released at \url{https://github.com/vicgalle/distilled-self-critique}.
comment: Accepted to ICLR 2024 (TinyPapers track)
♻ ☆ Risk Estimation in a Markov Cost Process: Lower and Upper Bounds
We tackle the problem of estimating risk measures of the infinite-horizon discounted cost within a Markov cost process. The risk measures we study include variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). First, we show that estimating any of these risk measures with $\epsilon$-accuracy, either in expected or high-probability sense, requires at least $\Omega(1/\epsilon^2)$ samples. Then, using a truncation scheme, we derive an upper bound for the CVaR and variance estimation. This bound matches our lower bound up to logarithmic factors. Finally, we discuss an extension of our estimation scheme that covers more general risk measures satisfying a certain continuity criterion, e.g., spectral risk measures, utility-based shortfall risk. To the best of our knowledge, our work is the first to provide lower and upper bounds for estimating any risk measure beyond the mean within a Markovian setting. Our lower bounds also extend to the infinite-horizon discounted costs' mean. Even in that case, our lower bound of $\Omega(1/\epsilon^2) $ improves upon the existing $\Omega(1/\epsilon)$ bound [13].
♻ ☆ A Review of Graph Neural Networks in Epidemic Modeling
Since the onset of the COVID-19 pandemic, there has been a growing interest in studying epidemiological models. Traditional mechanistic models mathematically describe the transmission mechanisms of infectious diseases. However, they often fall short when confronted with the growing challenges of today. Consequently, Graph Neural Networks (GNNs) have emerged as a progressively popular tool in epidemic research. In this paper, we endeavor to furnish a comprehensive review of GNNs in epidemic tasks and highlight potential future directions. To accomplish this objective, we introduce hierarchical taxonomies for both epidemic tasks and methodologies, offering a trajectory of development within this domain. For epidemic tasks, we establish a taxonomy akin to those typically employed within the epidemic domain. For methodology, we categorize existing work into \textit{Neural Models} and \textit{Hybrid Models}. Following this, we perform an exhaustive and systematic examination of the methodologies, encompassing both the tasks and their technical details. Furthermore, we discuss the limitations of existing methods from diverse perspectives and systematically propose future research directions. This survey aims to bridge literature gaps and promote the progression of this promising field. We hope that it will facilitate synergies between the communities of GNNs and epidemiology, and contribute to their collective progress.
♻ ☆ A Multi-Label Dataset of French Fake News: Human and Machine Insights LREC
We present a corpus of 100 documents, OBSINFOX, selected from 17 sources of French press considered unreliable by expert agencies, annotated using 11 labels by 8 annotators. By collecting more labels than usual, by more annotators than is typically done, we can identify features that humans consider as characteristic of fake news, and compare them to the predictions of automated classifiers. We present a topic and genre analysis using Gate Cloud, indicative of the prevalence of satire-like text in the corpus. We then use the subjectivity analyzer VAGO, and a neural version of it, to clarify the link between ascriptions of the label Subjective and ascriptions of the label Fake News. The annotated dataset is available online at the following url: https://github.com/obs-info/obsinfox Keywords: Fake News, Multi-Labels, Subjectivity, Vagueness, Detail, Opinion, Exaggeration, French Press
comment: Paper to appear in the Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
♻ ☆ Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning
We investigate whether Deep Reinforcement Learning (Deep RL) is able to synthesize sophisticated and safe movement skills for a low-cost, miniature humanoid robot that can be composed into complex behavioral strategies in dynamic environments. We used Deep RL to train a humanoid robot with 20 actuated joints to play a simplified one-versus-one (1v1) soccer game. The resulting agent exhibits robust and dynamic movement skills such as rapid fall recovery, walking, turning, kicking and more; and it transitions between them in a smooth, stable, and efficient manner. The agent's locomotion and tactical behavior adapts to specific game contexts in a way that would be impractical to manually design. The agent also developed a basic strategic understanding of the game, and learned, for instance, to anticipate ball movements and to block opponent shots. Our agent was trained in simulation and transferred to real robots zero-shot. We found that a combination of sufficiently high-frequency control, targeted dynamics randomization, and perturbations during training in simulation enabled good-quality transfer. Although the robots are inherently fragile, basic regularization of the behavior during training led the robots to learn safe and effective movements while still performing in a dynamic and agile way -- well beyond what is intuitively expected from the robot. Indeed, in experiments, they walked 181% faster, turned 302% faster, took 63% less time to get up, and kicked a ball 34% faster than a scripted baseline, while efficiently combining the skills to achieve the longer term objectives.
comment: Project website: https://sites.google.com/view/op3-soccer
♻ ☆ Cell-Free Multi-User MIMO Equalization via In-Context Learning
Large pre-trained sequence models, such as transformers, excel as few-shot learners capable of in-context learning (ICL). In ICL, a model is trained to adapt its operation to a new task based on limited contextual information, typically in the form of a few training examples for the given task. Previous work has explored the use of ICL for channel equalization in single-user multi-input and multiple-output (MIMO) systems. In this work, we demonstrate that ICL can be also used to tackle the problem of multi-user equalization in cell-free MIMO systems with limited fronthaul capacity. In this scenario, a task is defined by channel statistics, signal-to-noise ratio, and modulation schemes. The context encompasses the users' pilot sequences, the corresponding quantized received signals, and the current received data signal. Different prompt design strategies are proposed and evaluated that encompass also large-scale fading and modulation information. Experiments demonstrate that ICL-based equalization provides estimates with lower mean squared error as compared to the linear minimum mean squared error equalizer, especially in the presence of limited fronthaul capacity and pilot contamination.
♻ ☆ On adversarial training and the 1 Nearest Neighbor classifier
The ability to fool deep learning classifiers with tiny perturbations of the input has lead to the development of adversarial training in which the loss with respect to adversarial examples is minimized in addition to the training examples. While adversarial training improves the robustness of the learned classifiers, the procedure is computationally expensive, sensitive to hyperparameters and may still leave the classifier vulnerable to other types of small perturbations. In this paper we analyze the adversarial robustness of the 1 Nearest Neighbor (1NN) classifier and compare its performance to adversarial training. We prove that under reasonable assumptions, the 1 NN classifier will be robust to {\em any} small image perturbation of the training images and will give high adversarial accuracy on test images as the number of training examples goes to infinity. In experiments with 45 different binary image classification problems taken from CIFAR10, we find that 1NN outperform TRADES (a powerful adversarial training algorithm) in terms of average adversarial accuracy. In additional experiments with 69 pretrained robust models for CIFAR10, we find that 1NN outperforms almost all of them in terms of robustness to perturbations that are only slightly different from those seen during training. Taken together, our results suggest that modern adversarial training methods still fall short of the robustness of the simple 1NN classifier. our code can be found at https://github.com/amirhagai/On-Adversarial-Training-And-The-1-Nearest-Neighbor-Classifier
♻ ☆ Short vs. Long-term Coordination of Drones: When Distributed Optimization Meets Deep Reinforcement Learning
Swarms of autonomous interactive drones, with the support of recharging technology, can provide compelling sensing capabilities in Smart Cities, such as traffic monitoring and disaster response. This paper aims to deliver a novel coordination solution for the cost-effective navigation, sensing, and recharging of drones. Existing approaches, such as deep reinforcement learning (DRL), offer long-term adaptability, but lack energy efficiency, resilience, and flexibility in dynamic environments. Therefore, this paper proposes a novel approach where each drone independently determines its flying direction and recharging place using DRL, while adapting navigation and sensing through distributed optimization, which improves energy-efficiency during sensing tasks. Furthermore, drones efficiently exchange information while retaining decision-making autonomy via a structured tree communication model. Extensive experimentation with datasets generated from realistic urban mobility underscores an outstanding performance of the proposed solution compared to state-of-the-art methods. Significant new insights show that long-term methods optimize scarce drone resource for traffic management, while the integration of short-term methods is crucial for advising on charging policies and maintaining battery safety.
comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. 12 pages, 13 figures
♻ ☆ Boosting Digital Safeguards: Blending Cryptography and Steganography
In today's digital age, the internet is essential for communication and the sharing of information, creating a critical need for sophisticated data security measures to prevent unauthorized access and exploitation. Cryptography encrypts messages into a cipher text that is incomprehensible to unauthorized readers, thus safeguarding data during its transmission. Steganography, on the other hand, originates from the Greek term for "covered writing" and involves the art of hiding data within another medium, thereby facilitating covert communication by making the message invisible. This proposed approach takes advantage of the latest advancements in Artificial Intelligence (AI) and Deep Learning (DL), especially through the application of Generative Adversarial Networks (GANs), to improve upon traditional steganographic methods. By embedding encrypted data within another medium, our method ensures that the communication remains hidden from prying eyes. The application of GANs enables a smart, secure system that utilizes the inherent sensitivity of neural networks to slight alterations in data, enhancing the protection against detection. By merging the encryption techniques of cryptography with the hiding capabilities of steganography, and augmenting these with the strengths of AI, we introduce a comprehensive security system designed to maintain both the privacy and integrity of information. This system is crafted not just to prevent unauthorized access or modification of data, but also to keep the existence of the data hidden. This fusion of technologies tackles the core challenges of data security in the current era of open digital communication, presenting an advanced solution with the potential to transform the landscape of information security.
comment: This report pertains to the Capstone Project done by Group 3 of the Fall batch of 2023 students at Praxis Tech School, Kolkata, India. The reports consists of 36 pages and it includes 11 figures and 5 tables
♻ ☆ Random Forests for time-fixed and time-dependent predictors: The DynForest R package
The R package DynForest implements random forests for predicting a continuous, a categorical or a (multiple causes) time-to-event outcome based on time-fixed and time-dependent predictors. The main originality of DynForest is that it handles time-dependent predictors that can be endogeneous (i.e., impacted by the outcome process), measured with error and measured at subject-specific times. At each recursive step of the tree building process, the time-dependent predictors are internally summarized into individual features on which the split can be done. This is achieved using flexible linear mixed models (thanks to the R package lcmm) which specification is pre-specified by the user. DynForest returns the mean for continuous outcome, the category with a majority vote for categorical outcome or the cumulative incidence function over time for survival outcome. DynForest also computes variable importance and minimal depth to inform on the most predictive variables or groups of variables. This paper aims to guide the user with step-by-step examples for fitting random forests using DynForest.
♻ ☆ Error bounds for particle gradient descent, and extensions of the log-Sobolev and Talagrand inequalities
We prove non-asymptotic error bounds for particle gradient descent (PGD)~(Kuntz et al., 2023), a recently introduced algorithm for maximum likelihood estimation of large latent variable models obtained by discretizing a gradient flow of the free energy. We begin by showing that, for models satisfying a condition generalizing both the log-Sobolev and the Polyak--{\L}ojasiewicz inequalities (LSI and P{\L}I, respectively), the flow converges exponentially fast to the set of minimizers of the free energy. We achieve this by extending a result well-known in the optimal transport literature (that the LSI implies the Talagrand inequality) and its counterpart in the optimization literature (that the P{\L}I implies the so-called quadratic growth condition), and applying it to our new setting. We also generalize the Bakry--\'Emery Theorem and show that the LSI/P{\L}I generalization holds for models with strongly concave log-likelihoods. For such models, we further control PGD's discretization error, obtaining non-asymptotic error bounds. While we are motivated by the study of PGD, we believe that the inequalities and results we extend may be of independent interest.
♻ ☆ S^2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering CVPR2024
Anchor-based large-scale multi-view clustering has attracted considerable attention for its effectiveness in handling massive datasets. However, current methods mainly seek the consensus embedding feature for clustering by exploring global correlations between anchor graphs or projection matrices.In this paper, we propose a simple yet efficient scalable multi-view tensor clustering (S^2MVTC) approach, where our focus is on learning correlations of embedding features within and across views. Specifically, we first construct the embedding feature tensor by stacking the embedding features of different views into a tensor and rotating it. Additionally, we build a novel tensor low-frequency approximation (TLFA) operator, which incorporates graph similarity into embedding feature learning, efficiently achieving smooth representation of embedding features within different views. Furthermore, consensus constraints are applied to embedding features to ensure inter-view semantic consistency. Experimental results on six large-scale multi-view datasets demonstrate that S^2MVTC significantly outperforms state-of-the-art algorithms in terms of clustering performance and CPU execution time, especially when handling massive data. The code of S^2MVTC is publicly available at https://github.com/longzhen520/S2MVTC.
comment: Accepted by CVPR2024
♻ ☆ Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales
Developing robust and interpretable vision systems is a crucial step towards trustworthy artificial intelligence. In this regard, a promising paradigm considers embedding task-required invariant structures, e.g., geometric invariance, in the fundamental image representation. However, such invariant representations typically exhibit limited discriminability, limiting their applications in larger-scale trustworthy vision tasks. For this open problem, we conduct a systematic investigation of hierarchical invariance, exploring this topic from theoretical, practical, and application perspectives. At the theoretical level, we show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture yet in a fully interpretable manner. The general blueprint, specific definitions, invariant properties, and numerical implementations are provided. At the practical level, we discuss how to customize this theoretical framework into a given task. With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner. We demonstrate the above arguments with accuracy, invariance, and efficiency results on texture, digit, and parasite classification experiments. Furthermore, at the application level, our representations are explored in real-world forensics tasks on adversarial perturbations and Artificial Intelligence Generated Content (AIGC). Such applications reveal that the proposed strategy not only realizes the theoretically promised invariance, but also exhibits competitive discriminability even in the era of deep learning. For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
♻ ☆ Model predictive control-based value estimation for efficient reinforcement learning
Reinforcement learning suffers from limitations in real practices primarily due to the number of required interactions with virtual environments. It results in a challenging problem because we are implausible to obtain a local optimal strategy with only a few attempts for many learning methods. Hereby, we design an improved reinforcement learning method based on model predictive control that models the environment through a data-driven approach. Based on the learned environment model, it performs multi-step prediction to estimate the value function and optimize the policy. The method demonstrates higher learning efficiency, faster convergent speed of strategies tending to the local optimal value, and less sample capacity space required by experience replay buffers. Experimental results, both in classic databases and in a dynamic obstacle avoidance scenario for an unmanned aerial vehicle, validate the proposed approaches.
♻ ☆ Deep Reinforcement Learning for Traveling Purchaser Problems
The traveling purchaser problem (TPP) is an important combinatorial optimization problem with broad applications. Due to the coupling between routing and purchasing, existing works on TPPs commonly address route construction and purchase planning simultaneously, which, however, leads to exact methods with high computational cost and heuristics with sophisticated design but limited performance. In sharp contrast, we propose a novel approach based on deep reinforcement learning (DRL), which addresses route construction and purchase planning separately, while evaluating and optimizing the solution from a global perspective. The key components of our approach include a bipartite graph representation for TPPs to capture the market-product relations, and a policy network that extracts information from the bipartite graph and uses it to sequentially construct the route. One significant benefit of our framework is that we can efficiently construct the route using the policy network, and once the route is determined, the associated purchasing plan can be easily derived through linear programming, while, leveraging DRL, we can train the policy network to optimize the global solution objective. Furthermore, by introducing a meta-learning strategy, the policy network can be trained stably on large-sized TPP instances, and generalize well across instances of varying sizes and distributions, even to much larger instances that are never seen during training. Experiments on various synthetic TPP instances and the TPPLIB benchmark demonstrate that our DRL-based approach can significantly outperform well-established TPP heuristics, reducing the optimality gap by 40%-90%, and also showing an advantage in runtime, especially on large-sized instances.
♻ ☆ Robust Knowledge Adaptation for Dynamic Graph Neural Networks
Graph structured data often possess dynamic characters in nature. Recent years have witnessed the increasing attentions paid to dynamic graph neural networks for modelling graph data. However, almost all existing approaches operate under the assumption that, upon the establishment of a new link, the embeddings of the neighboring nodes should undergo updates to learn temporal dynamics. Nevertheless, these approaches face the following limitation: If the node introduced by a new connection contains noisy information, propagating its knowledge to other nodes becomes unreliable and may even lead to the collapse of the model. In this paper, we propose Ada-DyGNN: a robust knowledge Adaptation framework via reinforcement learning for Dynamic Graph Neural Networks. In contrast to previous approaches, which update the embeddings of the neighbor nodes immediately after adding a new link, Ada-DyGNN adaptively determines which nodes should be updated. Considering that the decision to update the embedding of one neighbor node can significantly impact other neighbor nodes, we conceptualize the node update selection as a sequence decision problem and employ reinforcement learning to address it effectively. By this means, we can adaptively propagate knowledge to other nodes for learning robust node embedding representations. To the best of our knowledge, our approach constitutes the first attempt to explore robust knowledge adaptation via reinforcement learning specifically tailored for dynamic graph neural networks. Extensive experiments on three benchmark datasets demonstrate that Ada-DyGNN achieves the state-of-the-art performance. In addition, we conduct experiments by introducing different degrees of noise into the dataset, quantitatively and qualitatively illustrating the robustness of Ada-DyGNN.
comment: 14 pages, 6 figures
♻ ☆ The Optimal Choice of Hypothesis Is the Weakest, Not the Shortest
If $A$ and $B$ are sets such that $A \subset B$, generalisation may be understood as the inference from $A$ of a hypothesis sufficient to construct $B$. One might infer any number of hypotheses from $A$, yet only some of those may generalise to $B$. How can one know which are likely to generalise? One strategy is to choose the shortest, equating the ability to compress information with the ability to generalise (a proxy for intelligence). We examine this in the context of a mathematical formalism of enactive cognition. We show that compression is neither necessary nor sufficient to maximise performance (measured in terms of the probability of a hypothesis generalising). We formulate a proxy unrelated to length or simplicity, called weakness. We show that if tasks are uniformly distributed, then there is no choice of proxy that performs at least as well as weakness maximisation in all tasks while performing strictly better in at least one. In experiments comparing maximum weakness and minimum description length in the context of binary arithmetic, the former generalised at between $1.1$ and $5$ times the rate of the latter. We argue this demonstrates that weakness is a far better proxy, and explains why Deepmind's Apperception Engine is able to generalise effectively.
comment: Published at the 16th Conference on Artificial General Intelligence, Stockholm, 2023
♻ ☆ LLaGA: Large Language and Graph Assistant
Graph Neural Networks (GNNs) have empowered the advance in graph-structured data analysis. Recently, the rise of Large Language Models (LLMs) like GPT-4 has heralded a new era in deep learning. However, their application to graph data poses distinct challenges due to the inherent difficulty of translating graph structures to language. To this end, we introduce the Large Language and Graph Assistant (LLaGA), an innovative model that effectively integrates LLM capabilities to handle the complexities of graph-structured data. LLaGA retains the general-purpose nature of LLMs while adapting graph data into a format compatible with LLM input. LLaGA achieves this by reorganizing graph nodes to structure-aware sequences and then mapping these into the token embedding space through a versatile projector. LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks, extend its ability to unseen datasets or tasks, and provide explanations for graphs. Our extensive experiments across popular graph benchmarks show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model, surpassing state-of-the-art graph models in both supervised and zero-shot scenarios. Our code is available at \url{https://github.com/VITA-Group/LLaGA}.
♻ ☆ A quasi-polynomial time algorithm for Multi-Dimensional Scaling via LP hierarchies
Multi-dimensional Scaling (MDS) is a family of methods for embedding an $n$-point metric into low-dimensional Euclidean space. We study the Kamada-Kawai formulation of MDS: given a set of non-negative dissimilarities $\{d_{i,j}\}_{i , j \in [n]}$ over $n$ points, the goal is to find an embedding $\{x_1,\dots,x_n\} \in \mathbb{R}^k$ that minimizes \[\text{OPT} = \min_{x} \mathbb{E}_{i,j \in [n]} \left[ \left(1-\frac{\|x_i - x_j\|}{d_{i,j}}\right)^2 \right] \] Kamada-Kawai provides a more relaxed measure of the quality of a low-dimensional metric embedding than the traditional bi-Lipschitz-ness measure studied in theoretical computer science; this is advantageous because strong hardness-of-approximation results are known for the latter, Kamada-Kawai admits nontrivial approximation algorithms. Despite its popularity, our theoretical understanding of MDS is limited. Recently, Demaine, Hesterberg, Koehler, Lynch, and Urschel (arXiv:2109.11505) gave the first approximation algorithm with provable guarantees for Kamada-Kawai in the constant-$k$ regime, with cost $\text{OPT} +\epsilon$ in $n^2 2^{\text{poly}(\Delta/\epsilon)}$ time, where $\Delta$ is the aspect ratio of the input. In this work, we give the first approximation algorithm for MDS with quasi-polynomial dependency on $\Delta$: we achieve a solution with cost $\tilde{O}(\log \Delta)\text{OPT}^{\Omega(1)}+\epsilon$ in time $n^{O(1)}2^{\text{poly}(\log(\Delta)/\epsilon)}$. Our approach is based on a novel analysis of a conditioning-based rounding scheme for the Sherali-Adams LP Hierarchy. Crucially, our analysis exploits the geometry of low-dimensional Euclidean space, allowing us to avoid an exponential dependence on the aspect ratio. We believe our geometry-aware treatment of the Sherali-Adams Hierarchy is an important step towards developing general-purpose techniques for efficient metric optimization algorithms.
comment: Extended exposition
♻ ☆ GEM3D: GEnerative Medial Abstractions for 3D Shape Synthesis SIGGRAPH 2024
We introduce GEM3D -- a new deep, topology-aware generative model of 3D shapes. The key ingredient of our method is a neural skeleton-based representation encoding information on both shape topology and geometry. Through a denoising diffusion probabilistic model, our method first generates skeleton-based representations following the Medial Axis Transform (MAT), then generates surfaces through a skeleton-driven neural implicit formulation. The neural implicit takes into account the topological and geometric information stored in the generated skeleton representations to yield surfaces that are more topologically and geometrically accurate compared to previous neural field formulations. We discuss applications of our method in shape synthesis and point cloud reconstruction tasks, and evaluate our method both qualitatively and quantitatively. We demonstrate significantly more faithful surface reconstruction and diverse shape generation results compared to the state-of-the-art, also involving challenging scenarios of reconstructing and synthesizing structurally complex, high-genus shape surfaces from Thingi10K and ShapeNet.
comment: Webpage: https://lodurality.github.io/GEM3D/ -- Cond. accept. to SIGGRAPH 2024 (conf. track) -- Changes (based on reviews): changed style to sigconf; rearranged figures for readability; added missing citations; fixed misaligned centers in Fig. 3; added failure cases (Fig. 10); rewrote discussion; added categories averages to Tab. 8; added Tab. 10 with model capacities
♻ ☆ Elementary Analysis of Policy Gradient Methods
Projected policy gradient under the simplex parameterization, policy gradient and natural policy gradient under the softmax parameterization, are fundamental algorithms in reinforcement learning. There have been a flurry of recent activities in studying these algorithms from the theoretical aspect. Despite this, their convergence behavior is still not fully understood, even given the access to exact policy evaluations. In this paper, we focus on the discounted MDP setting and conduct a systematic study of the aforementioned policy optimization methods. Several novel results are presented, including 1) global linear convergence of projected policy gradient for any constant step size, 2) sublinear convergence of softmax policy gradient for any constant step size, 3) global linear convergence of softmax natural policy gradient for any constant step size, 4) global linear convergence of entropy regularized softmax policy gradient for a wider range of constant step sizes than existing result, 5) tight local linear convergence rate of entropy regularized natural policy gradient, and 6) a new and concise local quadratic convergence rate of soft policy iteration without the assumption on the stationary distribution under the optimal policy. New and elementary analysis techniques have been developed to establish these results.
♻ ☆ Tensor Decomposition Based Attention Module for Spiking Neural Networks
The attention mechanism has been proven to be an effective way to improve spiking neural network (SNN). However, based on the fact that the current SNN input data flow is split into tensors to process on GPUs, none of the previous works consider the properties of tensors to implement an attention module. This inspires us to rethink current SNN from the perspective of tensor-relevant theories. Using tensor decomposition, we design the \textit{projected full attention} (PFA) module, which demonstrates excellent results with linearly growing parameters. Specifically, PFA is composed by the \textit{linear projection of spike tensor} (LPST) module and \textit{attention map composing} (AMC) module. In LPST, we start by compressing the original spike tensor into three projected tensors using a single property-preserving strategy with learnable parameters for each dimension. Then, in AMC, we exploit the inverse procedure of the tensor decomposition process to combine the three tensors into the attention map using a so-called connecting factor. To validate the effectiveness of the proposed PFA module, we integrate it into the widely used VGG and ResNet architectures for classification tasks. Our method achieves state-of-the-art performance on both static and dynamic benchmark datasets, surpassing the existing SNN models with Transformer-based and CNN-based backbones.
comment: Accepted by Knowledge-Based Systems
♻ ☆ A Survey of Knowledge Tracing: Models, Variants, and Applications
Modern online education has the capacity to provide intelligent educational services by automatically analyzing substantial amounts of student behavioral data. Knowledge Tracing (KT) is one of the fundamental tasks for student behavioral data analysis, aiming to monitor students' evolving knowledge state during their problem-solving process. In recent years, a substantial number of studies have concentrated on this rapidly growing field, significantly contributing to its advancements. In this survey, we will conduct a thorough investigation of these progressions. Firstly, we present three types of fundamental KT models with distinct technical routes. Subsequently, we review extensive variants of the fundamental KT models that consider more stringent learning assumptions. Moreover, the development of KT cannot be separated from its applications, thereby we present typical KT applications in various scenarios. To facilitate the work of researchers and practitioners in this field, we have developed two open-source algorithm libraries: EduData that enables the download and preprocessing of KT-related datasets, and EduKTM that provides an extensible and unified implementation of existing mainstream KT models. Finally, we discuss potential directions for future research in this rapidly growing field. We hope that the current survey will assist both researchers and practitioners in fostering the development of KT, thereby benefiting a broader range of students.
comment: 22 pages
♻ ☆ The Sample Complexity of Gradient Descent in Stochastic Convex Optimization
We analyze the sample complexity of full-batch Gradient Descent (GD) in the setup of non-smooth Stochastic Convex Optimization. We show that the generalization error of GD, with common choice of hyper-parameters, can be $\tilde \Theta(d/m + 1/\sqrt{m})$, where $d$ is the dimension and $m$ is the sample size. This matches the sample complexity of \emph{worst-case} empirical risk minimizers. That means that, in contrast with other algorithms, GD has no advantage over naive ERMs. Our bound follows from a new generalization bound that depends on both the dimension as well as the learning rate and number of iterations. Our bound also shows that, for general hyper-parameters, when the dimension is strictly larger than number of samples, $T=\Omega(1/\epsilon^4)$ iterations are necessary to avoid overfitting. This resolves an open problem by Schlisserman et al.23 and Amir er Al.21, and improves over previous lower bounds that demonstrated that the sample size must be at least square root of the dimension.
♻ ☆ Deep Temporal Graph Clustering
Deep graph clustering has recently received significant attention due to its ability to enhance the representation learning capabilities of models in unsupervised scenarios. Nevertheless, deep clustering for temporal graphs, which could capture crucial dynamic interaction information, has not been fully explored. It means that in many clustering-oriented real-world scenarios, temporal graphs can only be processed as static graphs. This not only causes the loss of dynamic information but also triggers huge computational consumption. To solve the problem, we propose a general framework for deep Temporal Graph Clustering called TGC, which introduces deep clustering techniques to suit the interaction sequence-based batch-processing pattern of temporal graphs. In addition, we discuss differences between temporal graph clustering and static graph clustering from several levels. To verify the superiority of the proposed framework TGC, we conduct extensive experiments. The experimental results show that temporal graph clustering enables more flexibility in finding a balance between time and space requirements, and our framework can effectively improve the performance of existing temporal graph learning methods. The code is released: https://github.com/MGitHubL/Deep-Temporal-Graph-Clustering.
♻ ☆ From Protoscience to Epistemic Monoculture: How Benchmarking Set the Stage for the Deep Learning Revolution
Over the past decade, AI research has focused heavily on building ever-larger deep learning models. This approach has simultaneously unlocked incredible achievements in science and technology, and hindered AI from overcoming long-standing limitations with respect to explainability, ethical harms, and environmental efficiency. Drawing on qualitative interviews and computational analyses, our three-part history of AI research traces the creation of this "epistemic monoculture" back to a radical reconceptualization of scientific progress that began in the late 1980s. In the first era of AI research (1950s-late 1980s), researchers and patrons approached AI as a "basic" science that would advance through autonomous exploration and organic assessments of progress (e.g., peer-review, theoretical consensus). The failure of this approach led to a retrenchment of funding in the 1980s. Amid this "AI Winter," an intervention by the U.S. government reoriented the field towards measurable progress on tasks of military and commercial interest. A new evaluation system called "benchmarking" provided an objective way to quantify progress on tasks by focusing exclusively on increasing predictive accuracy on example datasets. Distilling science down to verifiable metrics clarified the roles of scientists, allowed the field to rapidly integrate talent, and provided clear signals of significance and progress. But history has also revealed a tradeoff to this streamlined approach to science: the consolidation around external interests and inherent conservatism of benchmarking has disincentivized exploration beyond scaling monoculture. In the discussion, we explain how AI's monoculture offers a compelling challenge to the belief that basic, exploration-driven research is needed for scientific progress. Implications for the spread of AI monoculture to other sciences in the era of generative AI are also discussed.
♻ ☆ Multi-granular Adversarial Attacks against Black-box Neural Ranking Models SIGIR2024
Adversarial ranking attacks have gained increasing attention due to their success in probing vulnerabilities, and, hence, enhancing the robustness, of neural ranking models. Conventional attack methods employ perturbations at a single granularity, e.g., word or sentence level, to target documents. However, limiting perturbations to a single level of granularity may reduce the flexibility of adversarial examples, thereby diminishing the potential threat of the attack. Therefore, we focus on generating high-quality adversarial examples by incorporating multi-granular perturbations. Achieving this objective involves tackling a combinatorial explosion problem, which requires identifying an optimal combination of perturbations across all possible levels of granularity, positions, and textual pieces. To address this challenge, we transform the multi-granular adversarial attack into a sequential decision-making process, where perturbations in the next attack step build on the perturbed document in the current attack step. Since the attack process can only access the final state without direct intermediate signals, we use reinforcement learning to perform multi-granular attacks. During the reinforcement learning process, two agents work cooperatively to identify multi-granular vulnerabilities as attack targets and organize perturbation candidates into a final perturbation sequence. Experimental results show that our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
comment: Accepted by SIGIR2024
♻ ☆ Minusformer: Improving Time Series Forecasting by Progressively Learning Residuals
In this paper, we find that ubiquitous time series (TS) forecasting models are prone to severe overfitting. To cope with this problem, we embrace a de-redundancy approach to progressively reinstate the intrinsic values of TS for future intervals. Specifically, we renovate the vanilla Transformer by reorienting the information aggregation mechanism from addition to subtraction. Then, we incorporate an auxiliary output branch into each block of the original model to construct a highway leading to the ultimate prediction. The output of subsequent modules in this branch will subtract the previously learned results, enabling the model to learn the residuals of the supervision signal, layer by layer. This designing facilitates the learning-driven implicit progressive decomposition of the input and output streams, empowering the model with heightened versatility, interpretability, and resilience against overfitting. Since all aggregations in the model are minus signs, which is called Minusformer. Extensive experiments demonstrate the proposed method outperform existing state-of-the-art methods, yielding an average performance improvement of 11.9% across various datasets.
♻ ☆ Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning
The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged moderate-sized large language models (LLMs) highlights the potential of building smaller yet powerful LLMs. Regardless, the cost of training such models from scratch on trillions of tokens remains high. In this work, we study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models. Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains. We demonstrate the efficacy of our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE, OpenLLaMA and the concurrent TinyLlama models, on a wide range of downstream and instruction tuning evaluations, while requiring only 3% of compute compared to training such models from scratch. This work provides compelling evidence that leveraging existing LLMs with structured pruning is a far more cost-effective approach for building competitive small-scale LLMs
comment: The code and models are available at https://github.com/princeton-nlp/LLM-Shearing
♻ ☆ Semantically-correlated memories in a dense associative model
I introduce a novel associative memory model named Correlated Dense Associative Memory (CDAM), which integrates both auto- and hetero-association in a unified framework for continuous-valued memory patterns. Employing an arbitrary graph structure to semantically link memory patterns, CDAM is theoretically and numerically analysed, revealing four distinct dynamical modes: auto-association, narrow hetero-association, wide hetero-association, and neutral quiescence. Drawing inspiration from inhibitory modulation studies, I employ anti-Hebbian learning rules to control the range of hetero-association, extract multi-scale representations of community structures in graphs, and stabilise the recall of temporal sequences. Experimental demonstrations showcase CDAM's efficacy in handling real-world data, replicating a classical neuroscience experiment, performing image retrieval, and simulating arbitrary finite automata.
comment: 35 pages, 32 figures
♻ ☆ Incremental Randomized Smoothing Certification ICLR 2024
Randomized smoothing-based certification is an effective approach for obtaining robustness certificates of deep neural networks (DNNs) against adversarial attacks. This method constructs a smoothed DNN model and certifies its robustness through statistical sampling, but it is computationally expensive, especially when certifying with a large number of samples. Furthermore, when the smoothed model is modified (e.g., quantized or pruned), certification guarantees may not hold for the modified DNN, and recertifying from scratch can be prohibitively expensive. We present the first approach for incremental robustness certification for randomized smoothing, IRS. We show how to reuse the certification guarantees for the original smoothed model to certify an approximated model with very few samples. IRS significantly reduces the computational cost of certifying modified DNNs while maintaining strong robustness guarantees. We experimentally demonstrate the effectiveness of our approach, showing up to 3x certification speedup over the certification that applies randomized smoothing of the approximate model from scratch.
comment: ICLR 2024
♻ ☆ Learning the Positions in CountSketch
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem, e.g., low-rank approximation and regression. In the learning-based sketching paradigm proposed by~\cite{indyk2019learning}, the sketch matrix is found by choosing a random sparse matrix, e.g., CountSketch, and then the values of its non-zero entries are updated by running gradient descent on a training data set. Despite the growing body of work on this paradigm, a noticeable omission is that the locations of the non-zero entries of previous algorithms were fixed, and only their values were learned. In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries. Our first proposed algorithm is based on a greedy algorithm. However, one drawback of the greedy algorithm is its slower training time. We fix this issue and propose approaches for learning a sketching matrix for both low-rank approximation and Hessian approximation for second order optimization. The latter is helpful for a range of constrained optimization problems, such as LASSO and matrix estimation with a nuclear norm constraint. Both approaches achieve good accuracy with a fast running time. Moreover, our experiments suggest that our algorithm can still reduce the error significantly even if we only have a very limited number of training matrices.
comment: Corrected the proof of Theorem 5.1. arXiv admin note: text overlap with arXiv:2007.09890
♻ ☆ Demystifying Why Local Aggregation Helps: Convergence Analysis of Hierarchical SGD AAAI 2022
Hierarchical SGD (H-SGD) has emerged as a new distributed SGD algorithm for multi-level communication networks. In H-SGD, before each global aggregation, workers send their updated local models to local servers for aggregations. Despite recent research efforts, the effect of local aggregation on global convergence still lacks theoretical understanding. In this work, we first introduce a new notion of "upward" and "downward" divergences. We then use it to conduct a novel analysis to obtain a worst-case convergence upper bound for two-level H-SGD with non-IID data, non-convex objective function, and stochastic gradient. By extending this result to the case with random grouping, we observe that this convergence upper bound of H-SGD is between the upper bounds of two single-level local SGD settings, with the number of local iterations equal to the local and global update periods in H-SGD, respectively. We refer to this as the "sandwich behavior". Furthermore, we extend our analytical approach based on "upward" and "downward" divergences to study the convergence for the general case of H-SGD with more than two levels, where the "sandwich behavior" still holds. Our theoretical results provide key insights of why local aggregation can be beneficial in improving the convergence of H-SGD.
comment: 36 pages, in AAAI 2022
Multimedia 4
☆ Video Compression Beyond VVC: Quantitative Analysis of Intra Coding Tools in Enhanced Compression Model (ECM) ICIP 2024
A quantitative analysis of post-VVC luma and chroma intra tools is presented, focusing on their statistical behaviors, in terms of block selection rate under different conditions. The aim is to provide insights to the standardization community, offering a clearer understanding of interactions between tools and assisting in the design of an optimal combination of these novel tools when the JVET enters the standardization phase. Specifically, this paper examines the selection rate of intra tools as function of 1) the version of the ECM, 2) video resolution, and 3) video bitrate. Additionally, tests have been conducted on sequences beyond the JVET CTC database. The statistics show several trends and interactions, with various strength, between coding tools of both luma and chroma.
comment: Submitted to IEEE ICIP 2024
☆ Multimodal Emotion Recognition by Fusing Video Semantic in MOOC Learning Scenarios
In the Massive Open Online Courses (MOOC) learning scenario, the semantic information of instructional videos has a crucial impact on learners' emotional state. Learners mainly acquire knowledge by watching instructional videos, and the semantic information in the videos directly affects learners' emotional states. However, few studies have paid attention to the potential influence of the semantic information of instructional videos on learners' emotional states. To deeply explore the impact of video semantic information on learners' emotions, this paper innovatively proposes a multimodal emotion recognition method by fusing video semantic information and physiological signals. We generate video descriptions through a pre-trained large language model (LLM) to obtain high-level semantic information about instructional videos. Using the cross-attention mechanism for modal interaction, the semantic information is fused with the eye movement and PhotoPlethysmoGraphy (PPG) signals to obtain the features containing the critical information of the three modes. The accurate recognition of learners' emotional states is realized through the emotion classifier. The experimental results show that our method has significantly improved emotion recognition performance, providing a new perspective and efficient method for emotion recognition research in MOOC learning scenarios. The method proposed in this paper not only contributes to a deeper understanding of the impact of instructional videos on learners' emotional states but also provides a beneficial reference for future research on emotion recognition in MOOC learning scenarios.
♻ ☆ Defining Quantum Games
In this article, we survey the existing quantum physics related games and based on them propose a definition for the concept of quantum games. We define quantum games as any type of rule-based games that use the principles or reference the theory of quantum physics or quantum phenomena through any of three proposed dimensions: the perceivable dimension of quantum physics, the dimension of quantum technologies, and the dimension of scientific purposes like citizen science or education. We also discuss the concept of quantum computer games, games on quantum computers and discuss the definitions for the concept of science games. At the same time, there are various games exploring quantum physics and quantum computing through digital, analogue, and hybrid means with diverse incentives driving their development. As interest in games as educational tools for supporting quantum literacy grows, understanding the diverse landscape of quantum games becomes increasingly important. We propose that three dimensions of quantum games identified in this article are used for designing, analysing and defining the phenomenon of quantum games.
comment: 21 pages + references, 24 pictures in 6 figures, 3 tables
♻ ☆ MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models SemEval '24
This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git
comment: Ranked 3rd in SemEval '24 Task 3 with F1 of 0.3435, close to 1st & 2nd by 0.0339 & 0.0025